Woehrle, Tobias; Pfeiffer, Florian; Mandl, Maximilian M.; Sobtzick, Wolfgang; Heitzer, Jörg; Krstova, Alisa; Kamm, Luzie; Feuerecker, Matthias; Moser, Dominique; Klein, Matthias; Aulinger, Benedikt; Dolch, Michael; Boulesteix, Anne‐Laure; Lanz, Daniel; Choukér, Alexander (2024): Point‐of‐care breath sample analysis by semiconductor‐based E‐Nose technology discriminates non‐infected subjects from SARS‐CoV‐2 pneumonia patients: a multi‐analyst experiment. MedComm, 5 (11): e726. ISSN 2688-2663
![MedComm_-_2024_-_Woehrle_-_Point‐of‐care_breath_sample_analysis_by_semiconductor‐based_E‐Nose_technology_discriminates.pdf [thumbnail of MedComm_-_2024_-_Woehrle_-_Point‐of‐care_breath_sample_analysis_by_semiconductor‐based_E‐Nose_technology_discriminates.pdf]](https://oa-fund.ub.uni-muenchen.de/style/images/fileicons/text.png)
MedComm_-_2024_-_Woehrle_-_Point‐of‐care_breath_sample_analysis_by_semiconductor‐based_E‐Nose_technology_discriminates.pdf
Die Publikation ist unter der Lizenz Creative Commons Namensnennung (CC BY) verfügbar.
Herunterladen (3MB)
Abstract
Metal oxide sensor-based electronic nose (E-Nose) technology provides an easy to use method for breath analysis by detection of volatile organic compound (VOC)-induced changes of electrical conductivity. Resulting signal patterns are then analyzed by machine learning (ML) algorithms. This study aimed to establish breath analysis by E-Nose technology as a diagnostic tool for severe acute respiratory syndrome coronavirus type 2 (SARS-CoV-2) pneumonia within a multi-analyst experiment. Breath samples of 126 subjects with (n = 63) or without SARS-CoV-2 pneumonia (n = 63) were collected using the ReCIVA® Breath Sampler, enriched and stored on Tenax sorption tubes, and analyzed using an E-Nose unit with 10 sensors. ML approaches were applied by three independent data analyst teams and included a wide range of classifiers, hyperparameters, training modes, and subsets of training data. Within the multi-analyst experiment, all teams successfully classified individuals as infected or uninfected with an averaged area under the curve (AUC) larger than 90% and misclassification error lower than 19%, and identified the same sensor as most relevant to classification success. This new method using VOC enrichment and E-Nose analysis combined with ML can yield results similar to polymerase chain reaction (PCR) detection and superior to point-of-care (POC) antigen testing. Reducing the sensor set to the most relevant sensor may prove interesting for developing targeted POC testing.
Dokumententyp: | Artikel (Klinikum der LMU) |
---|---|
Organisationseinheit (Fakultäten): | 07 Medizin > Klinikum der LMU München > Klinik für Anaesthesiologie |
DFG-Fachsystematik der Wissenschaftsbereiche: | Lebenswissenschaften |
Veröffentlichungsdatum: | 05. Mai 2025 09:29 |
Letzte Änderung: | 05. Mai 2025 09:29 |
URI: | https://oa-fund.ub.uni-muenchen.de/id/eprint/1774 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 491502892 |