Berasategui, Jessica A.; Žerdoner Čalasan, Anže; Zizka, Alexander; Kadereit, Gudrun (2023): Global distribution, climatic preferences and photosynthesis‐related traits of C 4 eudicots and how they differ from those of C 4 grasses. Ecology and Evolution, 13 (11). ISSN 2045-7758
Ecology_and_Evolution_-_2023_-_Berasategui_-_Global_distribution__climatic_preferences_and_photosynthesis‐related_traits_of.pdf
The publication is available under the license Creative Commons Attribution.
Download (13MB)
Abstract
C₄ is one of three known photosynthetic processes of carbon fixation in flowering plants. It evolved independently more than 61 times in multiple angiosperm lineages and consists of a series of anatomical and biochemical modifications to the ancestral C3 pathway increasing plant productivity under warm and light-rich conditions. The C4 lineages of eudicots belong to seven orders and 15 families, are phylogenetically less constrained than those of monocots and entail an enormous structural and ecological diversity. Eudicot C4 lineages likely evolved the C4 syndrome along different evolutionary paths. Therefore, a better understanding of this diversity is key to understanding the evolution of this complex trait as a whole. By compiling 1207 recognised C4 eudicots species described in the literature and presenting trait data among these species, we identify global centres of species richness and of high phylogenetic diversity. Furthermore, we discuss climatic preferences in the context of plant functional traits. We identify two hotspots of C4 eudicot diversity: arid regions of Mexico/Southern United States and Australia, which show a similarly high number of different C4 eudicot genera but differ in the number of C4 lineages that evolved in situ. Further eudicot C4 hotspots with many different families and genera are in South Africa, West Africa, Patagonia, Central Asia and the Mediterranean. In general, C4 eudicots are diverse in deserts and xeric shrublands, tropical and subtropical grasslands, savannas and shrublands. We found C4 eudicots to occur in areas with less annual precipitation than C4 grasses which can be explained by frequently associated adaptations to drought stress such as among others succulence and salt tolerance. The data indicate that C4 eudicot lineages utilising the NAD-ME decarboxylating enzyme grow in drier areas than those using the NADP-ME decarboxylating enzyme indicating biochemical restrictions of the later system in higher temperatures. We conclude that in most eudicot lineages, C4 evolved in ancestrally already drought-adapted clades and enabled these to further spread in these habitats and colonise even drier areas.
C₄ is one of three known photosynthetic processes of carbon fixation in flowering plants. It evolved independently more than 61 times in multiple angiosperm lineages and consists of a series of anatomical and biochemical modifications to the ancestral C 3 pathway increasing plant productivity under warm and light‐rich conditions. The C 4 lineages of eudicots belong to seven orders and 15 families, are phylogenetically less constrained than those of monocots and entail an enormous structural and ecological diversity. Eudicot C 4 lineages likely evolved the C 4 syndrome along different evolutionary paths. Therefore, a better understanding of this diversity is key to understanding the evolution of this complex trait as a whole. By compiling 1207 recognised C 4 eudicots species described in the literature and presenting trait data among these species, we identify global centres of species richness and of high phylogenetic diversity. Furthermore, we discuss climatic preferences in the context of plant functional traits. We identify two hotspots of C 4 eudicot diversity: arid regions of Mexico/Southern United States and Australia, which show a similarly high number of different C 4 eudicot genera but differ in the number of C 4 lineages that evolved in situ. Further eudicot C 4 hotspots with many different families and genera are in South Africa, West Africa, Patagonia, Central Asia and the Mediterranean. In general, C 4 eudicots are diverse in deserts and xeric shrublands, tropical and subtropical grasslands, savannas and shrublands. We found C 4 eudicots to occur in areas with less annual precipitation than C 4 grasses which can be explained by frequently associated adaptations to drought stress such as among others succulence and salt tolerance. The data indicate that C 4 eudicot lineages utilising the NAD‐ME decarboxylating enzyme grow in drier areas than those using the NADP‐ME decarboxylating enzyme indicating biochemical restrictions of the later system in higher temperatures. We conclude that in most eudicot lineages, C 4 evolved in ancestrally already drought‐adapted clades and enabled these to further spread in these habitats and colonise even drier areas.
