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Construction Grammar (CxG) is a paradigm from cognitive linguistics emphasizing

the connection between syntax and semantics. Rather than rules that operate on

lexical items, it posits constructions as the central building blocks of language, i.e.,

linguistic units of di�erent granularity that combine syntax and semantics. As a first

step toward assessing the compatibility of CxG with the syntactic and semantic

knowledge demonstrated by state-of-the-art pretrained language models (PLMs),

we present an investigation of their capability to classify and understand one of

the most commonly studied constructions, the English comparative correlative

(CC). We conduct experiments examining the classification accuracy of a syntactic

probe on the one hand and the models’ behavior in a semantic application task on

the other, with BERT, RoBERTa, and DeBERTa as the example PLMs. Our results

show that all three investigated PLMs, as well as OPT, are able to recognize the

structure of the CC but fail to use its meaning. While human-like performance of

PLMs onmany NLP tasks has been alleged, this indicates that PLMs still su�er from

substantial shortcomings in central domains of linguistic knowledge.
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1. Introduction

The sentence “The better your syntax, the better your semantics.” contains a construction

called the English comparative correlative (CC; Fillmore, 1986). Paraphrased, it could be read

as “If your syntax is better, your semantics will also be better.” Humans reading this sentence

are capable of doing two things: (i) recognizing that two instances of “the” followed by an

adjective/adverb in the comparative as well as a phrase of the given structure (i.e., the syntax

of the CC) express a specific meaning (i.e., the semantics of the CC); (ii) understanding the

semantic meaning conveyed by the CC, i.e., understanding that in a sentence of the given

structure, the second half is somehow correlated with the first.

In this paper, we ask the following question: are pretrained language models (PLMs)

able to achieve these two steps? This question is important for two reasons. Firstly, we

hope that recognizing the CC and understanding its meaning is challenging for PLMs,

helping to set the research agenda for further improvements. Secondly, the CC is one of

the most commonly studied constructions in construction grammar (CxG), a usage-based

syntax paradigm from cognitive linguistics, thus providing an interesting alternative to the

currently prevailing practice of analysing the syntactic capabilities of PLMs with theories

from generative grammar (e.g., Marvin and Linzen, 2018).
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We divide our investigation into two parts. In the first part, we

examine the CC’s syntactic properties and how they are represented

by PLMs, with the objective to determine whether PLMs can

recognize an instance of the CC. More specifically, we construct

two syntactic probes with different properties: one is inspired by

recent probing methodology (e.g., Belinkov et al., 2017; Conneau

et al., 2018) and draws upon minimal pairs to quantify the amount

of information contained in each PLM layer; for the other one,

we write a context-free grammar (CFG) to construct approximate

minimal pairs in which only the word order determines if the

sentences are an instance of the CC or not. We find that starting

from the third layer, all investigated PLMs are able to distinguish

positive from negative instances of the CC. However, this method

only covers one specific subtype of comparative sentences. To cover

the full diversity of instances, we conduct an additional experiment

for which we collect and manually label sentences from C4 (Raffel

et al., 2020) that resemble instances of the CC, resulting in a diverse

set of sentences that either are instances of the CC or resemble

them closely without being instances of the CC. Applying the same

methodology to this set of sentences, we observe that all examined

PLMs are still able to separate the examples very well.

In the second part of the paper, we aim to determine if the PLMs

are able to understand the meaning of the CC. We generate test

scenarios in which a statement containing the CC is given to the

PLMs, which they then have to apply in a zero-shot manner. As this

way of testing PLMs is prone to a variety of biases, we introduce

several mitigating methods in order to determine the full capability

of the PLMs. We find that neither the masked language models nor

the autoregressive models that we investigated performed above

chance level on this task.

We make three main contributions:

– We present the first comprehensive study examining how

well PLMs can recognize and understand a CxG construction,

specifically the English comparative correlative.

– We develop a way of testing the PLMs’ recognition of the

CC that overcomes the challenge of probing for linguistic

phenomena not lending themselves to minimal pairs.

– We adapt methods from zero-shot prompting and calibration

to develop a way of testing PLMs for their understanding of

the CC.

2. Construction grammar and natural
language processing

2.1. Construction grammar

A core assumption of generative grammar (Chomsky, 1988),

which can be already found in Bloomfieldian structural linguistics

(Bloomfield, 1933), is a strict separation of lexicon and grammar:

grammar is conceptualized as a set of compositional and general

rules that operate on a list of arbitrary and specific lexical items in

generating syntactically well-formed sentences. This dichotomous

view was increasingly questioned in the 1980s when several studies

drew attention to the fact that linguistic units larger than lexical

items (e.g., idioms) can also possess non-compositional meanings

(Lakoff, 1987; Langacker, 1987; Fillmore et al., 1988; Fillmore,

TABLE 1 Standard examples of constructions at various levels, adapted

from Goldberg (2013).

Construction
name

Construction
template

Examples

Word Banana

Word (partially filled) pre-N, V-ing Pretransition, Working

Idiom (filled) Give the devil his due

Idiom (partially filled) Jog <someone’s>

memory

She jogged his memory

Idiom (minimally filled) The X-er the Y-er The more I think about

it, the less I know

Ditransitive construction

(unfilled)

Subj V Obj1 Obj2 He baked her a muffin

Passive (unfilled) Subj aux VPpp (PP by) The armadillo was hit by

a car

1989). For instance, it is not clear how the effect of the words

“let alone” (as in “she doesn’t eat fish, let alone meat”) on both

the syntax and the semantics of the rest of the sentence could

be inferred from general syntactic rules (Fillmore et al., 1988).

This insight about the ubiquity of stored form-meaning pairings

in language is adopted as the central tenet of grammatical theory

by Construction Grammar (CxG; see Hoffmann and Trousdale,

2013 for a comprehensive overview). Rather than a system divided

into non-overlapping syntactic rules and lexical items, CxG views

language as a structured system of constructions with varying

granularities that encapsulate syntactic and semantic components

as single linguistic signs—ranging from individual morphemes up

to phrasal elements and fixed expressions (Goldberg A., 1995; Kay

and Fillmore, 1999). In this framework, syntactic rules can be

seen as emergent abstractions over similar stored constructions

(Goldberg, 2003, 2006). A different set of stored constructions can

result in different abstractions and thus different syntactic rules,

which allows CxG to naturally accommodate for the dynamic

nature of grammar as evidenced, for instance, by inter-speaker

variability and linguistic change (Hilpert, 2006).

2.2. Why construction grammar for NLP?

There has recently been growing interest in developing probing

approaches for PLMs based on CxG. We see these approaches as

coming from two different motivational standpoints, summarized

below.

2.2.1. Constructions are essential for language
modeling

According to CxG, meaning is encoded in abstract

constellations of linguistic units of different sizes. Examples

of these can be found in Table 1. This means that LMs, which

the field of NLP is trying to develop to achieve human language

competency, must also be able to assign meaning to these units

to be full LMs. Their ability to assign meaning to words, or

more specifically to subword units which are sometimes closer to
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TABLE 2 Translated back to English by humans, they all mean “She

sneezed her cappuccino’s foam,” which does not correctly convey the

resultative meaning component, i.e., that the foam is removed from the

cappuccino by the sneeze (as opposed to put there).

Lang Reference translation DeepL translation

German Sie nieste den Schaum von

ihrem Cappuccino runter.

Sie nieste den Schaum von

ihrem Cappuccino.

