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Abstract 

Despite intensive basic scientific, translational, and clinical efforts in the last decades, glioblastoma remains a devastat-
ing disease with a highly dismal prognosis. Apart from the implementation of temozolomide into the clinical routine, 
novel treatment approaches have largely failed, emphasizing the need for systematic examination of glioblastoma 
therapy resistance in order to identify major drivers and thus, potential vulnerabilities for therapeutic intervention. 
Recently, we provided proof-of-concept for the systematic identification of combined modality radiochemotherapy 
treatment vulnerabilities via integration of clonogenic survival data upon radio(chemo)therapy with low-density 
transcriptomic profiling data in a panel of established human glioblastoma cell lines. Here, we expand this approach 
to multiple molecular levels, including genomic copy number, spectral karyotyping, DNA methylation, and transcrip-
tome data. Correlation of transcriptome data with inherent therapy resistance on the single gene level yielded several 
candidates that were so far underappreciated in this context and for which clinically approved drugs are readily 
available, such as the androgen receptor (AR). Gene set enrichment analyses confirmed these results, and identified 
additional gene sets, including reactive oxygen species detoxification, mammalian target of rapamycin complex 1 
(MTORC1) signaling, and ferroptosis/autophagy-related regulatory circuits to be associated with inherent therapy 
resistance in glioblastoma cells. To identify pharmacologically accessible genes within those gene sets, leading edge 
analyses were performed yielding candidates with functions in thioredoxin/peroxiredoxin metabolism, glutathione 
synthesis, chaperoning of proteins, prolyl hydroxylation, proteasome function, and DNA synthesis/repair. Our study 
thus confirms previously nominated targets for mechanism-based multi-modal glioblastoma therapy, provides proof-
of-concept for this workflow of multi-level data integration, and identifies novel candidates for which pharmacologi-
cal inhibitors are readily available and whose targeting in combination with radio(chemo)therapy deserves further 
examination. In addition, our study also reveals that the presented workflow requires mRNA expression data, rather 
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than genomic copy number or DNA methylation data, since no stringent correlation between these data levels could 
be observed. Finally, the data sets generated in the present study, including functional and multi-level molecular data 
of commonly used glioblastoma cell lines, represent a valuable toolbox for other researchers in the field of glioblas-
toma therapy resistance.
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Introduction
Glioblastoma, despite immense efforts in preclinical, 
translational, and clinical research during the last dec-
ades still remains a daunting disease with highly dis-
mal prognosis [1]. Fractionated radio(chemo)therapy 
with 30 fractions of 2  Gy and concomitant adminis-
tration of DNA-alkylating temozolomide (TMZ) in 
definitive or adjuvant settings, followed by TMZ-based 
maintenance therapy remains the standard of care [2, 
3]. However, glioblastoma is well-known for its high 
degree of inherent therapy resistance, both to ionizing 
radiation (IR) and TMZ, resulting in frequent treat-
ment failure and early recurrence [4]. Thus, a more 
detailed understanding of the biological and molecular 
mechanisms underlying glioblastoma therapy resist-
ance is needed in order to open new perspectives for 
molecularly targeted therapy and to improve disease 
prognosis [5, 6].

Based on our recent proof-of-concept study [7], we 
here present a systematic approach which integrates 
inherent resistance data of commonly used human 
glioblastoma cell lines to IR and TMZ with multi-level 
molecular data of those cell lines obtained under treat-
ment-naive conditions, including spectral karyotyping 
(SKY FISH), array comparative genomic hybridization 
(aCGH), array-based DNA methylation, and transcrip-
tomic (mRNA microarray) analyses. By integrating 
these data with scores of inherent therapy resistance 
as extracted by dimensionality reduction of clono-
genic survival data ([7, 8], Additional file 1: Table S1), 
and subsequent gene set enrichment analysis (GSEA) 
[9], we could identify several candidate networks and 
signaling circuits which are associated with inher-
ent treatment resistance of glioblastoma cells and 
can be readily targeted by clinically approved or at 
least clinically trialed drugs. Among these were path-
ways involved in homeostasis of reactive oxygen spe-
cies (ROS), mammalian target of rapamycin complex 
1 (mTORC1) signaling, and androgen receptor (AR) 
signaling [10, 11]. Taken together, we present a novel 
integrative approach for the systematic identification 
of therapeutic vulnerabilities (not only) in glioblas-
toma as well as potential candidates whose targeting in 
conjunction with radiotherapy and/or TMZ may help 
to break glioblastoma therapy resistance.

Methods
Cell culture
The human glioblastoma cell lines A172, LN18, LN229, 
T98G, U87 [12], U138, and U251 were purchased from 
the American Type Culture Collection (ATCC, Manas-
sas, VA, USA), or from Cell Lines Service GmbH (CLS, 
Eppelheim, Germany), and confirmed for identity by 
short tandem repeat (STR) typing according to the 
standards of the ATCC and the American National 
Standards Institute (ANSI, New York, NY, USA) of 
2011 (ANSI/ATCC ASN-0002–2011) [13]. All cell lines 
were cultured in Dulbecco’s Modified Eagle Medium 
(D-MEM) supplemented with 10% (v/v) heat-inacti-
vated fetal calf serum (FCS), 100 U/ml penicillin, and 
0.1  mg/mL streptomycin (all from Thermo Scientific, 
Schwerte, Germany) at 37 °C and 7.5% CO2. Cells were 
kept at low passage numbers (≤ 10 passages), and were 
regularly tested by MycoAlert assay (Lonza, Basel, 
Switzerland) to be free of mycoplasma contamination.

