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An immune-related gene
prognostic index for predicting
prognosis in patients with
colorectal cancer
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Jens Werner1,2,3 and Florian Kühn1,2,3*

1Department of General, Visceral, and Transplant Surgery, Ludwig-Maximilians-University Munich,
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Background: Colorectal cancer (CRC) is one of the most common solid

malignant burdens worldwide. Cancer immunology and immunotherapy have

become fundamental areas in CRC research and treatment. Currently, the

method of generating Immune-Related Gene Prognostic Indices (IRGPIs) has

been found to predict patient prognosis as an immune-related prognostic

biomarker in a variety of tumors. However, their role in patients with CRC

remains mostly unknown. Therefore, we aimed to establish an IRGPI for

prognosis evaluation in CRC.

Methods: RNA-sequencing data and clinical information of CRC patients were

retrieved from The Cancer Genome Atlas (TCGA) and The Gene Expression

Omnibus (GEO) databases as training and validation sets, respectively. Immune-

related gene data was obtained from the ImmPort and InnateDB databases. The

weighted gene co-expression network analysis (WGCNA) was used to identify

hub immune-related genes. An IRGPI was then constructed using Cox regression

methods. Based on the median risk score of IRGPI, patients could be divided into

high-risk and low-risk groups. To further investigate the immunologic

differences, Gene set variation analysis (GSVA) studies were conducted. In

addition, immune cell infiltration and related functional analysis were used to

identify the differential immune cell subsets and related functional pathways.

Results: We identified 49 immune-related genes associated with the prognosis

of CRC, 17 of which were selected for an IRGPI. The IRGPI model significantly

differentiates the survival rates of CRC patients in the different groups. The IRGPI

as an independent prognostic factor significantly correlates with clinico-

pathological factors such as age and tumor stage. Furthermore, we developed

a nomogram to improve the clinical utility of the IRGPI score. Immuno-

correlation analysis in different IRGPI groups revealed distinct immune cell

infiltration (CD4+ T cells resting memory) and associated pathways

(macrophages, Type I IFNs responses, iDCs.), providing new insights into the

tumor microenvironment. At last, drug sensitivity analysis revealed that the high-

risk IRGPI group was sensitive to 11 and resistant to 15 drugs.
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Abbreviations: CRC, colorectal cancer; IRGPI, immune-

index; TCGA, the cancer genome atlas; GEO, gene

WGCNA, the weighted gene co-expression network a

Meier; ROC, receiver operating characteristic.
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Conclusion: Our study established a promising immune-related risk model for

predicting survival in CRC patients. This could help to better understand the

correlation between immunity and the prognosis of CRC providing a new

perspective for personalized treatment of CRC.
KEYWORDS

colorectal cancer, immune-related gene prognostic index (IRGPI), drug sensitivity,
TME, immunotherapy
Introduction

Colorectal cancer (CRC) ranks as the third most prevalent cancer

worldwide and is the second leading cause of cancer-related deaths. In

2023, it is estimated that there will be approximately 153,020 new cases

of CRC and 52,550 deaths from CRC in the United States (1). Despite

the introduction of screening colonoscopy, which has reduced

morbidity and mortality, around 25% of CRC patients are initially

diagnosed with metastatic disease, and an additional 25% will develop

metastases in the course of their illness (2, 3). Currently, surgery

remains the primary treatment approach for most CRC cases, with a

higher likelihood of achieving permanent remission, particularly in the

early stages of the disease. However, for patients with advanced CRC,

the 5-year survival rate remains below 10% (1). Despite continuous

advancements in the field, including the availability of modern

combination treatment options such as surgery, chemotherapy

regimens, and immunotherapy, the overall prognosis for CRC

patients remains unsatisfactory (4, 5).