Italian Lei ha starnutito via la schiuma

dal suo cappuccino.

Starnutì la schiuma del suo

cappuccino.

Turkish Cappuccino’sunun köpüğünü

hapşırdı.

Hapşırarak cappuccino’sunun

köpüğünü uçurdu.

morphemes than to words, has been shown at length (Reif et al.,

2019; Wiedemann et al., 2019; Schwartz et al., 2022). The question

therefore remains: are PLMs able to retrieve and use meanings

associated with patterns involving multiple tokens? We do not

take this to only mean contiguous, fixed expressions, but much

more importantly, non-contiguous patterns with slots that have

varying constraints placed on them. To imitate and match human

language behavior, models of human language need to learn how

to recognize these patterns, retrieve their meaning, apply this

meaning to the context, and use them when producing language.

Simply put, there is no way around learning constructions if LMs

are to advance. In addition, we believe that it is an independently

interesting question whether existing PLMs pick up on these

abstract patterns using the current architectures and training

setups, and if not, which change in architecture would be necessary

to facilitate this.

2.2.2. Importance in downstream tasks
Regardless of more fundamental questions about the long-term

goals of LMs, we also firmly believe that probing for CxG is relevant

for analysing the challenges that face applied NLP, as evaluated on

downstream tasks, at this point in time. Discussion is increasingly

focusing on diagnosing the specific scenarios that are challenging

for current models. Srivastava et al. (2023) propose test suites that

are designed to challenge LMs, and many of them are designed

by looking for “patterns” with a non-obvious, non-literal meaning

that is more than the sum of the involved words. One example

of such a failure can be found in Table 2, where we provide the

DeepL1 translations for the famous instance of the caused-motion

construction (Goldberg A. E., 1995, CMC): “She sneezed the foam

off her cappuccino,” where the unusual factor is that sneeze does not

usually take a patient argument or cause a motion. For translation,

this means that it either has to use the corresponding CMC in the

target language, which might be quite different in form from the

English CMC, or paraphrase in a way that conveys all meaning

facets. For the languages we tested, DeepL did not achieve this:

the resulting sentence sounds more like the foam was sneezed

onto the cappuccino, or is ambiguous between this and the correct

translation. Interestingly, for Russian, themotion is conveyed in the

translation, but not the fact that it is caused by a sneeze.

Targeted adversarial test suites like this translation example

can be a useful resource to evaluate how well LMs perform

on constructions, but more crucially, CxG theory and probing

1 https://www.deepl.com/translator

methods will inform the design of better and more systematic test

suites, which in turn will be used to improve LMs.

2.2.3. Diversity in linguistics for NLP
Discussions about PLMs as models of human language

processing have recently gained popularity. One forum for such

discussions is the Neural Nets for Cognition Discussion Group at

CogSci20222. The work is still very tentative, andmost people agree

that LMs are not ready to be used as models of human language

processing. However, the discussion about whether LMs are ready

to be used as cognitive models is dominated by results of probing

studies based on Generative Grammar (GG), or more specifically

Transformational Grammar. This means that GG is being used as

the gold standard against which the cognitive plausibility of LMs is

evaluated. Studies using GG assume a direct relationship between

the models’ performance on probing tasks and their linguistic

competency. Increased performance on GG probing tasks is seen

as a sign it is becoming more reasonable to use LMs as cognitive

models. Another linguistic reason for theoretical diversity is that if

we could show that LMs conform better to CxG rather than GG,

this might open up interesting discussions if they ever start being

used as cognitive models.

3. The English comparative correlative

The English comparative correlative (CC) is one of the most

commonly studied constructions in linguistics, for several reasons.

Firstly, it constitutes a clear example of a linguistic phenomenon

that is challenging to explain in the framework of generative

grammar (Culicover and Jackendoff, 1999; Abeillé and Borsley,

2008), even though there have been approaches following that

school of thought (Den Dikken, 2005; Iwasaki and Radford, 2009).

Secondly, it exhibits a range of interesting syntactic and semantic

features, as detailed below. These reasons, we believe, also make

the CC an ideal testbed for a first study attempting to extend the

current trend of syntax probing for rules by developing methods

for probing according to CxG.

The CC can take many different forms, some of which are

exemplified here:

(1) The more, the merrier.

(2) The longer the bake, the browner the color.

(3) The more she practiced, the better she became.

Semantically, the CC consists of two clauses, where the second

clause can be seen as the dependent variable for the independent

variable specified in the first one (Goldberg, 2003). It can be

seen on the one hand as a statement of a general cause-and-

effect relationship, as in a general conditional statement [e.g., (2)

could be paraphrased as “If the bake is longer, the color will be

more brown”], and on the other as a temporal development in a

comparative sentence [paraphrasing (3) as “She became better over

time, and she practiced more over time”]. Usage of the CC typically

implies both readings at the same time. Syntactically, the CC is

characterized in both clauses by an instance of “the” followed by

an adverb or an adjective in the comparative, either with “-er” for

2 http://neural-nets-for-cognition.net
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some adjectives and adverbs, or with “more” for others, or special

forms like “better.” Special features of the comparative sentences

following this are the optional omission of the future “will” and of

“be,” as in (1). Crucially, “the” in this construction does not function

as a determiner of noun phrases (Goldberg, 2003); rather, it has a

function specific to the CC and has variously been called a “degree

word” (Den Dikken, 2005) or “fixed material” (Hoffmann et al.,

2019).

4. Related work

4.1. Construction grammar probing

4.1.1. CxGBERT
Tayyar Madabushi et al. (2020) investigate how well BERT

(Devlin et al., 2019) can classify whether two sentences contain

instances of the same construction. Their list of constructions is

extracted with a modified version of Dunn (2017)’s algorithm:

they induce a CxG in an unsupervised fashion over a corpus,

using statistical association measures. Their list of constructions

is taken directly from Dunn (2017), and they find their instances

by searching for those constructions’ occurrences in WikiText

data. This makes the constructions possibly problematic, since

they have not been verified by a linguist, which could make the

conclusions drawn later from the results about BERT’s handling of

constructions hard to generalize from.

The key probing question of this paper is: Do two sentences

contain the same construction? This does not necessarily need to

be the most salient or overarching construction of the sentence,

so many sentences will contain more than one instance of a

construction. Crucially, the paper does not follow a direct probing

approach, but rather finetunes or even trains BERT on targeted

construction data, to then measure the impact on CoLA. They find

that on average, models trained on sentences that were sorted into

documents based on their constructions do not reliably perform

better than those trained on original, unsorted data. However, they

additionally test BERT Base with no additional pre-training on

the task of predicting whether two sentences contain instances of

the same construction, measuring accuracies of about 85% after

500 training examples for the probe. These results vary wildly

depending on the frequency of the construction, whichmight relate

back to the questionable quality of the automatically identified list

of constructions.