Determination of therapy resistance scores
Resistance to therapy was determined by clonogenic 
survival assays as described [7]. In brief, cells were 
seeded into 6-well plates and incubated for 4 h in order 
to adhere. Cells were irradiated at the indicated doses in 
single-shot or in intervals of 24 h (fractionated mode), 
and colony formation was allowed for up to 12 d. In case 
of TMZ treatment, cells were incubated with TMZ at 
the indicated doses for 24 h, medium was changed, and 
colony formation was performed in TMZ-free medium. 
For the combination treatment, cells were exposed to 
5 µM TMZ for 24 h, irradiated at the indicated doses, 
and incubated in TMZ-free medium for colony for-
mation. Colonies were fixed with 80% ethanol, stained 
with 0.8% methylene blue (both from Merck Millipore, 
Darmstadt, Germany), and counted with a Stemi 305 
stereomicroscope (Carl Zeiss, Oberkochen, Germany) 
as described [7, 14]. Percentages of colony forming 
cells were calculated and normalized to the respective 
plating efficiencies at approximately matched colony 
numbers. Resistance scores were extracted by principal 
component analysis (PCA) as scores of the first princi-
pal component (PC1) [8].
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Spectral karyotyping (SKY FISH)
For spectral karyotyping (SKY FISH) analyses, cells at 
80% confluency were accumulated in M-phase by treat-
ment with 0.1  µg/ml colcemid (Roche Diagnostics, 
Basel, Switzerland) for 3  h. Cells were then harvested 
with TrypLE Express (Thermo Scientific), and incu-
bated in 4.0% (w/v) potassium chloride for 45  min at 
37 °C. Cells were fixed with fixative (methanol and gla-
cial acetic acid at 3:1 ratio, both from Merck Millipore) 
for 45 min at 4 °C, washed, and resuspended in fixative. 
Cell suspensions were dripped onto microscope slides, 
and hybridization was performed using the denatured 
SKY-probe mixture kit SkyPAINT DNA (Applied 
Spectral Imaging, Carlsbad, CA, USA) as previously 
described [15]. For staining, slides were incubated with 
anti-digoxigenin (Roche), avidin-Cy5, and avidin-Cy5.5 
antibodies (Biomol, Hamburg, Germany), and counter-
stained with 0.1% (w/v) 4’,6-diamidino-2-phenylindole 
(DAPI, Sigma-Aldrich, Taufkirchen, Germany). Slides 
were supplemented with Vectashield mounting solu-
tion (Vector Laboratories, Burlingame, CA, USA), and 
spectral imaging was performed with a Zeiss Axioplan 
2 fluorescence microscope (Carl Zeiss, Oberkochen, 
Germany) equipped with a SpectraCube device and 
SkyView software (both from Applied Spectral Imag-
ing). Description of karyotypes was performed accord-
ing to the international system of human cytogenetic 
nomenclature (ISCN, edition 2013) [16].

Global gene expression microarrays
To analyze global mRNA expression levels in glioblas-
toma cells, gene expression microarray analysis was 
performed. In brief, total RNA was extracted from 
cells using the Qiagen Allprep DNA/RNA mini kit 
(Qiagen). RNA concentration was determined with 
a Nanodrop ND-1000 spectrophotometer (Thermo 
Scientific), and RNA quality was assessed by a total 
RNA 6000 nano chip assay performed on an Agi-
lent 2100 Bioanalyzer (Agilent Technologies, Santa 
Clara, CA, USA). To obtain global mRNA expres-
sion data, 50 ng of total RNA was subjected to Agilent 
SurePrint G3 human 8 × 60  k V2 microarray analysis 
(AMADID 039,494, Agilent Technologies). RNA from 
untransformed human astrocytes (Provitro AG, Ber-
lin, Germany) served as reference. Results were col-
lected using the Agilent feature extraction software 
(version 10.7, Agilent Technologies), and exported 
as text files. Assessment of data quality, filtering, and 
data processing were performed with the Bioconduc-
tor R packages Limma and Agi4 × 44PreProcess as 
previously described [17], and data analysis was per-
formed with R. The obtained data are available at Gene 

Expression Omnibus (GEO, super set accession num-
ber: GSE119637) and under the link https://​www.​ncbi.​
nih.​gov/​geo/​query/​acc.​cgi?​acc=​GSE11​9637  using the 
token ‘sfqnocumrvofrmv’.

Array comparative genomic hybridization (aCGH)
To identify genomic copy number alterations (CNAs) in 
glioblastoma cells, array comparative genomic hybridi-
zation (aCGH) analyses were performed as previously 
described [18]. In brief, DNA was extracted from cells by 
Qiagen Allprep DNA/RNA mini kit (Qiagen), concentra-
tion and quality of DNA were assessed with a Nanodrop 
ND-1000 spectrophotometer (Thermo Scientific), and 
120 ng DNA was fluorescently labelled using the CYTAG 
SuperCGH labelling kit (Enzo Life Sciences, New York, 
NY, USA). After removing free nucleotides using Micro-
con YM-30 columns (Merck Millipore), labelled DNA 
was subjected to oligonucleotide-based high-resolution 
SurePrint G3 Human 60  k CGH microarray analysis 
(AMADID 021,924, Agilent Technologies). Microarrays 
were scanned with a G2505C SureScan microarray scan-
ning system (Agilent Technologies), raw data were 
extracted using the Agilent feature extraction software 
(version 10.7, Agilent Technologies), and CNA regions 
were identified using the Bioconductor R packages CGH-
call and CGHregions [18, 19]. A compilation of all molec-
ular data collected in this study is deposited as an Excel 
file in the Additional file 2.