Throughout cancer development, various mechanisms have

evolved to evade immune surveillance and suppress anti-tumor

immune responses. Immune checkpoint pathways play a crucial role

in tumor immune evasion. Normally, immune checkpoint molecules

regulate immune responses by stimulating or suppressing immune

reactions to control infections. However, these immune checkpoint

interactions also contribute to cancer pathogenesis, and numerous

studies have focused on targeting these interactions to enhance anti-

tumor immunity (6, 7). Immune checkpoint blockade (ICB) is an

immunotherapy approach that has demonstrated sustained benefits

and significantly improved disease outcomes in select patients by

reactivating the immune system against cancer cells (8).

Immunotherapy has been widely employed in cancer treatment and

has shown remarkable efficacy, particularly in lung cancer (9, 10).

Moreover, the inhibition of programmed death-1 (PD-1) or

programmed cell death-ligand 1 (PD-L1) has already shown

improvements in the treatment of CRC. For instance,

pembrolizumab, a PD-1 receptor inhibitor, has been approved as a
related gene prognostic
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second-line therapy for microsatellite instability-high (MSI-H)

CRC (11).

In addition, tumor mutation burden (TMB) has emerged as a

significant marker for immunotherapy. Notably, patients harboring

microsatellite-stable DNA polymerase epsilon (POLE) mutations

have demonstrated durable responses to immunotherapy and long-

term disease control, indicating their potential as favorable

candidates (12). Moreover, the favorable response observed in

patients with high TMB and microsatellite instability (MSI)

further validates their utility as predictive biomarkers for

immunotherapy (13). TMB measurement methods require high-

throughput sequencing technology and large-scale data analysis,

which makes them costly and relatively complex. This actually limit

their widespread use in clinical practice.

The generation of Immune-Related Gene Prognostic Indices

(IRGPIs) has emerged as a promising method for predicting patient

prognosis and serving as an immune-related prognostic biomarker

in various tumor types (14, 15). However, their role in patients with

colorectal cancer (CRC) remains uncertain. In this study, we aimed

to investigate the prognostic value of immune-related genes (IRGs)

in CRC using a dataset composed of samples from TCGA, GEO,

InnateDB, and ImmPort databases. Our primary objective was to

identify specific IRGs that exhibit significant prognostic value and

construct a CRC-specific Immune-Related Gene Prognostic Index

(IRGPI). By developing this prognostic index, our intention was to

provide clinicians with a valuable tool to predict patient outcomes

and guide personalized treatment approaches.
Methods

Sample information collection

RNA sequencing and clinical data for the training sets were

downloaded from the TCGA database derived from 568 CRC

samples and 44 normal samples. Microarray and clinical data for

the validation sets were downloaded from the GEO database

derived from 70 CRC samples (GSE39084). In addition, gene

mutation data were obtained from the TCGA database. The list of

IRGs was obtained from InnateDB (www.innateDBdb.com) and

ImmPort (www.immport.org/shared/home) databases.
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Hub immune-related genes

The transcriptome data from TCGA were compiled and

normalized and then subjected to differential gene analysis using R’s

“limma” package. The data were screened using | log2 fold change | >

0.585 (fold change > 1.5) and false discovery rate (FDR) < 0.05 as cutoff

values to obtain differentially expressed genes (DEGs) (16). By merging

the IRGs and the DEGs, differentially expressed immune-related genes

(DEIRGs) were identified. Heatmaps of the DEGs and DEIRGs were

obtained by visualizing and analyzing the expression levels of the

differential genes using the “pheatmap” package in R. Gene Ontology

(GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG)

analysis of DEIRGs were performed using the “clusterProfiler”

package of R software to study the biological functional changes in

CRC samples compared to normal tissue samples (17). To further

identify the hub genemodules, we constructed a co-expression network

using the weighted gene co-expression network analysis (WGCNA).