4.1.2. Neural reality of argument structure
constructions

Li et al. (2022) probe for LMs’ handling of four argument

structure constructions: ditransitive, resultative, caused-motion,

and removal. Specifically, they attempt to adapt the findings

of Bencini and Goldberg (2000), who used a sentence sorting

task to determine whether human participants perceive the

argument structure or the verb as the main factor in the overall

sentence meaning. The paper aims to recreate this experiment

for MiniBERTa (Warstadt et al., 2020b) and RoBERTa (Liu et al.,

2019), by generating sentences artificially and using agglomerative

clustering on the sentence embeddings. They find that, similarly

to the human data, which is sorted by the English proficiency of

the participants, PLMs increasingly prefer sorting by construction

as their training data size increases. Crucially, the sentences

constructed for testing had no lexical overlap, such that this sorting

preference must be due to an underlying recognition of a shared

pattern between sentences with the same argument structure. They

then conduct a second experiment, in which they insert random

verbs, which are incompatible with one of the constructions,

and then measure the Euclidean distance between this verb’s

contextual embedding and that of a verb that is prototypical for

the corresponding construction. The probing idea here is that if

construction information is picked up by the model, the contextual

embedding of the verb should acquire some constructional

meaning, which would bring it closer to the corresponding

prototypical verb meaning than to the others. They indeed find that

this effect is significant, for both high and low frequency verbs.

4.1.3. CxLM
Tseng et al. (2022) study LM predictions for the slots of various

degrees of openness for a corpus of Chinese constructions. Their

original data comes from a knowledge database of Mandarin

Chinese constructions (Zhan, 2017), which they filter so that only

constructions with a fixed repetitive element remain, which are

easier to find automatically in a corpus. They filter this list down

further to constructions which are rated as commonly occurring

by annotators, and retrieve instances from a POS-tagged Taiwanese

bulletin board corpus. They binarize the openness of a given slot

in a construction and mark each word in a construction as either

constant or variable. The key probing idea is then to examine

the conditional probabilities that a model outputs for each type

of slot, with the expectation that the prediction of variable slot

words will be more difficult than that of constant ones, providing

that the model has acquired some constructional knowledge. They

find that this effect is significant for two different Chinese BERT-

based models, as negative log-likelihoods are indeed significantly

higher when predicting variable slots compared to constant ones.

Interestingly, the negative log-likelihood resulting from masking

the entire construction lies in the middle of the two extremes. They

further evaluate a BERT-based model which is finetuned on just

predicting the variable slots of the dataset they compiled and find,

unsurprisingly, that this improves accuracy greatly.

4.1.4. A discerning several thousand judgments
Mahowald (2023) focuses on the English Article + Adjective +

Numeral + Noun (AANN) construction, e.g. “The president has

had a terrible 5 weeks” and GPT-3’s recognition of its particular

semantic and syntactic constraints. He designs a few-shot prompt

for grammatical acceptability using the CoLA corpus of linguistic

acceptability (Warstadt et al., 2019). As probing data, he artificially

constructs several variants of the AANN construction to test for

GPT-3’s understanding of its properties. Its output on the linguistic

acceptability task is also contrasted with human ratings sourced

from Mechanical Turk. The probing concept exploits that the

AANN construction has several properties that seem to violate a

number of rules: “a” is not marking a singular here, as the noun is

plural. Also, the order of the number and the adjective is reversed,

and in some cases, verb agreement rules must be suspended.

There are also interesting constraints on the construction itself: for
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example, some adjectives, such as color words, are not acceptable.

Furthermore, qualitative adjectives must appear before quantitative

ones. Overall, GPT-3 judgments match the direction of the human

ones across a variety of conditions, except on the question of

quantitative vs qualitative adjectives, where humans showed no

preference, and GPT-3 had a slightly preference against the one

described in the literature. This shows that the model understood

the syntactic structure of the AANN construction to the point

where it can override more global “rules” about word order, but

makes no statement about its understanding of the meaning.

4.2. NLP and construction grammar

Other computational studies about CxG have either focused

on automatically annotating constructions (Dunietz et al., 2017)

S → SPOS | SNEG

SPOS → POS1 PUNCT POS2 ‘.’ | POS1 INSERT PUNCT POS2 ‘.’

SNEG→ NEG1 PUNCT NEG2 ‘.’ | NEG1 INSERT PUNCT NEG2 ‘.’

PUNCT→ ‘,’ | ‘;’ | ǫ

CORE_POS→ ADV_I ‘the’ NUM NOUN VERB

CORE_NEG→ ADV_I NUM VERB ‘the’ NOUN

POS_UPPER→ ‘0 The’ CORE_POS

POS_LOWER→ ‘0 the’ CORE_POS

NEG_UPPER→ ‘0 The’ CORE_NEG

NEG_LOWER→ ‘0 the’ CORE_NEG

POS1 → POS_UPPER| POS_UPPER ADD| START POS_LOWER| START POS_LOWER ADD

POS2 → POS_LOWER| POS_LOWER ADD

NEG1 → NEG_UPPER| NEG_UPPER ADD| START NEG_LOWER| START NEG_LOWER ADD

NEG2 → NEG_LOWER| NEG_LOWER ADD

INSERT → INSERT1 | INSERT2

INSERT2 → ADDITION BETWEEN_ADD_AND_SENT SENT

PRON→ ‘we’ | ‘they’

ADDITION → ‘, and by the way,’ | ‘, and I want to add that’ | ‘, and’ PRON ‘just want to say that’ | ‘, and

then’ PRON ‘said that’ | ‘, and then’ PRON ‘said that’

SAY → ‘say’ | ‘think’ | ‘mean’ | ‘believe’

BETWEEN_ADD_AND_SENT→ PRON SAY ‘that’ | PRON SAY ‘that’ | PRON SAY ‘that’ | PRON SAY ‘that’

LOC_SENT→ PRON ‘said this in’ LOC ‘too’

LOC → CITY ‘and’ LOC | CITY

CITY → ‘Munich’ | ‘Washington’ | ‘Cologne’ | ‘Prague’ | ‘Istanbul’

SENT → ‘this also holds in other cases’ | ‘this is not always true’ | ‘this is always true’ | ‘this has only

recently been the case’ | ‘this has not always been the case’ | ‘this has always been the case’

INSERT1 → ‘without stopping’ | ‘without a break’ | ‘without a pause’ | ‘uninterrupted’

START → ‘Nowadays, ’ | ‘Nowadays’ | ‘Therefore, ’ | ‘Therefore’ | ‘We can’ CANWORD ‘that’ | ‘It is’ KNOWNWORD

‘that’ | ‘It follows that’ | ‘Sometimes’

START → Sometimes,’ | It was recently announced that’ | People have told me that’ | I recently read in a

really interesting book that’ | I have recently read in an established, well-known newspaper that’ | It was

reported in a special segment on TV today that’

CANWORD→ say’ | surmise’ | accept’ | state’

KNOWNWORD→ clear’ | known’ | accepted’ | obvious’

ADD → TEMP | UNDER1 | TEMP UNDER1| UNDER1 TEMP

ADV_I → ADV | ADV and’ ADV

TEMP → TEMP1 TEMP2

TEMP1 → before’ | after’ | during’

TEMP2 → the morning’ | the afternoon’ | the night’

UNDER1→ under the’ UNDER2

UNDER2→ bed’ | roof’ | sun’

VERB → push’ | attack’ | chase’ | beat’ | believe’ | boil’ | box’ | burn’ | call’ | date’

NOUN→ lions’ | pandas’ | camels’ | pigs’ | horses’ | sheep’ | chickens’ | foxes’ | cows’ | deer’

ADV → worse’ | earlier’ | slower’ | deeper’ | bigger’ | smaller’ | flatter’ | weaker’ | stronger’ | louder’

NUM→ twelve’ | thirteen’ | fourteen’ | fifteen’ | sixteen’ | seventeen’ | eighteen’ | nineteen’ | twenty’ |

‘twenty-one’

Algorithm 1. Context-free grammar for artificial data creation training set.
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or on the creation and evaluation of automatically built lists of

constructions (Marques and Beuls, 2016; Dunn, 2019).