Array‑based DNA methylation analyses
Array-based DNA methylation analyses were performed 
as previously described [7]. In brief, DNA was extracted 
by Qiagen Allprep DNA/RNA mini kit (Qiagen), con-
centration and quality of DNA were assessed with a 
Nanodrop ND-1000 spectrophotometer (Thermo Sci-
entific), and 500  ng DNA was subjected to hybridiza-
tion on an Infinium EPIC methylation array (Illumina, 
San Diego, CA; USA). The arrays were scanned, idat files 
were imported in R using the minfi package [20], and 
processed in accordance to the Illumina BeadStudio data 
analysis workflow (Illumina). Beta values were used for 
downstream hierarchical clustering analysis along with 
the beta values retrieved for glioblastoma samples from 
TCGA database https://​www.​cancer.​gov/​tcga [21, 22].

Comparison of transcriptome and methylome profiles 
of glioblastoma cell lines with those from glioblastoma 
and lower‑grade glioma (LGG) patient samples
Transcriptome profiles and methylome beta values from 
glioblastoma and LGG patient samples were retrieved 
from TCGA (https://​tcga-​data.​nci.​nih.​gov/​docs/​publi​
catio​ns/​lgggbm_​2015/) [21, 22]. Transcriptome profiles 

https://www.ncbi.nih.gov/geo/query/acc.cgi?acc=GSE119637
https://www.ncbi.nih.gov/geo/query/acc.cgi?acc=GSE119637
https://www.cancer.gov/tcga
https://tcga-data.nci.nih.gov/docs/publications/lgggbm_2015/
https://tcga-data.nci.nih.gov/docs/publications/lgggbm_2015/
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of 560 glioblastoma and 463 LGG patients were cor-
rected for putative batch effects and z-scaled per gene 
before combination with the transcriptomic data 
obtained from the cell lines in a common gene expres-
sion matrix. The top 20 differently expressed genes 
between glioblastoma and LGG samples were analyzed 
by hierarchical clustering (Fig.  1b, clustering method 
ward.D and euclidean distance measure), and principal 
component analysis (PCA).

For DNA methylation, the profiles of 410 glioblas-
toma and 516 LGG patients were included, and a 
merged beta value matrix including the methylation 
profiles of glioblastoma and LGG patients as well as 
those of the glioblastoma cell lines matching the CpG 

island methylator phenotype (CIMP) signature by Cec-
carelli et  al. [21] was generated. The methylation pro-
files were subjected to hierarchical clustering analysis 
(Fig.  1c, clustering method ward.D and euclidean dis-
tance measure), and analyzed by PCA.

Molecular subtyping based on cytogenetic 
and transcriptomic data
Molecular subtyping was performed via different 
approaches. For calculation of molecular subtype scores 
(Additional file 1: Table S3), the data derived from cytoge-
netic characterization (SKY FISH) and aCGH analyses 
together with the expression data of relevant driver genes 
were utilized. All molecular subtype features of a cell line 

Fig. 1  Sample-to-sample correlation of mRNA expression of 100 most differently expressed genes in a human glioblastoma cell line panel does 
not match with inherent therapy resistance a Tabular presentation of characteristics of the human glioblastoma cell lines as obtained from the 
Cellosaurus database (https://​web.​expasy.​org/​cello​saurus/). b Unsupervised hierarchical clustering and principal component analysis (PCA) of 
mRNA expression levels of top 20 genes differently expressed between glioblastoma and low-grade glioma (LGG) patient samples (data from the 
TCGA database (https://​tcga-​data.​nci.​nih.​gov/​docs/​publi​catio​ns/​lgggbm_​2015/), clustering method ward.D and euclidean distance measure) in 
560 glioblastoma and 463 LGG patient samples, and in glioblastoma cell lines. c Unsupervised hierarchical clustering and PCA of G-CIMP signatures 
for hypermethylation phenotypes in 410 glioblastoma and 516 LGG patient samples (data from the TCGA database), and in glioblastoma cell lines. 
d Sample-to-sample correlation analysis of mRNA expression of 100 genes with highest intra-panel variation in expression in human glioblastoma 
cell lines. Expression values were determined by global gene expression microarray analysis. PCA-derived scores of inherent resistance (PC1s as 
described in [7, 8]) to single-shot radiotherapy (RTX), fractionated RTX, TMZ, and TMZ + single-shot RTX are depicted on top by unsupervised 
hierarchical clustering

https://web.expasy.org/cellosaurus/
https://tcga-data.nci.nih.gov/docs/publications/lgggbm_2015/
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were summed up before being divided by the total num-
ber of features (Fig. 2c). Alternatively, molecular subtyping 
was performed by the single-sample gene set enrichment 
analysis (ssGSEA) algorithm provided as an R-package by 
Wang et  al. [23], and using the reduced transcriptomic 
signatures from Verhaak et al. [24] (Fig. 2d). The negative 
log10 values of the resulting p-values were used as molec-
ular subtype scores, and according to the maximum value 
the molecular subtype was assigned.

Integration of therapy resistance with microarray 
expression data
Integration of therapy resistance data with microarray 
transcriptome data was performed via different alterna-
tive approaches. On single gene level, log2 expression 
values obtained by microarray analyses were subjected to 
Pearson’s correlation with resistance scores as extracted 
from clonogenic survival data via PCA (Additional file 1: 
Table S1 and [7, 8]). Similarly, but with focus on cancer-
related genes, only members of the cancer gene consen-
sus (CGC), a library of genes stored in the catalogue of 
somatic mutations in cancer (COSMIC) [25] were used 
for correlation analyses. Thirdly, integration on gene 
set level was performed by ranking genes in accordance 
to their respective correlation coefficients with ther-
apy resistance scores followed by pre-ranked gene set 
enrichment analyses (GSEAs) [9]. Leading edge genes 

were visualized by functional interaction networks in 
Cytoscape (Cytoscape Consortium, San Diego, CA, USA) 
[26]. Lastly, integration on gene set level was alternatively 
performed via an inverse workflow in which the com-
plexity of microarray expression data was first reduced by 
gene set variation analysis (GSVA) [26] in single samples, 
followed by Pearson’s correlation analyses with therapy 
resistance scores.