The following steps were performed: 1. Data preparation: The DEIRGs

expression data were processed to remove missing values, outliers, and

redundant data. 2.Sample clustering: Hierarchical clustering method

was used to cluster the samples and detect outlier samples. 3.Gene co-

expression network construction: The “pickSoftThreshold” function

was used to calculate the power value. Scatter plots of fit indices vs.

power value and mean connectivity vs. power value were plotted to

assess the network’s fit and connectivity. The adjacency matrix of the

gene co-expression network was built based on the optimal power

value (18). The TOM (Topological Overlap Matrix) method was used

to calculate the similarity between genes. Gene clustering analysis was

performed to construct the gene clustering tree. 4.Module identification

and merging: The “cutreeDynamic” function was used to perform

dynamic tree cutting on the gene clustering tree, assigning genes to

different modules. Similar modules were merged into a new module

based on their similarity. 5.Module-clinical data association: The

correlation between module eigengenes and clinical data was

calculated, and a heatmap was generated to visualize the degree of

association between modules and different traits.
Establishment and validation of the
prognostic model

Based on the best cutoff value determined by the “Survminer”

and “survival” packages (19), we identified the genes within

modules significantly associated with overall survival (OS). IRGPI

was constructed by multivariate Cox regression based on IRGs. The

IRGPI risk score was obtained by multiplying the expression of a

specific gene in the sample by its weight in the Cox model and then

summing it. The patients were divided into high- and low-risk

IRGPI groups, based on the median gene expression of IRGPI. In

the TCGA and GEO cohorts, Kaplan-Meier (K-M) curves were

used to show the predictive power of the different groups. Further

validation of the prognostic value of IRGPI by univariate and

multifactorial Cox regression analysis. Using the “pheatmap”
Frontiers in Immunology
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package to plot risk score curves. Using the receiver operating

characteristic (ROC) curve and the area under the curve (AUC) by

the “survival ROC” package, the model’s sensitivity and specificity

were evaluated to compare the prognostic value among IRGPI,

tumor inflammation signature (TIS), and tumor immune

dysfunction and exclusion (TIDE). The TIDE score was

calculated online (http://tide.dfci.harvard.edu/) to assess the

likelihood of tumor immune escape in the gene expression profile

of tumor samples. As a biomarker to predict the response of

patients with different types of cancer, the TIS score was

calculated as the mean of the log2-scale normalized expression of

18 signature genes to reflect the extent of immune cell infiltration in

the tumor microenvironment.
IRGPI and clinical characteristics

We explored the correlation between IRGPI and clinic-

pathological factors (immune subtype, gender, age, and TNM

stage) using the “ComplexHeatmap” packages (20) to investigate

the clinical application value. Using the “rms” and “survivor”

packages, a nomogram model was created to estimate risk factors

and survival years for CRC patients based on IRGPI risk scores and

different clinical parameters (21).
GSVA and gene mutations

To enable the identification of biological processes and

pathways associated with the IRGPI, an enrichment analysis was

performed. This analysis was performed using the gene set variation

analysis (GSVA) through the “GSVA” packages. Finally, we

analyzed the mutations of the immune-related genes by the

“maftools” package to reveal relevant genetic alterations in

different IRGPI groups (22).
Immune cell infiltration
and immune function

To further investigate the tumor microenvironment of CRC,

the expression data were imported into CIBERSORT (http://

cibersort.stanford.edu/) which is an analytical tool developed by

Newman et al. (23) that uses gene expression data to estimate the

abundance of member cell types. The data was simulated 1000

times. The relationship between IRGPI and immune cell infiltration

was then explored by comparing the abundance ratios of the

immune cell subsets in each sample. The correlation between the

immune cell abundance ratio and OS was analyzed by K-M curves.