4.3. General probing

Our work also bears some similarity to recent work in

generative grammar-based syntax probing of large PLMs in that we

approximate the minimal pairs-based probing framework similar

to Wei et al. (2021), Marvin and Linzen (2018), or Goldberg

(2019). However, as we are concerned with different phenomena

and investigating them from a different theoretical standpoint, the

syntactic half of our work clearly differs.

The semantic half of our study is closest to recent work on

designing challenging test cases for models such as Ribeiro et al.

(2020), who design some edge cases for which most PLMs fail.

Despite the different motivation, the outcome is very similar to a

list of some particularly challenging constructions.

S → SPOS | SNEG

SPOS → POS1 PUNCT POS2 ’.’ | POS1 INSERT PUNCT POS2 ’.’

SNEG→ NEG1 PUNCT NEG2 ’.’ | NEG1 INSERT PUNCT NEG2 ’.’

PUNCT→ ’,’ | ’;’ | ”

CORE_POS→ ADV_I ’the’ NUM NOUN VERB

CORE_NEG→ ADV_I NUM VERB ’the’ NOUN

POS_UPPER→ ’0 The’ CORE_POS

POS_LOWER→ ’0 the’ CORE_POS

NEG_UPPER→ ’0 The’ CORE_NEG

NEG_LOWER→ ’0 the’ CORE_NEG

POS1 → POS_UPPER | POS_UPPER ADD | START POS_LOWER | START POS_LOWER ADD

POS2 → POS_LOWER | POS_LOWER ADD

NEG1 → NEG_UPPER | NEG_UPPER ADD | START NEG_LOWER | START NEG_LOWER ADD

NEG2 → NEG_LOWER | NEG_LOWER ADD

INSERT → INSERT1 | INSERT2

INSERT2 → ADDITION BETWEEN_ADD_AND_SENT SENT

PRON→ ’I’ | ’you’

ADDITION → ’, and by the way ,’ | ’, and I want to add that’ | ’, and’ PRON ’just want to say that’ | ’,

and then’ PRON ’said that’ | ’, and then’ PRON ’said that’

SAY → ’say’ | ’think’ | ’mean’ | ’believe’

BETWEEN_ADD_AND_SENT→ PRON SAY ’that’ | PRON SAY ’that’ | PRON SAY ’that’ | PRON SAY ’that’

LOC_SENT→ PRON ’said this in’ LOC ’too’

LOC → CITY ’and’ LOC | CITY

CITY → ’London’ | ’New York’ | ’Berlin’ | ’Madrid’ | ’Paris’

SENT → ’this also holds in other cases’ | ’this is not always true’ | ’this is always true’ | ’this has

only recently been the case’ | ’this has not always been the case’ | ’this has always been the case’

INSERT1 → ’without stopping’ | ’without a break’ | ’without a pause’ | ’uninterrupted’ |

START → ’Nowadays ,’ | ’Nowadays’ | ’Therefore ,’ | ’Therefore’ | ’We can’ CANWORD ’that’ | ’It is’

KNOWNWORD ’that’ | ’It follows that’ | ’Sometimes’ | ’Sometimes ,’ | ’It was recently announced that’ |

’People have told me that’ | ’I recently read in a really interesting book that’ | ’I have recently read in

an established , well-known newspaper that’ | ’It was reported in a special segment on TV today that’

CANWORD→ ’say’ | ’surmise’

KNOWNWORD→ ’clear’ | ’known’

ADD → TEMP | UNDER1 | TEMP UNDER1 | UNDER1 TEMP

ADV_I → ADV | ADV ’and’ ADV

TEMP → TEMP1 TEMP2

TEMP1 → ’before’ | ’after’ | ’during’

TEMP2 → ’the day’ | ’the night’ | ’the evening’

UNDER1→ ’under the’ UNDER2

UNDER2→ ’bridge’ | ’stairs’ | ’tree’

VERB → ’slam’ | ’break’ | ’bleed’ | ’shake’ | ’smash’ | ’throw’ | ’strike’ | ’shoot’ | ’swallow’ | ’choke’

NOUN→ ’cats’ | ’dogs’ | ’girls’ | ’boys’ | ’men’ | ’women’ | ’people’ | ’humans’ | ’mice’ | ’alligators’

ADV → ’faster’ | ’quicker’ | ’harder’ | ’higher’ | ’later’ | ’longer’ | ’shorter’ | ’lower’ | ’wider’ |

’better’

NUM→ ’two’ | ’three’ | ’four’ | ’five’ | ’six’ | ’seven’ | ’eight’ | ’nine’ | ’ten’ | ’eleven’

Algorithm 2. Context-free grammar for artificial data creation test set.
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5. Syntax

Our investigation of PLMs’ knowledge of the CC is split into

two parts. First, we probe for the PLMs’ knowledge of the syntactic

aspects of the CC, to determine if they recognize its structure. Then

we devise a test of their understanding of its semantic aspects by

investigating their ability to apply, in a given context, information

conveyed by a CC.

5.1. Probing methods

As the first half of our analysis of PLMs’ knowledge of the

CC, we investigate its syntactic aspects. Translated into probing

questions, this means that we ask: can a PLM recognize an

instance of the CC? Can it distinguish instances of the CC from

similar-looking non-instances? Is it able to go beyond the simple

recognition of its fixed parts (“The COMP-ADJ/ADV, the ...”) and

group all ways of completing the sentences that are instances of

the CC separately from all those that are not? And to frame all of

these questions in a syntactic probing framework: will we be able to

recover, using a logistic regression as the probe, this distinguishing

information from a PLM’s embeddings?

The establishedway of testing a PLM for its syntactic knowledge

has in recent years become minimal pairs (e.g., Warstadt et al.,

2020a; Demszky et al., 2021). This would mean pairs of sentences

which are indistinguishable except for the fact that one of them

is an instance of the CC and the other is not, allowing us to

perfectly separate a model’s knowledge of the CC from other

confounding factors. While this is indeed possible for simpler

syntactic phenomena such as verb-noun number agreement, there

is no obvious way to construct minimal pairs for the CC. We

therefore construct minimal pairs in two ways: one with artificial

data based on a context-free grammar (CFG), and one with

sentences extracted from C4.

5.1.1. Synthetic data
In order to find a pair of sentences that is as close as possible

to a minimal pair, we devise a way to modify the words following

“The X-er” such that the sentence is no longer an instance of the

construction. The pattern for a positive instance is “The ADV-er the

NUM NOUN VERB,” e.g., “The harder the two cats fight.” To create

a negative instance, we reorder the pattern to “The ADJ-er NUM

VERBthe NOUN,” e.g., “The harder two fight the cats.” The change

in role of the numeral from the dependent of a head to a head itself,

made possible by choosing a verb that can be either transitive or

intransitive, as well as the change from an adverb to an adjective,

allows us to construct a negative instance that uses the same words

as the positive one, but in a different order.3 In order to generate

a large number of instances, we collect two sets each of adverbs,

numerals, nouns, and verbs that are mutually exclusive between

training and test sets. To investigate if the model is confused by

additional content in the sentences, we write an CFG to insert

phrases before the start of the first half, in between the two halves,

and after the second half of the CC. We show the rules making up

the CFG in Algorithms 1, 2.