Results
Major differences in global mRNA expression patterns 
do not match with scores of inherent therapy resistance 
in a panel of human glioblastoma cell lines
The high degree of therapy resistance, the dismal progno-
sis, and the persisting lack of prognostic and/or predic-
tive factors in glioblastoma demand for the identification 
of novel stratification markers for treatment responses 
on one hand, and potential vulnerabilities for combined 
modality strategies on the other [6, 27, 28]. Very recently, 
we published a proof-of-concept screen in which scores 
of inherent treatment resistance of glioblastoma cells, 
both to IR and TMZ (Additional file  1: Table  S1), were 
correlated with basal mRNA expression levels of genes 
related to the DNA damage response (DDR)—a promis-
ing target to undermine therapy resistance in glioblas-
toma [7]. We were able to identify several DDR genes 

Fig. 2  Molecular subtyping of human glioblastoma cell lines. a Spectral karyotyping (SKY FISH) analyses of human glioblastoma cell lines. 
SKY FISH analyses were performed as previously described [15]. Karyotypes were described according to the international system of human 
cytogenetic nomenclature (ISCN, edition 2013) [16]. For cell lines A172, LN18, LN229, and U87, two distinct cytogenetic subclones are shown 
each. b Array comparative genomic hybridization (aCGH) analysis of glioblastoma cell lines. Hierarchical clustering of genomic copy number calls 
of chromosomes 1–22 in glioblastoma cell lines (top), and copy number status of gene loci with known association to glioblastoma subtypes 
(bottom). Copy number gains (up to 4 copies) are depicted by red bars, copy number amplifications (> 4 copies) by purple bars, and copy number 
losses by light blue (1 copy), and dark blue (complete loss), respectively. c Ternary plot of molecular subtyping of human glioblastoma cell lines 
on basis of mRNA expression of subtype-related signature genes (according to Wang et al. [23]), obtained by ssGSEA. The proneural subtype is 
depicted in blue, the classical subtype is depicted in orange, and the mesenchymal subtype is depicted in yellow. Values for subtypes were scaled 
to sum of 100% per cell line. d Bar plots of molecular subtype scores. e Graphical presentation of molecular subtypes of human glioblastoma 
cell lines as revealed by transcriptomic signature-based (top) and key feature-based subtyping (bottom), respectively. Scores of inherent therapy 
resistance are depicted by unsupervised hierarchical clustering
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whose mRNA expression levels showed significant posi-
tive correlation with inherent therapy resistance, and 
pharmacological interference with the function of some 
of the corresponding gene products using specific inhibi-
tors indeed resulted in sensitization of resistant glioblas-
toma cells to IR or TMZ treatment, respectively [7].

In the present study, we expanded this workflow to the 
global transcriptomic level and performed gene expres-
sion and DNA methylation microarray analyses using 
the same cell line panel as before (Fig. 1a, [7]). We first 
employed the transcriptome/methylome profiles of the 
cell lines to analyze their relatedness to clinical tumor 
samples, either from glioblastoma or from lower-grade 
glioma (LGG) patients as available from TCGA (Fig. 1b, 
c). All glioblastoma cell lines clustered closer to the 
glioblastoma patient samples than to the LGG samples, 
both on the transcriptome (Fig. 1b) and the methylome 
level (Fig. 1c). However, the cell lines were located at the 
periphery of the glioblastoma sample cluster, indicating a 
traceable but limited relatedness which may derive from 
the absence of non-tumor cells in the cell lines, adapta-
tion processes in cell culture, or other reasons, respec-
tively. We next examined whether the most striking 
transcriptomic differences across the cell line panel can 
be linked to inherent therapy resistances of glioblastoma 
cells. However, sample-to-sample correlation analyses 
on basis of the 100 most differentially expressed genes 
resulted in clusters of cell lines without obvious asso-
ciations to therapy resistance (Fig.  1d). As an example, 
LN18 and T98G cells, the two most closely related cell 
lines according to sample-to-sample correlation of their 
expression profiles revealed strong differences in their 
respective levels of treatment resistance (Fig.  1d, and 
[7]) which was most obvious for regimens encompass-
ing IR. Vice versa, cell lines with similar levels of treat-
ment resistance, for instance A172 and U87, showed very 
far relatedness in sample-to-sample correlation of their 
gene expression profiles (Fig. 1d). Thus, inherent therapy 
resistance of glioblastoma cells cannot be directly linked 
to major differences in global mRNA expression patterns, 
at least in the cell line panel we analyzed here. Obvi-
ously, more systematic approaches integrating large-scale 
molecular (OMICs) data with functional data are needed 
[4].

Multi‑level cytogenetic and molecular characterization 
of human glioblastoma cell lines allows their classification 
into defined molecular subtypes
Several classification systems of glioblastoma on dif-
ferent molecular levels have been described [29]. 
Emerging consensus is the categorization according to 
genomic and transcriptomic features into three defined 
subtypes, termed the classical, the proneural, and the 

mesenchymal subtype [23, 24]. Model systems of these 
subtypes have been reported to exhibit marked differ-
ences in the response to therapy in  vitro and in  vivo 
[30, 31], and the mesenchymal subtype was found to 
be the most refractory. Intriguingly, strong phenotypic 
plasticity between subtypes could be observed [30, 31], 
and the transition from the proneural to the mesenchy-
mal subtype was described to be an important driver of 
therapeutic failure [30–32]. Clinically, the mesenchy-
mal subtype exhibits the most dismal and the proneu-
ral subtype the most benign prognosis, suggested to be 
driven by subtype-specific signaling pathways includ-
ing DNA damage repair, cell cycle control, mesenchy-
mal cell movement, mitogen-activated protein kinase 
(MAPK)/extracellular signal-regulated kinase (ERK) 
signaling, PI3K/AKT signaling, JAK/STAT signaling, 
and WNT pathways [23, 29, 33].

