Logo Logo

Taipaleenmäki, Hanna; Saito, Hiroaki; Schröder, Saskia; Maeda, Miki; Mettler, Ramona; Ring, Matthias; Rollmann, Ewa; Gasser, Andreas; Haasper, Carl; Gehrke, Thorsten; Weiss, Alexander; Grimm, Steffen K; Hesse, Eric (2022): Antagonizing microRNA ‐19a/b augments PTH anabolic action and restores bone mass in osteoporosis in mice. EMBO Molecular Medicine, 14 (11). ISSN 1757-4676

[thumbnail of EMBO Mol Med - 2022 - Taipaleenm ki - Antagonizing microRNA‐19a b augments PTH anabolic action and restores bone mass in.pdf] Published Article
EMBO Mol Med - 2022 - Taipaleenm ki - Antagonizing microRNA‐19a b augments PTH anabolic action and restores bone mass in.pdf

The publication is available under the license Creative Commons Attribution.

Download (3MB)

Abstract

Postmenopausal bone loss often leads to osteoporosis and fragility fractures. Bone mass can be increased by the first 34 amino acids of human parathyroid hormone (PTH), parathyroid hormone-related protein (PTHrP), or by a monoclonal antibody against sclerostin (Scl-Ab). Here, we show that PTH and Scl-Ab reduce the expression of microRNA-19a and microRNA-19b (miR-19a/b) in bone. In bones from patients with lower bone mass and from osteoporotic mice, miR-19a/b expression is elevated, suggesting an inhibitory function in bone remodeling. Indeed, antagonizing miR-19a/b in vivo increased bone mass without overt cytotoxic effects. We identified TG-interacting factor 1 (Tgif1) as the target of miR-19a/b in osteoblasts and essential for the increase in bone mass following miR-19a/b inhibition. Furthermore, antagonizing miR-19a/b augments the gain in bone mass by PTH and restores bone loss in mouse models of osteoporosis in a dual mode of action by supporting bone formation and decreasing receptor activator of NF-κB ligand (RANKL)-dependent bone resorption. Thus, this study identifies novel mechanisms regulating bone remodeling, which opens opportunities for new therapeutic concepts to treat bone fragility.

View Item
View Item