While this setup is rigorous in the sense that positive and

negative sentences are exactly matched, it comes with the drawback

of only considering one type of CC. To be able to conduct a more

comprehensive investigation, we adopt a complementary approach

and turn to pairs extracted from C4. We show examples of training

3 Note that an alternative reading of this sentence exists: the numeral “two”

forms the noun phrase by itself and “The harder” is still interpreted as part of

the CC. The sentence is actually a positive instance on this interpretation. We

regard this reading as very improbable.

TABLE 3 Examples of data for the syntactic probe.

Sentence Label Source

“The higher up the nicer!” Positive Corpus

She thinks the more water she drinks the better her skin looks. Positive Corpus

Subtract the smaller from the larger. Negative Corpus

The way the older guys help out the younger guys is fantastic. Negative Corpus

Nowadays, the bigger the 18 sheep date, the louder and bigger the 12 horses beat under the sun. Positive Artificial train

The flatter the 14 lions push, the deeper and smaller the 16 deer burn under the roof. Positive Artificial train

Sometimes, the worse and earlier 17 believe the deer, and we just want to say that they mean that this has

always been the case, the flatter 21 attack the foxes before the afternoon under the roof.

Negative Artificial train

Nowadays, the smaller 16 box the camels, and by the way, they mean that this is always true; the weaker 13

date the cows.

Negative Artificial train

The harder and longer the three cats throw, the harder and shorter the 10 dogs shake. Positive Artificial test

I have recently read in an established, well-known newspaper that the later the ten mice strike; the later

and better the seven men smash under the tree during the night.

Positive Artificial test

The higher nine strike the women without a pause the shorter 10 choke the girls. Negative Artificial test

We can say that the longer and faster four strike the men under the stairs before the evening, the harder

four throw the dogs after the day under the bridge.

Negative Artificial test
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and test data in Table 3. These cover a broad range of CC patterns,

albeit without meeting the criterion that positive and negative

samples are exactly matched.

5.1.2. Corpus-based minimal pairs
While accepting that positive and negative instances extracted

from a corpus will automatically not be minimal and therefore

contain some lexical overlap and context cues, we attempt to

regularize our retrieved instances as far as possible. To form a

first candidate set, we POS tag C4 using spaCy (Honnibal and

Montani, 2018) and extract all sentences that follow the pattern

“The” (DET) followed by either “more” and an adjective or adverb,

or an adjective or adverb ending in “-er,” and at any point later

in the sentence again the same pattern. We discard examples with

adverbs or adjectives that were falsely labeled as comparative, such

as “other.” We then group these sentences by their sequence of

POS tags, and manually classify the sequences as either positive

or negative instances. We observe that sentences sharing a POS

tag pattern tend to be either all negative or all positive instances,

allowing us to save annotation time by working at the POS tag

pattern level instead of the sentence level. To make the final set

as diverse as possible, we sort the patterns randomly and label as

many as possible. In order to further reduce interfering factors in

our probe, we separate the POS tag patterns between training and

test sets. We give examples in Table 3.

Please note that due to the inherent difficulty of creating

minimal pairs for this construction, while the two approaches

are complementary, neither of them is perfect. While we think

that our experimental setup (e.g., no surface patterns indicating

positive/negative classes, clear distinction between training/test

data) is designed well-enough, we would like to note that probing

classifiers with logistic regression are not robust to such confound

variables.

5.1.3. The probe
For both datasets, we investigate the overall accuracy of our

probe as well as the impact of several factors. The probe consists

of training a simple logistic regression model on top of the mean-

pooled sentence embeddings (Vulić et al., 2020). To quantify the

impact of the length of the sentence, the start position of the

construction, the position of its second half, and the distance

between them, we construct four different subsets Dtrain
f

and Dtest
f

from both the artificially constructed and the corpus-based dataset.

For each subset, we sample sentences such that both the positive

and the negative class is balanced across every value of the feature

within a certain range of values. This ensures that the probes are

unable to exploit correlations between a class and any of the above

features. We create the dataset as follows

Df =
⋃

v∈fv

⋃

l∗∈L

S(D, v, l∗, n∗),

where f is the feature, fv is the set of values for f , L =

{positive, negative} are the labels, and S is a function that returns

n∗ elements from D that have value v and label l∗.

To make this task more cognitively realistic, we aim to test if a

model is able to generalize from shorter sentences, which contain

relatively little additional information besides the parts relevant to

the classification task, to those with greater potential interference

due to more additional content that is not useful for classification.

Thus, we restrict the training set to samples from the lowest quartile

of each feature so that fv becomes [vmin
f

, vmin
f

+ 1
4 (v

max
f

− vmin
f

)]

for Dtrain
f

and [vmin
f

, vmax
f

] for Dtest
f

. We report the test performance

for every value of a given feature separately to recognize patterns.

For the artificial syntax probing, we generate 1,000 data points

for each value of each feature for each training and test for each

subset associated with a feature. For the corpus syntax probing,

we collect 9,710 positive and 533 negative sentences in total, from

which we choose 10 training and five test sentences for each value

of each feature in a similar manner. To improve comparability

FIGURE 1

Overall accuracy per layer for Dlength. All shown models are the large model variants. The models can easily distinguish between positive and negative

examples in at least some of their layers.
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and make the experiment computationally feasible, we test the

“large” size of each of our three models, using the Huggingface

Transformers library (Wolf et al., 2019). Our logistic regression

probes are implemented using Scikitlearn (Pedregosa et al., 2011).

5.2. Probing results

5.2.1. Artificial data
As shown in Figure 1, the results of our syntactic probe indicate

that all models can easily distinguish between positive and negative

examples in at least some of their layers, independently of any of the

sentence properties that we have investigated. We report full results

in Figures A1–A3 in the Appendix (Supplementary material). We

find a clear trend that DeBERTa performs better than RoBERTa,

which in turn performs better than BERT across the board. As

DeBERTa’s performance in all layers is nearly perfect, we are unable

to observe patterns related to the length of the sentence, the

start position of the CC, the start position of the second half of

the CC, and the distance between them. By contrast, we observe

interesting patterns for BERT and RoBERTa. For Dlength, and to a

lesser degree Ddistance (which correlates with it), we observe that at

first, performance goes down with increased length as we would

expect—the model struggles to generalize to longer sentences with

more interference since it was only trained on short ones. However,

this trend is reversed in the last few layers. We hypothesize this may

be due to an increased focus on semantics in the last layers (Peters

et al., 2018; Tenney et al., 2019), which could lead to interfering

features particularly in shorter sentences.

5.2.2. Corpus data
In contrast, the results of our probe on more natural data from

C4 indicate two different trends: first, as the positive and negative

instances are not identical on a bag-of-word level, performance is

not uniformly at 50% (i.e., chance) level in the first layers, indicating

that the model can exploit lexical cues to some degree. We observe

a similar trend as with the artificial experiment, which showed

that DeBERTa performs best and BERT worst. The corresponding

graphs can be found in Figures A4–A6 in Supplementary material.

Generally, this additional corpus-based experiment validates

our findings from the experiment with artificially generated data,

as all models perform at 80% or better from the middle layers

on, indicating that the models are able to classify instances of the

construction even when they are very diverse and use unseen POS

tag patterns.

Comparing the average accuracies on Dlength for both data

sources in Figure 1, we observe that all models perform better on

artificial than on corpus data from the fifth layer on, with the

notable exception of a dip in performance for BERT large around

layer 10.

6. Semantics

6.1. Probing approach

For the second half of our investigation, we turn to semantics.