To further investigate the pathogenic mechanisms of immune

differences, we obtained scores of immune-related functions for

each sample by ssGSEA analysis to explore the relationship between

IRGPI and immune-related pathway activities.
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Drug resistance analysis

Using the “OncoPredict” package in R, gene expression profiles

of tissues were fitted to the half-maximal inhibitory concentrations

(IC50) of cancer cell lines to build a predictive model to determine

drug susceptibility in CRC. Gene expression and drug sensitivity

data for the training set were obtained from the Genomics of

Drug Sensitivity in Cancer (GDSC) database (https://

www.cancerrxgene.org/). We analyzed the relationship between

IRGPI expression and sensitivity to chemotherapy and targeted

drugs. When an anti-tumor drug demonstrates the ability to

effectively inhibit and eradicate a tumor at a low dosage, it

indicates that the tumor is “sensitive” to the drug. This sensitivity

is reflected by a low drug sensitivity score and a favorable anti-

cancer response.
Statistical analysis

R 4.2.1 was used for all statistical analyses and visualizations.

For continuous variables, both parametric and non-parametric tests

were utilized. Independent Student’s t-tests were initially conducted

between the two groups. Normality of the data was assessed using

the Kolmogorov-Smirnov test. If the data followed a normal

distribution, the results of the t-test were reported. However, if

the data did not meet the assumption of normality, the Kruskal-

Wallis test, a non-parametric alternative, was used as a global test to

evaluate differences among multiple groups before conducting

pairwise comparisons. For categorical data, the chi-square test

was employed to examine group differences. Prior to conducting

pairwise comparisons, the ANOVA test was performed as a global
Frontiers in Immunology 04
test. Additionally, the Kolmogorov-Smirnov test was applied to

assess the assumption of normality for continuous variables within

each subgroup. Univariate survival analysis was conducted using

the log-rank test and the Kaplan-Meier curve survival analysis. To

further explore the impact of potential confounding factors,

multivariate survival analysis was performed using Cox regression

models. To address the issue of multiple comparisons, the

Benjamini-Hochberg procedure was implemented to adjust p-

values and control the false discovery rate (FDR). P-values < 0.05

were considered statistically significant.
Results

Hub immune-related genes

Flow Diagram of IRGPIs is presented in Figure 1. A total of

14,767 DEGs were screened by differential analysis of 568 tumors

and 44 normal tissue samples from the TCGA database

(Supplementary Figure 1A). A total of 1,080 DEIRGs were

obtained by taking the intersection of the DEGs with the IRGs

(Supplementary Figure 1B). The top 10 terms of GO are displayed

in Figure 2A. The most relevant pathways for immune regulation in

the biological process (BP), cellular component (CC), and

molecular function (MF) domains were the production of

molecular mediators of the immune response as well as

immunoglobulin complex and receptor ligand activity,

respectively. The top 30 terms of KEGG are displayed in

Figure 2B. The three most relevant pathways for immunity were

cytokine−cytokine receptor interaction, neuroactive ligand

−receptor interaction, and the MAPK signaling pathway.
FIGURE 1

Flow Diagram of IRGPIs.
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We used WGCNA to analyze candidate genes and extract

immune-related hub gene modules. The optimal power value was

3 based on the scale independence and mean connectivity

(Figures 3A, B). From 1080 DEIRGs the dendrogram identified

co-expressed gene modules (Figure 3C). The final 12 modules were

generated by gene clustering and merging similar modules

(Figure 3D). Based on Pearson correlation coefficients between

the sample characteristics and each module, a total of 7 out of 12

modules could distinguish between CRC and normal tissue

samples (Figure 3D).
Establishment and validation of the
prognostic model

We performed further survival analysis of the genes in the seven

modules. Univariate analysis suggests that the expression of 49 hub

immune-related genes is highly correlated with OS (Figure 4A).

Based on multivariate Cox regression analysis, 17 genes have

significant impact on the OS of CRC patients and were therefore

selected for the construction of prognostic models (Figure 4B). The

calculation formula is as follows: IRGPI = S100Z × 1.016 + BDNF ×

0.625 − PPARGC1A × 0.405 + TRAF5 × 0.370 + NOXA1 × 0.494 +

DDIT3 × 0.249 − AGER × 0.507 + VAV2 × 0.365 + NMB × 0.300 +

MC1R × 0.430 − TRAF2 × 0.830 + CNPY3 × 0.535 − CTNNB1 ×

0.555 + TRIM58 × 0.232 − GLP2R × 0.906 + PTH1R × 0.404 +

CD36 × 0.289.

