Logo Logo

Willems, Sabine; Marschner, Julian A.; Kilu, Whitney; Faudone, Giuseppe; Busch, Romy; Duensing‐Kropp, Silke; Heering, Jan; Merk, Daniel (2022): Nurr1 Modulation Mediates Neuroprotective Effects of Statins. Advanced Science, 9 (18): 2104640. ISSN 2198-3844

[thumbnail of Advanced Science - 2022 - Willems - Nurr1 Modulation Mediates Neuroprotective Effects of Statins.pdf] Veröffentlichte Publikation
Advanced Science - 2022 - Willems - Nurr1 Modulation Mediates Neuroprotective Effects of Statins.pdf

Die Publikation ist unter der Lizenz Creative Commons Namensnennung (CC BY) verfügbar.

Herunterladen (4MB)

Abstract

The ligand-sensing transcription factor Nurr1 emerges as a promising therapeutic target for neurodegenerative pathologies but Nurr1 ligands for functional studies and therapeutic validation are lacking. Here pronounced Nurr1 modulation by statins for which clinically relevant neuroprotective effects are demonstrated, is reported. Several statins directly affect Nurr1 activity in cellular and cell-free settings with low micromolar to sub-micromolar potencies. Simvastatin as example exhibits anti-inflammatory effects in astrocytes, which are abrogated by Nurr1 knockdown. Differential gene expression analysis in native and Nurr1-silenced cells reveals strong proinflammatory effects of Nurr1 knockdown while simvastatin treatment induces several neuroprotective mechanisms via Nurr1 involving changes in inflammatory, metabolic and cell cycle gene expression. Further in vitro evaluation confirms reduced inflammatory response, improved glucose metabolism, and cell cycle inhibition of simvastatin-treated neuronal cells. These findings suggest Nurr1 involvement in the well-documented but mechanistically elusive neuroprotection by statins.

Publikation bearbeiten
Publikation bearbeiten