In order to determine if a model has understood the meaning of

the CC, i.e., if it has understood that in any sentence, “the COMP

.... the COMP” implies a correlation between the two halves, we

adopt a usage-based approach and ask: can the model, based on

the meaning conveyed by the CC, draw a correct inference in a

specific scenario? For this, we construct general test instances of

the CC that consist of a desired update of the belief state of the

model about the world, which we then expect it to be able to apply.

More concretely, we generate sentences of the form “The ADJ1-er

you are, the ADJ2-er you are.,” while picking adjectives at random.

To this general statement, we then add a specific scenario with

two random names: “NAME1is ADJ1-er than NAME2.” and ask

the model to draw an inference from it. We first construct a test

scenario for this that works with masked language models and test

BERT, RoBERTa andDeBERTa on it, and thenmodify the setup and

move on to autoregressive models, specifically OPT (Zhang et al.,

2022).

6.2. Experiments on masked language
models

6.2.1. Probing methods
In our experiments with masked language models, we now ask

the models to draw an inference from the context by predicting a

token at the masked position in the following sentence: “Therefore,

NAME1is [MASK] than NAME2.” If the model has understood the

TABLE 4 Overview of constructions investigated in CxG-specific probing literature, with examples.

References Language Source Construction Example

Tayyar Madabushi et al.

(2020)

English From automatically constructed

list by Dunn (2017)

Personal Pronoun + didn’t + V +

how

We didn’t know how or why.

Li et al. (2022) English Argument structure constructions

according to Bencini and Goldberg

(2000)

caused-motion Bob cut the bread into the pan.

Tseng et al. (2022) Chinese From constructions list by Zhan

(2017)

a +到+爆, etc. 好吃到爆了!

It’s so delicious!

Weissweiler et al. (2022) English McCawley (1988) Comparative correlative The bigger, the better.

Mahowald (2023) English Jackendoff (1977) Article + Adjective + Numeral +

Noun

A lovely 5 days
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TABLE 5 Overview of the schemata of all test scenarios used for semantic probing for masked language models.

No. Purpose Approach Sentence schema

S1 Base The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are.

NAME1is ADJ1-er than NAME2. Therefore, NAME1is [MASK] than NAME2.

S2 Bias test Recency The ANT1-er you are, the ANT2-er you are. The ADJ1-er you are, the ADJ2-er you are.

NAME1is ADJ1-er than NAME2. Therefore, NAME1is [MASK] than NAME2.

S3 Vocabulary The ADJ1-er you are, the ANT2-er you are. The ANT1-er you are, the ADJ2-er you are.

NAME2is ADJ1-er than NAME2. Therefore, NAME1is [MASK] than NAME2.

S4 Name The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are.

NAME2is ADJ1-er than NAME1. Therefore, NAME2is [MASK] than NAME1.

S5 Calibration Short NAME1is ADJ1-er than NAME2. Therefore, NAME1is [MASK] than NAME2.

S6 Name The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are.

NAME1is ADJ1-er than NAME2. Therefore, NAME3is [MASK] than NAME4.

S7 Adjective The ADJ1-er you are, the ADJ2-er you are. The ANT1-er you are, the ANT2-er you are.

NAME1is ADJ3-er than NAME2. Therefore, NAME1is [MASK] than NAME2.

meaning conveyed by the CC and is able to use it in predicting the

mask, we expect the probability of ADJ2 to be high.

To provide the model with an alternative, we add a second

sentence, another instance of the CC, using the antonyms of the

two adjectives. This sentence is carefully chosen to have no impact

on the best filler for [MASK] , but also for other reasons explained

in Section 6.2.1.1. The full test context is shown in Table 5, S1.

This enables us to compare the probability of ADJ2 for the mask

token directly with a plausible alternative, ANT2. One of our test

sentences might be “The stronger you are, the faster you are. The

weaker you are, the slower you are. Terry is stronger than John.

Therefore, Terry will be [MASK] than John,” where we compare

the probabilities of “faster” and “slower.”

Note that success in our experiment does not necessarily

indicate that themodel has fully understood themeaning of the CC.

The experiment can only provide a lower bound for the underlying

understanding of any model. However, we believe that our task

is not unreasonable for a masked language model in a zero-shot

setting. It is comparable in difficulty and non-reliance on world

knowledge to the NLU tasks presented in LAMBADA (Paperno

et al., 2016), on which GPT-2 (117 M to 1.5 B parameters) has

achieved high zero-shot accuracy (Radford et al., 2019, Table 4).

While we investigate masked language models and not GPT-2, our

largest models are comparable in size to the sizes of GPT-2 that were

used (340M for BERTL, 355M for RoBERTaL, and 1.5 B parameters

for DeBERTa-XXLL), and we believe that this part of our task is

achievable to some degree.

6.2.1.1. Biases

In this setup, we hypothesize several biases that models could

exhibit and might cloud our assessment of its understanding of the

CC, and devise a way to test their impact.

Firstly, we expect that models might prefer to repeat the

adjective that is closest to the mask token. This has recently been

documented for prompt-based experiments (Zhao et al., 2021).

Here, this adjective is ANT2, the wrong answer. To test the

influence this has on the prediction probabilities, we construct an

alternative version of our test context in which we flip the first two

sentences so that the correct answer is now more recent. The result

can be found in Table 5, S2.

Secondly, we expect that models might assign higher

probabilities to some adjectives, purely based on their frequency

in the pretraining corpus, as for example observed by Holtzman

et al. (2021). To test this, we construct a version of the test context

in which ADJ2/ANT2 are swapped, which means that we can

keep both the overall words the same as well as the position of the

correct answer, while changing which adjective it is. The sentence

is now S3 in Table 5. If there is a large difference between the

prediction probabilities for the two different versions, that this

means that a model’s prediction is influenced by the lexical identity

of the adjective in question.

Lastly, a model might have learned to associate adjectives with

names in pretraining, so we construct a third version, in which

we swap the names. This is S4 in Table 5. If any prior association

between names and adjectives influences the prediction, we expect

the scores between S4 and S1 to differ.

6.2.1.2. Calibration

After quantifying the biases that may prevent us from seeing

a model’s true capability in understanding the CC, we aim to

develop methods to mitigate it. We turn to calibration, which has

recently been used in probing with few-shot examples by Zhao

et al. (2021). The aim of calibration is to improve the performance

of a model on a classification task, by first assessing the prior

probability of a label (i.e., its probability if no context is given),

and then dividing the probability predicted in the task context by

this prior; this gives us the conditional probability of a label given

the context, representing the true knowledge of the model about

this task. In adapting calibration, we want to give a model every

possible opportunity to do well so that we do not underestimate its

underlying comprehension.

We therefore develop three different methods of removing the

important information from the context in such a way that we

can use the prediction probabilities of the two adjectives in these
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TABLE 6 Selected accuracies and results for the semantic probe.

Accuracy Decision flip

S1 S2 S2 S3 S4

BERTB 37.65 64.64 26.98 75.69 02.70

BERTL 36.85 67.21 30.44 73.31 02.32

RoBERTaB 61.60 52.84 09.91 76.18 02.76

RoBERTaL 55.71 68.00 14.33 79.47 04.33

DeBERTaB 49.72 49.80 00.91 99.66 01.07

DeBERTaL 50.88 51.40 07.04 94.83 02.23

DeBERTaXL 47.73 49.33 05.46 89.28 02.51

DeBERTaXXL 47.34 48.72 03.59 82.09 01.13

We report the average accuracy on the more difficult sentences in terms of recency bias (S1)

and the easier ones (S2), as well as the percentage of decisions flipped by changing from the

base S1 to the sentences testing for recency bias (S2), vocabulary bias (S3), and name bias (S4).