Both the K-M curve, risk score distribution, and survival status

(Figures 5A, C, E) in the TCGA training sets display that the low-

risk IRGPI group has a better OS (p < 0.001). The analysis from the

GSE39084 (n = 70) validation sets shows that CRC in the low-risk

IRGPI group has a significantly better OS compared to the high-risk

IRGPI group (Figures 5B, D, F), which was consistent with the

results of the TCGA training sets. The heatmaps illustrate the

expression of immune genes in different groups (Figures 5G, H).

Furthermore, the AUCs for 1-, 3-, and 5-year survival were 0.767,

0.800, and 0.808, by ROC curve analysis, respectively (Figure 6A).
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We compared the risk score of IRGPI with other clinical indicators.

The AUCs for the IRGPI risk, TNM stage, N, M, age, T, and gender

were 0.808, 0.762, 0.729, 0.646, 0.617, 0.612, and 0.487, respectively

(Figure 6B). In addition, we compared the predictive performance

of the IRGPI with widely used immune-related biomarkers, and the

IRGPI achieved superior performance with an AUC of 0.808 in

predicting 5-year OS, which suggested that IRGPI was a more

reliable signature compared to the AUC of TIDE (0.515) and TIS

(0.483) (Figure 6C).
IRGPI and clinical characteristics

To further test the value of IRGPI for clinical application, we

investigated the association between IRGPI and clinicopathological

variables (Supplementary Figure 2). The IRGPI was able to

distinguish well between different ages (≥60, <60), TNM stages, T

stages, N stages, and M stages with statistical significance

(Figure 6D). Using univariate Cox regression analysis, IRGPI and

other clinicopathological factors (age, stage, T, N, M) were found to

be strongly associated with prognosis in CRC (Figure 6E). In

addition, IRGPI was an independent prognostic factor in the

multifactorial Cox regression analysis (Figure 6E). Furthermore,

based on the IRGPI scores and clinical characteristics, we developed

a new nomogram to predict the survival of CRC patients.

This nomogram can effectively predict the probability of

CRC patients’ overall survival probability of 1 year, 3 years, and

5 years (Figure 6F).
GSVA and gene mutations

In this study, we used GSVA to explore the changes in

immune function and pathways between different IRGPI groups.

The GSVA analysis was performed using two gene sets: C2 Gene

Set, which contains KEGG information, and C5 Gene Set, which

contains GO (Gene Ontology) information. For the C2 Gene Set,
BA

FIGURE 2

GO and KEGG enrichment analysis. (A) GO enrichment analysis of DEIRGs for BP, CC, and MF, respectively. (B) KEGG enrichment analysis of DEIRGs.
DEGs, differentially expressed genes; DEIRGs, differentially expressed immune-related genes; GO, Gene Ontology; BP, biological process; CC,
cellular component; MF, molecular function; KEGG, Kyoto Encyclopedia of Genes and Genomes.
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the analysis revealed that the differential pathways enriched in the

high and low risk groups were primarily linked to the negative

regulation of digestive system process, regulation of gastric acid

secretion, and maintenance of gastrointestinal epithelium

(Figure 7A). It implies that the high and low risk groups may

have distinct molecular mechanisms and regulatory processes

governing their digestive system functions. For the C5 Gene

Set, the results showed that the differential pathways enriched in

the high and low risk groups were mainly associated with

propanoate metabolism, fatty acid metabolism, citrate cycle tca

cycle, and butanoate metabolism (Figure 7B). It implies that

individuals in the high and low risk groups may exhibit different

metabolic profiles and functional activities, particularly in

terms of propionate metabolism, fatty acid metabolism, and

related pathways.