We therefore aimed to classify the glioblastoma cell 
lines of our panel according to these described sub-
types. Firstly, we performed spectral karyotyping (SKY 
FISH) analyses (Fig.  2a and Additional file  1: Table  S2). 
The karyotypes ranged from a near-diploid chromo-
somal content in U87 cells up to a near-hexaploid one 
found in T98G (Fig.  2a and Additional file  1: Table  S2). 
We also noticed that some of the cell lines (A172, LN18, 
LN229, T98G, and U87) displayed different cytogenetic 
subclones (Fig. 2a and Additional file 1: Table S2) which 
is indicative for enhanced chromosomal instability 
(CIN) in these cell lines [34]. Increased CIN, in turn, is 
known to affect all major aspects of cancer pathogenic-
ity including tumor progression, metastasis formation, 
and therapy resistance [35–37], and this also holds true 
for glioblastoma [38, 39]. Mechanistically, elevated CIN 
leads to gene copy number alterations (CNAs), which 
in case of affecting oncogenic driver genes can give rise 
to the aforementioned subtypes [40, 41]. Distinct CNAs 
were shown to be associated with different molecular 
subtypes [24, 42, 43], and we therefore performed array 
comparative genomic hybridization (aCGH) analy-
ses (Fig. 2b and Additional file 1: Table S3). CNAs with 
documented association to the classical subtype, includ-
ing amplification of 7p11.2 (EGFR), and focal deletions 
of 9p21.3 (CDKN2A) [24], were detected in most of the 
cell lines (Fig. 2b and Additional file 1: Table S3), whereas 
CNAs with association to the mesenchymal (loss of 
17p11.2, NF1) or the proneural subtype (amplification 
of 4q12, PDGFRA) were only rarely detected. According 
to our transcriptomic analyses, driver genes of the mes-
enchymal subtype, such as TRADD, RELB, TNFRSF1A, 
and CASP1 [24, 42], were widely expressed. On the con-
trary, expression of genes related to the proneural sub-
type including NKX2-2, OLIG2, SOX2, and ERBB3 [24, 
44–46] was only detected in one cell line given by LN229 
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(Additional file 1: Table S3), and genes linked to the clas-
sical subtype such as NOTCH3, NES, and SMO [47] were 
expressed heterogeneously across our panel. In synopsis, 
subtyping on the basis of cytogenetic and transcriptomic 
key features classified cell lines A172, T98G, and U251 as 
classical, and U138 as mesenchymal, but failed to deliver 
clear-cut classifications for cell lines LN18, LN229, and 
U87 (Fig. 2e and Additional file 1: Table S3).

Subtyping on the basis of transcriptomic signature 
genes according to Wang et al. [23] revealed a more het-
erogeneous pattern of subtypes across our cell line panel 
(Fig. 2c-e). For A172, LN18, and T98G no clear-cut clas-
sifications could be obtained (denoted as "mixed"). These 
cell lines were located on the proneural-mesenchymal 
axis (Fig.  2c), presumably reflecting the aforementioned 
plasticity in proneural-mesenchymal transition. For 
LN229, U87, U138, and U251, on the contrary, clear-
cut classifications could indeed be achieved, classifying 
LN229 as proneural, U251 as classical, and U87 and U138 
as resembling the prognostically challenging mesenchy-
mal subtype (Fig. 2c-e). Reasons for the slight prevalence 
of this subtype among the panel could be excessive clonal 
selection and adaptation during initial establishment, and 
long-term cultivation of these cell lines.

Integrating global gene expression data with clonogenic 
survival data as a strategy to identify new markers 
of glioblastoma therapy resistance
So far, our study has revealed that the annotation of 
defined molecular subtypes to established glioblas-
toma cell lines is challenging and yields different results 
depending on the molecular level and the key features 
employed. Furthermore, our data show that no direct 
association between the degree of therapy resistance 
and major transcriptomic differences or molecular sub-
types can be drawn. Cell lines assigned to the highly 
treatment-refractory mesenchymal subtype (U138, U87) 
showed modest (U87) or even high (U138) sensitivity 
towards therapy, while the cell line U251 representing 
the classical subtype showed highest resistance (Fig. 2e). 
We therefore subjected the therapy resistance data and 
the transcriptomic profiling data of our glioblastoma 
cell line panel to correlation analyses with different 
workflows ([7], and Fig.  3). Firstly, utilizing whole tran-
scriptome data, remaining on the single gene level, and 
setting a cutoff of |R|≥ 0.9 for the correlation of therapy 
resistance scores and log2 microarray expression val-
ues disclosed a limited set of genes whose expression 
levels were associated with resistance against IR and/
or TMZ treatment. Most strikingly, the highest positive 
correlation for TMZ treatment (R > 0.99) was seen for 
O6-methylguanine-DNA-methyltransferase (MGMT), 
not only confirming the literature [48, 49], but also 

providing a very strong proof-of-concept for the feasibil-
ity of our methodological approach.