11 12 2023 11 2023 e10720 10.1002/ece3.10720 2 10.1002/crossmark_policy onlinelibrary.wiley.com true 2023-05-02 2023-10-30 2023-11-12 Deutsche Forschungsgemeinschaft https://doi.org/10.13039/501100001659 KA1816‐7/3 http://creativecommons.org/licenses/by/4.0/ 10.1002/ece3.10720 https://onlinelibrary.wiley.com/doi/10.1002/ece3.10720 https://onlinelibrary.wiley.com/doi/pdf/10.1002/ece3.10720 10.1600/0363644054223684 10.1080/11263504.2012.662921 10.1086/518263 10.6084/m9.figshare.14544207 10.1111/nph.19282 10.1002/jqs.876 10.1111/j.1365‐2486.2004.00833.x 10.1126/sciadv.abb8227 10.2172/910351 10.1600/036364412x656608 10.3732/ajb.1300279 10.1016/j.ppees.2014.12.003 10.1146/annurev.ecolsys.39.110707.173411 10.1111/jeb.12320 10.1111/nph.18919 10.1146/annurev.pp.08.060157.001423 10.1016/j.sajb.2019.05.032 10.3732/ajb.0800224 10.1038/38229 Chamberlain S. Barve V. Mcglinn D. Oldoni D. Desmet P. Geffert L. &Ram K.(2020).rgbif: Interface to the global biodiversity information facility API. R package version 3.3.0. Available from:https://CRAN.R‐project.org/package=rgbif 10.1016/j.cub.2007.11.058 10.1111/nph.13033 10.1093/jxb/err041 Onwards. World grass species: Synonymy Clayton W. D. 2002 10.1007/bf00044788 10.1146/annurev.earth.32.101802.120257 10.1111/1365‐2435.13085 10.3732/ajb.94.5.856 10.11646/phytotaxa.208.4.2 10.1073/pnas.0909672107 C4 photosynthesis and related CO2 concentrating mechanisms Edwards G. E. 29 2011 10.1007/bf00379568 10.1104/pp.59.1.86 10.1007/s004420050311 10.1130/G33147.1 10.1038/s41598‐020‐71012‐y 10.1093/jxb/erac163 10.1002/joc.5086 10.1086/683011 10.18637/jss.v014.i09 10.1055/s‐2000‐9462 10.1093/botlinnean/boab082 10.1144/sp346.8 10.1093/jxb/erab290 10.1071/fp02056 10.1007/978-94-007-7411-7_8 10.1890/1051‐0761(2000)010[1861:rsovps]2.0.co;2 World checklist and bibliography of Euphorbiaceae (with Pandaceae) Govaerts R. 2000 10.1038/s41597‐021‐00997‐6 10.1111/j.1365‐2699.2005.01448.x 10.1111/j.1365‐3040.2012.02585.x 10.25224/1097‐993x‐19.1.6 10.1142/9789812817563_0013 10.1038/s41576‐019‐0107‐5 10.1016/j.flora.2018.08.005 10.1038/ngeo1984 10.1016/j.jplph.2017.01.010 10.1002/ece3.7986 10.1111/evo.12534 10.1111/ecog.05926 10.14258/turczaninowia.22.3.1 10.1130/B32009.1 IPNI. International Plant Names Index 2020. Available from:https://beta.ipni.org/[Accessed 15 August 2020]. 10.1080/00288233.1996.9513213 10.1098/rspb.2012.0440 10.1086/378649 10.1002/tax.601006 10.1016/j.ode.2004.07.002 10.3732/ajb.1000169 10.1016/j.ppees.2017.09.007 10.1016/0031‐0182(78)90042‐1 10.1093/jxb/ers218 10.3389/fpls.2020.578739 Kool A.(2012).Desert plants and Deserted Islands: Systematics and Ethnobotany in Caryophyllaceae (Doctoral dissertation Acta Universitatis Upsaliensis). ISBN 978‐91‐554‐8471‐2. 10.1127/0340‐269x/2004/0034‐0169 Deserts and desert environments Laity J. J. 37 2008 10.1105/tpc.111.092098 10.1093/jxb/erw343 10.1016/j.ympev.2016.01.002 10.1016/j.ppees.2019.125463 10.1101/583625 Lehmann C. E. Griffith D. M. Simpson K. J. Anderson T. M. Archibald S. Beerling D. J. Bond W. J. Denton E. Edwards E. J. Forrestel E. J. &Fox D. L.