RoBERTa and DeBERTa perform close to chance on S1 and S2 accuracy, indicating that they

do not understand the meaning of CC. BERT’s performance is strongly influenced by biases

(recency, lexical identity), also indicating that it has very limited if any understanding of CC.

contexts for calibration. The simplest way of doing this is to remove

both instances of the CC, resulting in S5 in Table 5. If we want

to keep the CC in the context, the two options to remove any

information are to replace either the names or the adjectives with

new names/adjectives. We therefore construct two more instances

for calibration: S6 and S7 in Table 5.

For each calibration method, we collect five examples with

different adjectives or names. For a given base sample Sb, we

calculate Pc, the calibrated predictions, as follows:

Pc(a|Sb) = P(a|Sb)/[

i=5∑

i=1

(P(a|Ci)/5)]

where Ci is the i-th example of a given calibration technique,

a is the list of adjectives tested for the masked position, and the

division is applied elementwise. We collect a list of 20 adjectives

and their antonyms manually from the vocabulary of the RoBERTa

tokenizer and 33 common names and generate 144,800 sentences

from them. We test BERT (Devlin et al., 2019) in the sizes base

and large, RoBERTa (Liu et al., 2019) in the sizes base and large,

and DeBERTa (He et al., 2020) in the sizes base, large, xlarge, and

xxlarge.

6.2.2. Results
In Table 6, we report the accuracy for all examined models. Out

of the three variations to test biases, we report accuracy only for

the sentence testing the recency bias as we expect this bias to occur

systematically across all sentences: if it is a large effect, it will always

lead to the sentence where the correct answer is themore recent one

being favored. To assess the influence of each bias beyond accuracy,

we report as decision flip the percentage of sentences for which the

decision (i.e., if the correct adjective had a higher probability than

the incorrect one) was changed when considering the alternative

sentence that was constructed to test for bias. We report full results

in Table 7.

Looking at the accuracies, we see that RoBERTa’s andDeBERTa’s

scores are close to 50 (i.e., chance) accuracy for both S1 and S2.

BERT models differ considerably as they seem to suffer from bias

related to the order of the two CCs, but we can see that the average

between them is also very close to chance. When we further look at

the decision flips for each of the biases, we find that there is next

to no bias related to the choice of names (S4). However, we can

see a large bias related to both the recency of the correct answer

(S2) and the choice of adjectives (S3). The recency bias is strongest

in the BERT models, which also accounts for the difference in

accuracies. For RoBERTa and DeBERTa models, the recency bias

is small, but clearly present. In contrast, they exhibit far greater

bias toward the choice of adjective, even going as far as 99.66%

of decisions flipped by changing the adjective for DeBERTa base.

This suggests that these models’ decisions about which adjective to

assign a higher probability is almost completely influenced by the

choice of adjective, not the presence of the CC. Overall, we conclude

that without calibration, all models seem to be highly susceptible

to different combinations of bias, which completely obfuscate any

underlying knowledge of the CC, leading to an accuracy at chance

level across the board.

We therefore turn to our calibration methods, evaluating them

first on their influence on the decision flip scores, which directly

show if we were able to reduce the impact of the different types

of bias. We report these only for order and vocabulary bias as we

found name bias to be inconsequential. We report the complete

results in Table 7. We see that across all models, while all three

calibration methods work to reduce some bias, none does so

consistently across all models or types of bias. Even in cases where

calibration has clearly reduced the decision flip score, we find that

the final calibrated accuracy is still close to 50%. This indicates that

despite the effort to retrieve any knowledge that the models have

about the CC, they are unable to perform clearly above chance, and

we have therefore found no evidence that the investigated models

understand and can use the semantics of the CC.

To investigate if this was result was exclusive to smaller, masked

language models, we repeat our experiment and turn to larger,

autoregressive models, more specifically, different sizes of OPT

(Zhang et al., 2022).

6.3. Experiments on autoregressive
language models

6.3.1. Methods
6.3.1.1. Probing setup

Since we concluded from our experiments with masked

language models that none of them have reached significant

performance on our task, we move on to investigating newer

autoregressive models. We hope that as these models have

been shown to perform significantly better on natural language

understanding (NLU; Zhang et al., 2022), which is a prerequisite

for our probing setup, their performance will be more directly

indicative of their understanding of the CC in context.

As we can no longer perform our experiments on the basis of

comparing the predictions for a given MASK token, we modify

the setup such that our metric is based on the comparison of

the perplexity of two competing whole sentences. Our main idea

is to no longer work with antonyms but instead create contrast
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TABLE 7 Accuracies for the semantic probe with our three calibration methods compared to no calibration.

Accuracies Decision flips

Model Test sentence − S5 S6 S7 − S5 S6 S7

BERTB

S1 37.65 37.62 44.39 47.9 – – – –

S2 64.64 62.79 56.66 55.41 26.99 25.22 14.75 10.77

S3 38.04 44.78 44.09 48.29 75.69 23.51 86.33 91.05

S4 – – – – 2.71 – – –

BERTL

S1 36.85 31.91 47.21 44.03 – – – –

S2 67.13 73.48 54.39 64.45 30.44 41.8 13.37 22.24

S3 36.46 43.43 47.79 44.36 73.31 25.94 88.65 85.97

S4 – – – – 2.32 – – –

RoBERTaB

S1 61.6 58.76 42.13 62.32 – – – –

S2 52.85 51.35 71.33 60.25 9.92 8.67 31.13 10.86

S3 62.21 55.17 43.04 62.76 76.19 22.04 79.03 74.75

S4 – – – – 2.76 – – –

RoBERTaL

S1 55.72 58.37 65.08 69.53 – – – –

S2 68.01 74.53 62.73 77.76 14.34 17.82 15.94 15.86

S3 55.36 52.02 65.28 69.23 79.48 43.64 79.75 78.32

S4 – – – – 3.25 – – –

DeBERTaB

S1 41.61 36.41 32.79 43.27 – – – –

S2 42.95 43.04 33.77 42.36 24.21 24.4 8.79 7.49

S3 41.92 38.64 32.39 43.31 74.58 17.83 72.29 64.42

S4 – – – – 1.67 – – –

DeBERTaL

S1 58.5 60.34 45.17 65.42 – – – –

S2 64.56 66.43 49.99 62.77 13.47 14.27 14.43 13.15

S3 58.8 59.84 45.41 65.45 78.25 30.36 75.61 70.21

S4 – – – – 2.65 – – –

DeBERTaXL

S1 67.24 74.59 57.33 76.64 – – – –

S2 76.31 78.92 63.75 78.41 18.02 18.79 17.37 16.48

S3 67.28 74.35 57.51 76.69 82.35 43.29 78.43 72.99

S4 – – – – 3.34 – – –

We report the average accuracy on the more difficult sentences in terms of recency bias (S1), the easier ones (S2), and vocabulary bias (S3), as well as the percentage of decisions flipped by

changing from the base S1 to each sentence. Our calibration techniques are short (S5), name (S6), and adjective (S7).

FIGURE 2

Accuracy and name bias scores for test sentences S8–S11 on the left and S12–S15 on the right, on di�erent sizes of OPT.
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TABLE 8 Overview of the schemata of test scenarios S8–S15, used for semantic probing for autoregressive language models.