This strategy allowed us to identify 14 genes that 
exhibited significant positive correlation with inherent 
resistance to at least two of the four tested treatments 
([7], and Fig.  3a, b), and 8 genes showing negative cor-
relation (Fig.  3b and Additional file  1: Table  S4). Three 
of the positively correlating genes were even linked to 
resistance towards three of the four treatments, includ-
ing single-shot IR, fractionated IR, and single-shot IR 
plus TMZ (Fig.  3a, b). These genes encoded for alpha-
1,4-galactosyltransferase (A4GALT), DNA polymerase 
alpha 1 (POLA1), a replication-associated DNA polymer-
ase for which specific inhibitors are currently developed 
[50], and adaptor related protein complex 2 subunit beta 
1 (AP2B1).

In order to focus on cancer-related genes, we next 
took advantage of the Cancer Gene Consensus (CGC) 
gene collection, which encompasses 1133 genes with 
documented functions in development and progression 
of cancer [25]. Using this compilation of reduced com-
plexity compared to the whole transcriptome microar-
ray and lowering the cut-off to |R|≥ 0.7 yielded a total of 
27 cancer-related genes with positive, and 29 genes with 
negative correlation with resistance scores for at least 
two types of treatment (Fig.  4a, b). For more detailed 
analyses, we concentrated on genes, whose expression 
levels correlated with resistance against three types of 
treatment, resulting in 22 genes in total, 11 with posi-
tive correlation, and 11 with negative correlation (Fig. 4a, 
b). We then performed a search for drugs targeting the 
respective gene products with positive correlation with 
inherent therapy resistance (Fig. 4a and Additional file 1: 
Table S5). The most interesting target with the strongest 
expression dynamics across the cell line panel as identi-
fied by this approach was the androgen receptor (AR) 
which has recently been reported to play an important 
role in prognosis and therapy resistance of glioblastoma 
[51–57]. Since AR also has roles in other cancer entities, 
mostly in prostate and in breast cancer [58, 59], multiple 
inhibitors and antagonists of AR have been developed 
and trialed [60], yielding successful therapeutic targeting 
of the AR in these cancer entities [61, 62]. Another can-
didate for which targeted drugs with clinical approval in 
other cancer entities are readily available was the mito-
gen-activated protein kinase kinase 4 (MAP2K4) [63]. 
Interestingly, in case of glioblastoma a link between AR 
and MAPK signaling with regard to therapy resistance 
has recently been described [64]. Finally, our correlation 
analyses identified STAT5B as a druggable target [65, 66] 
whose expression was associated with therapy resistance, 
yet with rather low expression dynamics across the glio-
blastoma cell line panel.
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Fig. 3  Integration of global mRNA expression data with scores of inherent therapy resistance in human glioblastoma cell lines. a Graphical 
representation of genes whose log2 mRNA expression levels show strong positive or negative correlation (|R|≥ 0.9) with inherent resistance to 
single-shot RTX, fractionated RTX, TMZ, and single-shot RTX + TMZ in human glioblastoma cell lines. Only genes with an average log2 expression 
value of 6 or higher compared to astrocytes are shown. b Intersect analysis of genes whose log2 mRNA expression shows significant positive or 
negative correlation (|R|≥ 0.9) with inherent resistance to single-shot RTX (blue), fractionated RTX (red), TMZ (green), and single-shot RTX + TMZ 
(yellow)
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Gene set enrichment analyses (GSEAs) identify several 
signaling circuits as potential contributors to inherent 
therapy resistance in glioblastoma cells
Stepping from the single gene to the gene set level, we 
performed pre-ranked gene set enrichment analyses 
(GSEAs) on the bases of the obtained correlation coef-
ficients (Figs.  3 and 4) and the MSigDB Hallmarks col-
lection which contains ground-truth derived gene sets 
reflecting the regulation of common biological processes 

[9]. With an FDR q-value cut-off of ≤ 0.1, a total of 21 
gene sets with positive enrichment were found, and 14 
gene sets with negative enrichment (Fig.  5a). Gene sets 
that showed positive/negative enrichment for resist-
ance against at least two of the four treatments included 
process categories of the core metabolism, such as GLY-
COLYSIS and OXIDATIVE_PHOSPHORYLATION, 
development (ADIPOGENESIS), and immune mecha-
nisms (INTERFERON_ALPHA_RESPONSE), thus 

Fig. 4  Integration of mRNA expression data of cancer gene consensus (CGC) genes with inherent therapy resistance in glioblastoma cell lines. 
a Intersect analysis of CGC genes whose log2 mRNA expression levels show significant positive (R ≥ 0.7) correlation with inherent resistance to 
single-shot RTX (blue), fractionated RTX (red), TMZ (green), and single-shot RTX + TMZ (yellow, left). Hierarchical clustering of relative log2 mRNA 
expression levels of 11 intersect genes correlating with resistance to single-shot RTX, fractionated RTX, and single-shot RTX + TMZ (right). Scaled 
scores of resistance to single-shot RTX + TMZ are depicted, and drugs antagonizing corresponding gene products are indicated in red. b Overlap 
analysis of CGC genes whose log2 mRNA expression shows significant negative (R ≤ -0.7) correlation with inherent resistance to single-shot RTX, 
fractionated RTX, TMZ and single-shot RTX + TMZ, and hierarchical clustering of relative log2 mRNA expression levels of 11 intersect genes
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according with previous reports [67–73]. Hallmark gene 
sets found to be negatively enriched with resistance 
against at least two of the four treatments included EPI-
THELIAL_MESENCHYMAL_TRANSITION [74, 75] 
and APICAL_JUNCTION [76] (Fig.  5a). For resistance 
against treatments comprising IR, the hallmark gene set 
REACTIVE_OXYGEN_SPECIES_PATHWAY was posi-
tively enriched, and the maximal intersect for enrichment 
with resistance against three treatments was observed for 
MTORC1_SIGNALING (positive), and TNFA_SIGNAL-
ING_VIA_NFKB (negative). Inverting this workflow by 
first reducing the dimensionality of the expression data 
by single-sample gene set variation analysis (GSVA), fol-
lowed by correlation analyses with the obtained GSVA 
scores and therapy resistance scores basically confirmed 
these results (Fig. 5b, c).