To explore immune differences in IRGPI groups at the

molecular level, we analyzed gene mutations (Figures 7C, D). The

results demonstrate that missense mutation was the most common

mutation type in CRC. The three most common mutated genes was

APC. In addition, the overall mutation rate was slightly higher in

the high-risk group compared to the low-risk group.
Frontiers in Immunology 06
Immune cell infiltration
and immune function

We analyzed the differences in 22 immune cell infiltration patterns

and 29 immune signaling pathways between the two groups. The

immune cell proportions of the different IRGPI groups are presented in

Supplementary Figure 3A. The abundance of CD4+ T cells resting

memory (TRM) was higher in the low-risk IRGPI group, while other

immune cells did not differ significantly in the two groups.

The K-M curves show that the proportions of five immune cell

subsets (resting dendritic cells, native B cells, M0 macrophages, resting

master cells, and resting NK cells) are associated with the OS

(Supplementary Figures 3B–F). Among them, higher abundance

ratios of resting M0 macrophages, resting NK cells, and naive B cells

were associated with shorter OS, whereas higher abundance ratios of

resting master cells and resting dendritic cells were associated with

longer OS.

Immune function analysis demonstrated that the macrophages

and type I interferon responses are associated with the high-risk

IRGPI group, whereas the dendritic cells are associated with the

low-risk IRGPI group (Supplementary Figure 3G).
B

C D

A

FIGURE 3

WGCNA to mine differential immune gene modules. (A) Scale-independence of various soft-thresholding powers. (B) Mean connectivity analysis of
various soft-thresholding powers. (C) Identification of co-expression modules. (D) Heatmap of module-tumour status correlation. WGCNA, weighted
gene co-expression network.
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Drug resistance analysis

The gene expression data from GDSC and drug sensitivity data

for 198 drugs were analyzed and modeled using “OncoPredict” to

predict drug sensitivity in CRC samples. We compared the

differences in drug sensitivity between different risk groups and

observed significant variations in drug response between high- and

low-risk IRGPI group for 26 chemotherapeutic drugs. Among these

drugs, the high-risk IRGPI group showed sensitivity to 11 drugs,

including dasatinib, rapamycin, and taselisib, while the low-risk

IRGPI group exhibited sensitivity to 15 drugs, including

bortezomib, sorafenib, and ulixertinibin (Supplementary Figure 4).
Discussion

With the development of cancer immunotherapy and targeted

drugs, treatment of advanced and especially metastatic CRC has

shifted from traditional surgery and radiotherapy to precise,

individualized treatment (24, 25). Although some studies have

constructed models based on copper metabolism-related (26),

cuproptosis-related (27) genes to guide personalized treatment of

CRC, which are still in the exploratory stage. Accurate CRC

classification can help improve patient survival by guiding

personalized treatment in the clinical setting. The immune system

plays a key role in tumorigenesis, influencing the immune response,

immune evasion, and immunotherapy. Regulation of the immune
Frontiers in Immunology 07
system is essential for maintenance of tissue homeostasis and is a

key factor in cancer development and progression (28, 29). Based

on the role of immune-related genes in tumors, the prognostic role

of different IRGPI classifications in other tumors (breast cancer

(14), hepatocellular carcinoma (21), lung adenocarcinoma (15),

melanoma (30), etc.) has been demonstrated. Lin et al. (31) found

a strong correlation between the genes of the IRGPI and previously

identified prognostic and clinically relevant indicators (OS, TNM

stage, gender, age). In addition, Liang et al. (32) illustrated that the

interaction of immune-related genes based on IRGPI calculations

may influence CRC formation and development. In contrast, more

genes were included in our study with better predictive accuracy

(the AUCs for 1-, 3-, and 5-year survival were 0.767, 0.800, 0.808 vs.

0.723, 0.724, 0.744). The IRGPI classification can be used to better

understand the prognostic characteristics of tumors, providing

clinicians with a useful tool to help guide decisions.