(2019).Functional diversification enabled grassy biomes to fill global climate space.BioRxiv 583625.https://doi.org/10.1101/583625 10.3372/wi.50.50301 10.1111/brv.12388 Vegetation of South Africa, Lesotho and Swaziland Low A. B. 1996 10.1111/ele.12484 10.1007/s12224‐018‐9320‐9 10.1111/geb.12326 10.1071/FP14108 10.1111/j.1526‐100x.2006.00103.x Moir‐Barnetson L.(2014).Ecophysiological responses to changes in salinity and water availability in stem‐succulent halophytes (Tecticornia spp.) from an ephemeral salt lake (Doctoral dissertation University of Western Australia). 10.1111/j.1365‐3040.1989.tb01629.x 10.18061/bssb.v2i3.8992 10.1126/sciadv.abn2349 10.7934/p942 10.1002/ajb2.1087 10.3923/ajps.2012.206.216 10.3732/ajb.94.3.362 10.1093/jxb/ery416 10.1016/j.ympev.2011.12.017 10.3732/ajb.1300094 10.1641/0006‐3568(2001)051[0933:teotwa]2.0.co;2 10.3390/cli6020035 10.1007/s11258‐015‐0531‐3 10.1098/rspb.2008.1762 10.1111/nph.12942 10.1111/j.1365‐3040.1984.tb01194.x 10.1104/pp.55.6.1054 10.3372/wi.34.34216 10.1071/BT02080 10.1080/07352689.2014.847616 10.12705/661.6 10.1111/pce.12636 10.1007/s11258‐021‐01116‐6 10.2307/2398862 POWO Plants of the world online. (2020).Facilitated by the Royal Botanic Gardens Kew. Published on the Internet; Available from:http://www.plantsoftheworldonline.org/[Accessed 18 October 2021]. 10.1093/oxfordjournals.pcp.a029519 10.1007/s004420050985 10.1111/j.1095‐8339.2010.01062.x R Core Team. (2020).R: 2019.A language and environment for statistical computing version 3(1). 10.3389/fpls.2016.01525 10.1016/j.gca.2005.11.031 10.3389/fpls.2020.546518 10.1111/j.1469‐8137.2004.00974.x 10.1093/jxb/erw137 10.1093/jxb/erx005 10.1093/jxb/err048 10.1093/jxb/eru180 10.1093/jxb/erj040 10.1007/s00442‐018‐4191‐6 10.1146/annurev‐arplant‐042811‐105511 10.3732/ajb.94.12.1992 10.1093/aob/mcx123 10.1111/j.1466‐8238.2008.00381.x 10.1002/tax.591005 10.1111/j.1095‐8339.2012.01248.x 10.1093/pcp/pcv155 10.1111/nph.18961 10.1146/annurev‐arplant‐042916‐040915 10.1007/bf00334563 Madoqua Schulze E. D. 5 1976 3 1976 Distribution and control of photosynthetic pathways in plants growing in the Namib Desert, with special regard to Welwitschia mirabilis hook. fil 10.1007/s00606‐003‐0013‐2 10.1038/s41598‐021‐85735‐z 10.1186/s13007‐020‐00662‐w 10.1071/sb04031 10.3732/ajb.91.9.1387 10.1016/j.isprsjprs.2016.08.001 Madrono Shreve F. 1 5 1 1939 Observations on the vegetation of Chihuahua 10.1111/geb.12121 10.1086/283301 10.1146/annurev‐earth‐040809‐152402 10.3390/d14060443 10.2307/2656659 World geographic scheme for recording plant distributions standard TDWG. World Geographic Scheme for Recording Plant Distributions Committee 2001 10.1007/bf00351210 10.1093/sysbio/syw064 10.1111/jbi.13745 10.21829/abm118.2017.1201 Madoqua Vogel J. C. 75 1977 1 1977 Occurrence of C4 plants in the central Namib Desert 10.1093/jxb/erw491 10.1093/jxb/ern028 10.3732/ajb.90.12.1669 10.1046/j.1365‐313x.2002.01385.x 10.1093/jxb/erw393 10.1093/jxb/eru058 10.1600/036364418X697193 10.1073/pnas.2214655120 10.1111/j.1541‐0420.2011.01616.x Flora of Australia Wilson P. G. 1984 10.1007/bf00346994 10.1071/fp20247 10.1093/jxb/ery431 10.1017/s1464793103006419 10.1098/rstb.2004.1525 10.1186/s12862‐018‐1277‐z Flora of China Wu Z. Y. 1994 10.1016/j.jag.2015.12.007 