Stadler, Matthias; Horrer, Anna; Fischer, Martin R. (2024): Crafting medical MCQs with generative AI: A how-to guide on leveraging ChatGPT. GMS Journal for Medical Education. ISSN 2366-5017
zma001675.pdf
Die Publikation ist unter der Lizenz Creative Commons Namensnennung (CC BY) verfügbar.
Herunterladen (292kB)
Abstract
As medical educators grapple with the consistent demand for high-quality assessments, the integration of artificial intelligence presents a novel solution. This how-to article delves into the mechanics of employing ChatGPT for generating Multiple Choice Questions (MCQs) within the medical curriculum. Focusing on the intricacies of prompt engineering, we elucidate the steps and considerations imperative for achieving targeted, high-fidelity results. The article presents varying outcomes based on different prompt structures, highlighting the AI's adaptability in producing questions of distinct complexities. While emphasizing the transformative potential of ChatGPT, we also spotlight challenges, including the AI’s occasional “hallucination”, underscoring the importance of rigorous review. This guide aims to furnish educators with the know-how to integrate AI into their assessment creation process, heralding a new era in medical education tools.
Dokumententyp: | Artikel (Klinikum der LMU) |
---|---|
Organisationseinheit (Fakultäten): | 07 Medizin > Klinikum der LMU München |
DFG-Fachsystematik der Wissenschaftsbereiche: | Lebenswissenschaften |
Veröffentlichungsdatum: | 31. Jul 2024 06:21 |
Letzte Änderung: | 31. Jul 2024 06:21 |
URI: | https://oa-fund.ub.uni-muenchen.de/id/eprint/1240 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 491502892 |