In this study, we developed an IRGPI, which can be used to

assess prognosis and immune response in CRC patients and may

become a new biomarker for cancer research. We identified 49

immune-related key genes that affect OS by WGCNA. Based on 17

of these genes we constructed a predictive model for CRC. In the

TCGA and GEO cohorts, IRGPI scores were inversely correlated

with survival. Currently, the TNM stage reflects the extent of cancer

spread and is widely used as a clinical guide to assessing the degree

of tumor progression and aggressiveness after surgery, as well as the

prognosis of patients (33, 34). However, Patients with the same

tumor stage had significantly different clinical outcomes (35). This
BA

FIGURE 4

Immune-related hub genes. (A) Univariate Cox analysis of 49 immune-related hub genes. (B) Kaplan-Meier survival analysis of 17 immune-related
hub genes involved in prognostic model construction.
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demonstrates the limitations of the TNM staging system. Using

ROC curve analysis, IRGPI has better reliability and validity in

predicting survival compared to the TNM stage. The IRGPI also

had better accuracy compared to other indicators (TIDE, TIS). Lin

et al. (31) constructed an IRGPI prediction model based on the

TCGA database with an AUC of 0.858, however, no other database

was used to validate the developed prediction model. In addition,

IRGPI, as a prognostic indicator, was closely correlated with

pathological factors (age, stage, T, N, M), and participated in the

construction of a nomogram, which allows for a feasible

clinical application.

We performed an enrichment analysis to understand the

biological processes and pathways associated with IRGPI.

Differential immune genes were associated with the following

pathways: tumor-related MAP kinase activity, zymogen granule,

fatty acid metabolism, and butanoate metabolism. In previous

studies, the nodal signaling pathway (36) has been demonstrated

to be an important pathway involved in tumorigenesis and
Frontiers in Immunology 08
metastasis. Meanwhile, MAP kinase activity (37), zymogen

granule (38), fatty acid metabolism (39), and butanoate

metabolism (40) also play a vital role in tumor progression.

Furthermore, we analyzed gene mutations to explore immune

differences in IRGPI at the molecular level. Although this difference

did not reach statistical significance, it is worth noting that factors

such as sample size and effect size might have contributed to this

non-significant result. Moreover, the mutation rate can be

influenced by various factors including tumor type, genetic

heterogeneity, and environmental factors. Therefore, it is

important to consider these additional factors when interpreting

the observed mutation rate (41). Among the frequently mutated

genes, APC was the most commonly observed (42). APC mutations

are present in 80% of CRC cases and play a role in the initiation of

colorectal adenoma development (43, 44).

Considering the importance of TME in tumorigenesis,

development, and treatment, we assessed the relative proportions

of immune cells and the immune function in different IRGPI
B
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FIGURE 5

Establishment and Validation of the Prognostic Model. Kaplan-Meier survival analysis of IRGPI groups in TCGA cohort (A) and GEO cohort (B). Risk
score distribution of gene signatures based on TCGA cohort (C) and GEO cohort (D). Survival status of gene signatures based on TCGA cohort (E)
and GEO cohort (F). Heatmaps of the differential expression of metabolic genes in high-risk and low-risk groups based on TCGA cohort (G) and
GEO cohort (H). TCGA, The Cancer Genome Atlas; and GEO, Gene Expression Omnibus.
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groups. Here, we found that IRGPI was associated with the

infiltration of CD4+ TRM. The relative ratios of resting dendritic

cells, resting mast cells, M0 macrophages, resting NK cells, and

naive B cells were significantly correlated with the OS of CRC.

These immune cells make a significant contribution to the

prognosis of CRC. For example, infiltration of CD4+ TRM

increased the anti-tumor activity of tissues by promoting the

recruitment of immune cells and was associated with a good

prognosis of tumors (45). Macrophages promote immune evasion

and tumor invasion by secreting anti-inflammatory cytokines and

increasing the expression of MHC-like molecules (46). In addition,

CD8+ T cells, dendritic cells, natural killer T cells, and natural killer

cells constituted a line of defense against tumors by secreting pro-

inflammatory cytokines, producing reactive oxygen species, and

mediating cytotoxic effects (47).