Leading edge analyses (LEAs) of GSEA‑derived gene 
sets identify druggable candidates and their functional 
interaction networks
Among the gene sets we identified to be positively or 
negatively enriched in therapy-resistant glioblastoma cell 
lines (Fig.  5a, b), we decided to concentrate on REAC-
TIVE_OXYGEN_SPECIES_PATHWAY, MTORC1_
SIGNALING and TNFA_SIGNALING_VIA_NFKB [10, 
11, 77]. Leading edge analyses (LEAs) were performed 
by constructing functional interaction networks in 
Cytoscape. For REACTIVE_OXYGEN_SPECIES_PATH-
WAY, the leading edge genes comprised a circuit of 
thioredoxin/peroxiredoxin metabolism and glutathione 
(GSH) synthesis [78–80] (Fig.  6a and Additional file  1: 
Table S6) which in view of available drugs also appeared 
the most interesting vulnerabilities for sensitization in 
combined modality treatment approaches (Fig.  6b and 
Additional file  1: Table  S6). Corresponding analyses for 
MTORC1_SIGNALING revealed druggable subnetworks 
involved in chaperoning, prolyl hydroxylation, protea-
somal function, and DNA synthesis and repair, plus 

Fig. 5  Gene set enrichment analysis (GSEA) on the basis of genes correlating with therapy resistance identifies pathways of potential contribution 
to therapy resistance in human glioblastoma cell lines. a Tabular presentation of pre-ranked gene set enrichment analysis (GSEA) results on the 
basis of obtained correlation coefficients (therapy resistance scores vs. gene expression data), and the MSigDB hallmarks collection [9] (FDR q-value 
cut-off ≤ 0.1). Positively enriched hallmark gene sets are depicted in pink, and negatively enriched hallmark gene sets are depicted in blue. b, c 
Correlation analysis of gene set variation indices as determined by gene set variation analysis (GSVA), and therapy resistance scores to fractionated 
RTX, single-shot RTX + TMZ, and sole TMZ
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individual genes overlapping with thioredoxin/peroxire-
doxin metabolism and GSH synthesis as disclosed in the 
leading edge of REACTIVE_OXYGEN_SPECIES_PATH-
WAY and involved in ferroptosis and autophagy regula-
tion [81, 82] (Fig.  6a, b and Additional file  1: Table  S6). 
Finally, the leading edge of negatively enriched TNFA_
SIGNALING_VIA_NFKB was mainly composed of can-
didates directly involved in TNF/NF-κB signaling [83, 84] 
(Fig. 6a, b and Additional file 1: Table S6).

Expression of candidate genes for targeted sensitization 
of glioblastoma as identified by GSEA and LEA is not driven 
by corresponding CNAs and only marginally anti‑correlates 
with respective promotor methylation
In order to examine if expression of the leading edge 
genes identified by our correlation/GSEA workflow is 
reflected by CNAs on the DNA level or by CpG meth-
ylation, we integrated the corresponding data sets. 
Unexpectedly, no significant association between the 
transcriptome and the CNA level was observed (not 

Fig. 6  Leading edge analyses (LEAs) via functional interaction networks and hierarchical clustering. a Functional interaction networks of the leading 
edge intersect genes in hallmark gene sets REACTIVE_OXYGEN_SPECIES_PATHWAY, MTORC1_SIGNALING, and TNFA_SIGNALING_VIA_NFKB as 
identified by GSEA in Fig. 5A. b Hierarchical clustering of relative log2 mRNA expression levels of the respective leading edge intersect genes. Scaled 
scores of inherent therapy resistances are shown by unsupervised hierarchical clustering, and drugs antagonizing the respective gene products are 
indicated in red

Fig. 7  CpG methylation status of leading edge intersect genes shows poor correlation between DNA methylation and therapy resistance. 
Correlation analyses of DNA methylation beta values (shown in purple) and relative log2 mRNA expression levels (shown in green) of leading 
edge intersect genes of the REACTIVE_OXYGEN_SPECIES_PATHWAY, MTORC1_SIGNALING, and TNFA_SIGNALING_VIA_NFKB hallmark gene sets. 
Coefficients of significant negative correlation are depicted by heat map clustering (shown in dark pink), and scaled resistance scores to single-shot 
and fractionated RTX (REACTIVE_OXYGEN_SPECIES_PATHWAY), or single-shot RTX + TMZ (MTORC1_SIGNALING, and TNFA_SIGNALING_VIA_NFKB) 
are shown by unsupervised hierarchical clustering
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shown). Furthermore, significant negative correla-
tion with promotor methylation was only observed for 
a minor subset of genes (Fig.  7) suggesting that other 
mechanisms dominate gene expression in this context 
and that integrative approaches such as the one described 
in the present study require mRNA expression data, 
rather than CNA or DNA methylation data.

In summary, our data show that workflows correlat-
ing mRNA expression data with PCA-derived scores of 
inherent therapy resistance, followed by GSEA and LEA 
can reveal therapy resistance markers and potential vul-
nerabilities for pharmacological sensitization—both pre-
viously reported ones and hitherto unknown candidates, 
and thereby can open new perspectives for mechanism-
based, combined modality treatment of glioblastoma and 
probably also of other cancer entities.

