Schuknecht, Francis; Kołątaj, Karol; Steinberger, Michael; Liedl, Tim; Lohmueller, Theobald (2023): Accessible hotspots for single-protein SERS in DNA-origami assembled gold nanorod dimers with tip-to-tip alignment. Nature Communications, 14 (1). ISSN 2041-1723
s41467-023-42943-7.pdf
Die Publikation ist unter der Lizenz Creative Commons Namensnennung (CC BY) verfügbar.
Herunterladen (2MB)
Abstract
The label-free identification of individual proteins from liquid samples by surface-enhanced Raman scattering (SERS) spectroscopy is a highly desirable goal in biomedical diagnostics. However, the small Raman scattering cross-section of most (bio-)molecules requires a means to strongly amplify their Raman signal for successful measurement, especially for single molecules. This amplification can be achieved in a plasmonic hotspot that forms between two adjacent gold nanospheres. However, the small (≈1−2 nm) gaps typically required for single-molecule measurements are not accessible for most proteins. A useful strategy would thus involve dimer structures with gaps large enough to accommodate single proteins, whilst providing sufficient field enhancement for single-molecule SERS. Here, we report on using a DNA origami scaffold for tip-to-tip alignment of gold nanorods with an average gap size of 8 nm. The gaps are accessible to streptavidin and thrombin, which are captured at the plasmonic hotspot by specific anchoring sites on the origami template. The field enhancement achieved for the nanorod dimers is sufficient for single-protein SERS spectroscopy with sub-second integration times. This design for SERS probes composed of DNA origami with accessible hotspots promotes future use for single-molecule biodiagnostics in the near-infrared range.
Dokumententyp: | Artikel (LMU) |
---|---|
Organisationseinheit (Fakultäten): | 17 Physik |
DFG-Fachsystematik der Wissenschaftsbereiche: | Naturwissenschaften |
Veröffentlichungsdatum: | 09. Feb 2024 14:25 |
Letzte Änderung: | 09. Feb 2024 14:25 |
URI: | https://oa-fund.ub.uni-muenchen.de/id/eprint/1165 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 201269156 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 390776260 |
DFG: | Gefördert durch die Deutsche Forschungsgemeinschaft (DFG) - 491502892 |