10.3732/ajb.1000496 10.1093/jxb/eraa234 10.11646/phytotaxa.501.1.6 10.1016/j.ppees.2022.125660 10.1002/ece3.8015 10.1073/pnas.1718988115 10.1111/ecog.05102 10.7717/peerj.9916 10.1073/pnas.2208629119 10.1111/2041‐210x.13152 GBIF.org. (2020a).Acanthaceae (17 Nov 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.p5n2uy(0114210‐200613084148143). GBIF.org. (2020b).Aizoaceae (19 Nov 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.57hjud(0116423‐200613084148143). GBIF.org. (2020c).Amaranthaceae (19 Nov 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.su2qph(0116611‐200613084148143). GBIF.org. (2020d).Asteraceae (19 Nov 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.hnc7zj(0116631‐200613084148143). GBIF.org. (2020e).Boraginaceae (19 Nov 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.x6654v(0116642‐200613084148143). GBIF.org. (2020f).Cleomaceae (19 Nov 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.whe79v(0116648‐200613084148143). GBIF.org. (2020g).Caryophyllaceae (19 Nov 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.jadxrm(0116652‐200613084148143). GBIF.org. (2020h).Euphorbiaceae (19 Nov 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.kt6gaz(0116655‐200613084148143). GBIF.org. (2020i).Gisekiaceae (19 Nov 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.ycp32w(0116659‐200613084148143). GBIF.org. (2020j).Molluginaceae (19 Nov 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.62fqxd(0116660‐200613084148143). GBIF.org. (2020k).Nyctaginaceae (19 Nov 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.3zuy37(0116664‐200613084148143). GBIF.org. (2020l).Polygonaceae (19 Nov 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.2zp22x(0116667‐200613084148143). GBIF.org. (2020m).Portulacaceae (19 Nov 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.r2w25u(0116670‐200613084148143). GBIF.org. (2020n).Scrophulariaceae (19 Nov 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.hfe2jb(0116676‐200613084148143). GBIF.org. (2020o).Zygophyllaceae (19 Nov 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.pk453g(0116678‐200613084148143). GBIF.org. (2020p).Aristidoideae (17 Sep 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.7ahgpw(0063372‐200613084148143). GBIF.org. (2020q).Chloridoideae (15 Sep 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.e9k62g(0061870‐200613084148143). GBIF.org. (2021r).Hydrocharitaceae (21 Jan 2021) GBIF occurrence. Download:https://doi.org/10.15468/dl.bmtypz(0164167‐200613084148143). GBIF.org. (2020s).Micrairoideae (17 Sep 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.w2yqez(0063376‐200613084148143). GBIF.org. (2020t).Panicoideae (15 Sep 2020) GBIF occurrence. Download:https://doi.org/10.15468/dl.4z5c4d(0061888‐200613084148143).
Doc-Type: | Article (LMU) |
---|---|
Organisational unit (Faculties): | 19 Biology > Department Biology I |
DFG subject classification of scientific disciplines: | Life sciences |
Date Deposited: | 16. Feb 2024 08:53 |
Last Modified: | 16. Feb 2024 08:53 |
URI: | https://oa-fund.ub.uni-muenchen.de/id/eprint/1176 |
DFG: | Funded by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation) - 491502892 |