Discussion
Inherent therapy resistance is a major challenge in the 
treatment of various malignancies. Glioblastoma is 
particularly well-known for its high degree of treat-
ment resistance, accounting for its dismal prognosis 
[4]. The identification of key regulators that orchestrate 
this resistance is therefore inevitable in order to dis-
close novel perspectives of targeted combined modal-
ity therapy and to improve treatment outcome [29]. 
We recently showed that integrating scores of inher-
ent therapy resistance as extracted from clonogenic 
survival data with mRNA expression data of the DNA 
damage response is a suitable approach to identify new 
candidates for targeted sensitization of glioblastoma [7, 
8]. Here, we expanded this workflow to global mRNA 
expression data and additional molecular levels, includ-
ing DNA methylome and chromosomal CNAs—all col-
lected under treatment-naive conditions which most 
closely resemble the clinical situation of tissue sampling 
in form of tumor biopsies and resections. In accord-
ance with our preceding study, the identification of 
O6-methylguanine-DNA-methyltransferase (MGMT) 
as the best correlating candidate among all genes with 
positive correlation of mRNA expression with resist-
ance to TMZ provided a proof-of-concept for the feasi-
bility of our approach. Furthermore, on the single gene 
level, we identified the androgen receptor (AR) as a 
crucial positive correlator with inherent resistance to 
three of the four types of treatment—a candidate which 
is already successfully therapeutically addressed in sev-
eral cancer entities, such as prostate cancer [58, 61, 85], 
and thus is eligible to rapid evaluation in glioblastoma 
[52]. Another gene whose expression level correlated 
positively with resistance to three types of glioblastoma 
treatment was mitogen-activated protein kinase kinase 

4 (MAP2K4) [63]. Various inhibitors of the MAP kinase 
family have been developed and several of them, includ-
ing trametinib and cobimetinib, are readily approved 
for clinical use in other cancer entities [86]. However, it 
is known that these compounds commonly do not pass 
the blood brain barrier (BBB) which for instance under-
mines efficient treatment of brain metastases originating 
from MAP kinase-driven melanoma [87, 88]. Therefore, 
new BBB-passing MAP kinase inhibitors such as E6201 
are currently in development [89–92]. Our data suggest 
that these inhibitors may be interesting candidates for 
targeted sensitization of glioblastoma to IR and/or TMZ.

In order to identify gene sets, networks, and signal-
ing circuits rather than single genes, we made use of 
pre-ranked gene set analyses (GSEAs) on the basis of 
the correlation coefficients (gene expression vs. therapy 
resistance) followed by leading edge analyses (LEAs). This 
indeed yielded several candidates whose pharmacological 
targeting appears interesting in the context of targeted 
radio- and/or chemosensitization of glioblastoma and—
more importantly—for which refined drugs are readily 
available. Among these were the MSigDB hallmark gene 
sets REACTIVE_OXYGEN_SPECIES_PATHWAY and 
MTORC1_SIGNALING, both of which comprise candi-
dates that can be well-targeted by various available drugs 
[93, 94]. Mechanistically, the identified regulatory cir-
cuits have major implications for death and/or survival 
pathways, such as ferroptosis and autophagy [81, 95], 
and crucial pro-survival players would represent inter-
esting targets in order to break glioblastoma cell death 
evasion and resistance against IR [96–98] or TMZ [99], 
respectively.

When tracing the mRNA expression data back to the 
chromosomal CNA status, we did not observe relevant 
associations. Furthermore, CpG methylation status did 
only in part reflect the obtained mRNA expression data. 
Accordingly, other mechanisms, including posttran-
scriptional regulation of mRNA expression by micro-
RNAs (miRNAs) [100], may be involved in glioblastoma 
gene regulation accounting for the observed therapy 
resistance-associated mRNA expression patterns, and 
this would also fit with several recent reports identifying 
miRNA signatures as outcome prognosticators of glio-
blastoma [101–104]. It is in accordance with previous 
reports which found only marginal associations between 
the methylation status of MGMT promotor and mRNA 
or protein expression levels in glioblastoma patients [49, 
105]. Hence, it is feasible to assume that our integrative 
approach requires mRNA expression data, rather than 
DNA methylation or CNA data to obtain robust results. 
In how far (phospho-)proteomic data would further 
improve the study outcome remains to be investigated 
[106].
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Similar systematic in  vitro analyses of therapy resist-
ance on the basis of clonogenic survival data and multi-
level molecular data are rare [107, 108], not only in 
glioblastoma [109–111]. Most studies of similar purpose 
integrate molecular data from patient material provided 
by publicly available databases such as TCGA with clini-
cal data in order to identify genes with association to 
therapy resistance [22, 112–114]. However, the molecular 
data obtained from such cohorts are often of high com-
plexity given that biopsied/resected patient material usu-
ally comprises complex tumor tissue, including tumor 
stroma and normal tissue cells rather than only tumor 
cells [115, 116]. Furthermore, information on treatment 
courses and clinical endpoints commonly is scarce and/
or incomplete, thus further hampering the interpretabil-
ity of these data. Our results do not only provide proof-
of-concept for the feasibility of the chosen integrative 
in vitro approach. The data sets generated in the present 
study comprising functional (clonogenic survival data) 
and multi-level molecular data (mRNA transcriptome, 
DNA methylome, chromosomal CNA, and SKY FISH) of 
very commonly used glioblastoma cell lines (in an unper-
turbed, untreated stage) also represent a valuable toolbox 
which can be readily interrogated by other researchers in 
the field of glioblastoma therapy resistance. Nevertheless, 
since dynamic changes on the analyzed molecular levels 
(particularly on the transcriptome and on the methylome 
level) are to be expected in response to therapy and may 
well be causative for the emergence of acquired therapy 
resistance [30, 117–119], further research is certainly 
needed. Finally, the integrative nature of the described 
workflow can be adapted to other disease models, such 
as 3D cell culture and organoids [120], since this may 
impact both, global mRNA expression and therapy resist-
ance [121–123].
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