No. Name order Validity Sentence schema

S8 Same True The ADJ1-er you are, the ADJ2-er you are. NAME1is ADJ1-er than NAME2.

Therefore, NAME1will be ADJ2-er than NAME2.

S9 False The ADJ1-er you are, the ADJ2-er you are. NAME1is ADJ1-er than NAME2.

Therefore, NAME2will be ADJ2-er than NAME1.

S10 True The ADJ1-er you are, the ADJ2-er you are. NAME2is ADJ1-er than NAME1.

Therefore, NAME2will be ADJ2-er than NAME1.

S11 False The ADJ1-er you are, the ADJ2-er you are. NAME2is ADJ1-er than NAME1.

Therefore, NAME1will be ADJ2-er than NAME2.

S12 Flipped True The ADJ1-er you are, the ADJ2-er you are. NAME1is less ADJ1 than NAME2.

Therefore, NAME2will be ADJ2-er than NAME1.

S13 False The ADJ1-er you are, the ADJ2-er you are. NAME1is less ADJ1 than NAME2.

Therefore, NAME1will be ADJ2-er than NAME2.

S14 True The ADJ1-er you are, the ADJ2-er you are. NAME2is less ADJ1 than NAME1.

Therefore, NAME1will be ADJ2-er than NAME2.

S15 False The ADJ1-er you are, the ADJ2-er you are. NAME2is less ADJ1 than NAME1.

Therefore, NAME2will be ADJ2-er than NAME1.

by swapping the two names in the last sentence. Given the

context “The ADJ1-er you are, the ADJ2-er you are. NAME1is

ADJ1-er than NAME2.,” we contrast the perplexities of “Therefore,

NAME1will be ADJ2-er than NAME2” and “Therefore, NAME2

will be ADJ2-er than NAME1.” While the sentences are bag-of-

words equivalent, only the first one follows from the context.

This has the additional effect of removing the confounding

factor of the second sentence with antonyms from the factors

that influence the model’s performance. For example, we would

now contrast “The stronger you are, the faster you are. Terry

is stronger than John. Therefore, Terry will be faster than

John” with “The stronger you are, the faster you are. Terry is

stronger than John. Therefore, John will be faster than Terry.”

6.3.1.2. Name bias

Similarly to our previous experiment in Section 6.2.1, we

hypothesize biases to this setup and test them. Our “adjective bias”

and “recency bias” are not immediately applicable here, as we no

longer have a masked token.

However, we expect that models might consistently prefer one

final sentence, which is the one that changes the acceptability of

the entire test phrase, over another, regardless of context. To test

this, we construct a second pair of sentences, where the names are

swapped both times. This means that when iterating through all 4-

tuples of sentences that belong together, we can now compare all

four and count only those as valid results where either both pairs

were correctly classified or both were incorrectly classified. For the

others, where one was correct and the other incorrect, this indicates

that the model preferred one final sentence over the other in all

contexts. We count how many times this occurs to quantify the

strength of this name bias in a model.

6.3.2. Initial results
For our results, we consider each four-tuple of sentences S8-

S11.We perform perplexity comparisons twice: firstly, we expect the

perplexity of S8 to be lower than that of S9; secondly, we anticipate

the perplexity of S10 to be lower than that of S11. We denote C

to represent the count of correct results where both conditions

are met, I to represent the count of incorrect results where both

conditions fail, and In to represent the count of inconclusive results

where one condition is met and the other is not.

The general trend for these three counts can be seen in the right

half of Figure 2. As the models increase in size, C rises and In drops,

with I remaining generally low. The only exception to this is the

OPT-1.3b model, for unknown reasons.

We then develop two more abstract metrics based on these

counts:

1. We define the accuracy, A, as the number of correct responses

divided by the number of valid responses (correct and incorrect

ones). In mathematical terms: A = C
C+I .

2. As a complementary metric, we define the “name bias,” B, as

the percentage of inconclusive responses over total responses.

Mathematically, B = In
C+I+In .

We use “name bias” to denote situations where the model

consistently favored one of the two possibilities for the last sentence,

indicating a possible bias for this sentence, perhaps due to the order

of names and the combination with the particular adjective.

Our observations show that A remains consistently high (with

the exception of 1.3 b) and B decreases as the model size increases.

These results were initially encouraging for the hypothesis that

larger, autoregressive models are able to capture the semantics

of the CC. However, there is one important possibility for bias

in all four sentences: the correct answer is consistently that in
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which the two names are in the same order in both sentences.

We therefore have to examine the possibility that the near-perfect

accuracy displayed in our task is merely due to the name order

being parallel and not to any deeper understanding of the sentences.

6.3.3. Additional experiment
We therefore construct four additional sentences, named S12–

S15 in Table 8. They are constructed with “less,” to ensure that the

correct answer is now the one where the order of names is swapped.

We rerun the same experiment as before with these sentences.

We expect that if the model was merely preferring the parallel

order of names, the accuracy would be close to zero, whereas a

continued good accuracy would indicate that it formed a deeper

understanding of the task.

The results in Figure 2 show that unfortunately the former was

the case: all values are approximately inverted compared to the first

experiment. If the model had formed an understanding of the CC

in this task, our reformulation of the task could not have completely

destroyed the performance. We therefore conclude that none of the

models, at least in this setup, have demonstrated an understanding

of the CC.

6.4. Problem analysis

Different conclusions might be drawn as to why none of

these models have learned the semantics of the CC. Firstly, they

might not have seen enough examples of it to have formed a

general understanding. Given the amount of examples that we

were able to find in C4, and the overall positive results from

the syntax section, we find this to be unlikely. Secondly, it could

be argued that models have never had a chance to learn what

the CC means because they have never seen it together with a

context in which it was immediately applied, and do not have

the same opportunities as humans available, which would be to

either interact with the speaker to clarify the meaning, or to make

deductions using observations in the real world. This is in line

with other considerations about large PLMs acquiring advanced

semantics, even though it has for many phenomena been shown

that pre-training is enough (Radford et al., 2019). Lastly, it might

be possible that the type of meaning representation required to

solve this task is beyond the current transformer-style architectures.

Overall, our finding that PLMs do not learn the semantics of the CC

adds to the growing body of evidence that complex semantics like

negation (Kassner and Schütze, 2020) is still beyond state-of-the-art

PLMs.

7. Conclusion

We have made a first step toward a thorough investigation of

the compatibility of the paradigm of CxG and the syntactic and

semantic capabilities exhibited by state-of-the-art large PLMs. For

this, we chose the English comparative correlative, one of the most

well-studied constructions, and investigated if large PLMs based

on masked language modeling have learned it, both syntactically

and semantically. We found that even though they are able to

classify sentences as instances of the construction even in difficult

circumstances, they do not seem to be able to extract the meaning it

conveys and use it in context, indicating that while the syntactic

aspect of the CC is captured in pretraining of these models, the

semantic aspect is not. We then repeated a modified version of our

semantic experiments with larger, autoregressive language models,

and found that they were similarly unable to capture the semantics

of the construction.

8. Limitations

As our experimental setup requires significant customization

with regards to the properties of the specific construction we

investigate, we are unable to consider other constructions or

other languages in this work. We hope to be able to extend our

experiments in this direction in the future. Our analysis is also

limited—as all probing papers are—by the necessary indirectness

of the probing tasks: we cannot directly assess the model’s internal

representation of the CC, but only construct tasks that might show

it but are imperfect and potentially affected by external factors.
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