Currently, CRC is treated mainly by surgery as well as

conventional chemotherapy, and only selected patients benefit

from immunotherapy. However, chemotherapeutic drugs enhance

the effectiveness of immunotherapy by altering the tumor

microenvironment. Therefore, it is necessary to explore the

sensitivity of different IRGPI groups to chemotherapeutic drugs.

Studies of the sensitivity of patients in different IRGPI groups to

chemotherapeutic agents showed that the high-risk IRGPI group

was sensitive to 11 drugs and resistant to 15 drugs. Among them,

the combination of dasatinib and curcumin inhibited the growth

and invasion of chemo-resistant colon tumor cells (48). Wang et al.

certificated that the combination of bortezomib and leucovorin
Frontiers in Immunology 09
promoted CRC cell apoptosis and inhibited tumor growth and can

be used in the treatment of CRC (49). Cetuximab, a promising

antineoplastic agent, has been used to treat patients with

BRAFV600E-mutated colorectal cancer (50). In addition, studies

evaluating the efficacy and safety of rapamycin, sorafenib, taselisib,

and ulixertinibin patients with CRC are in the clinical phase. Sparse

data are available at present, but identifying individualized

therapeutic approaches based on IRGPI subgroups may be

beneficial for the improvement of the efficacy of CRC therapies in

the future.

Despite a comprehensive analysis of immune-related genes, our

study has some limitations. First, the data were obtained from different

public databases with different inclusion and exclusion criteria, which

may be subject to selective bias and a limited number of studies.

Therefore, the conclusions of the study need to be validated with

further prospective, large-scale, multicenter data. Second, the

transcriptome analysis reflects only some aspects of the immune

status of CRC, and we plan to expand our studies in metabolomics,

proteomics, and genomics to provide a more comprehensive

understanding of CRC immunity. Third, the IRGPI model we

developed can be used to predict patient survival; however, the

mechanisms by which gene interactions in the model affect tumor

progression have not been investigated. In addition, the number of

genes constituting the model is high, which is not conducive to clinical

application and needs to be further optimized.

In summary, our study established a promising immune-related

risk model for predicting survival in CRC patients. This is the first
B C D
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FIGURE 6

IRGPI and ROC curve analysis and clinical characteristics. (A) Time-dependent ROC curve analysis of IRGPI at 1, 3, and 5 years. The comparison of
this model with clinicopathological factors (B) and TIDE, TIS (C) by the time-dependent ROC curve. (D) Analysis of the constituent ratio of clinical
characteristics in the different IRGPIs. (E) Univariate Cox analysis of clinicopathological factors and IRGPI scores, and multivariate Cox analysis of
factors significant in univariate Cox analysis (P < 0.05). (F) Nomogram containing the risk score to predict the overall survival in CRC patients. IRGPI,
Immune-Related Gene Prognostic Index; ROC, receiver operating characteristic.
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WGCNA-based prognostic model of immune-related genes that

will help researchers better understand the correlation between

immunity and the prognosis of CRC and provide a new perspective

for personalized treatment of CRC.
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FIGURE 7

GSVA and Gene Mutations. (A) Enrichment analysis of GSVA in IRGPI groups (C2 Gene Set). (B) Enrichment analysis of GSVA in IRGPI groups (C5
Gene Set). (C) Significantly mutated genes in high-risk IRGPI groups. (D) Significantly mutated genes in high-risk IRGPI groups. GSVA, Gene Set
Variation Analysis; IRGPI, Immune-Related Gene Prognostic Index.
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Immune Cell Infiltration and Immune Function. (A) The correlation of IRPGI

scores with 22 immune cells. (B–F) Kaplan-Meier survival analysis of the
correlation of immune cell abundance ratios in the IRGPI groups. IRGPI,

immune-related gene prognostic index. (G) The correlation of IRPGI scores

with 29 immune signaling pathways.
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