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Density perturbations in the subsurface are themain driver of mantle convection and
can contribute to lithospheric deformation. However, in many places the density
structure in the subsurface is poorly constrained. Most geodynamic models rely on
simplified equations of state or use linear seismic velocity perturbations to density
conversions. In this study, we investigate the density structure beneath the Rungwe
Volcanic Province (RVP), which is the southernmost volcanic center in the Western
Branch of the East African Rift (EAR). We use shear-wave velocity perturbations
(dlnvs) as a reference model to perform constrained inversions of satellite gravity
data centered on the RVP. We use the code jif3D with a dlnvs-density coupling
criterion based on mutual information to generate a 3D density model beneath the
RVP up to a depth of 660 km. Our results reveal a conspicuous negative density
anomaly (~−200 kg/m3) in the sublithospheric mantle (at depths ranging
from ~100 km to ~250 km) beneath the central part of the Malawi Rift extending
to thewest, beneath theNiassa Craton, coincident with locationswith positive shear-
wave velocity perturbations (+7%). We calculate a 3D model of the velocity-to-
density conversion factor (f) and find negative f-values beneath the Niassa Craton
which suggests the observed negative density anomaly is mostly due to
compositional variations. Apart from the Niassa Craton, there are generally
positive f-values in the study area, which suggest dominance of temperature
control on the density structure. Although the RVP generally shows negative
density anomalies and positive f-values, at shallow depths (<120 km), f ≈ 0, which
suggests important contributions of both temperature and composition on the
density structure possibly due to the presence of plume material. The negative
buoyancy of the Niassa Craton contributes to its long stability, while constituting a
barrier to the southward flow of plume material, thus restricting the southward
continuation of magmatism in the Western Branch of the EAR. The presence of a
negative-density anomaly where dlnvs are positive is incompatible with models
based on the use of simple dlnvs to density conversion factors. These results have
implications on how dlnvs models are converted to density perturbations.
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1 Introduction

Geodynamic models suggest the interaction of buoyancy-driven
mantle convection and plate tectonics. In fact, large-scale topography
features on Earth depend on density variations in the upper mantle
(Steinberger, 2016) and buoyancy of the lithosphere due to
thermochemical heterogeneities (Kelly et al., 2003; Lee et al., 2005;
Shulgin and Artemieva, 2019) contribute to the long stability of
cratons over geological times (Lee et al., 2005; Eaton and Claire
Perry, 2013). Despite the importance of subsurface density
structure in mantle convection and lithospheric deformation, the
density structure in the subsurface is poorly constrained. Gravity
and seismic techniques are the two main methods employed to
investigate the density structure in the subsurface (e.g., Darbyshire
et al., 2000; Vacher and Souriau, 2001; Tondi et al., 2012; Deng et al.,
2014; Kaban et al., 2016). However, there is intrinsic non-uniqueness
in gravity modeling, thus the solutions need to be constrained, which
introduces uncertainties in the final model. For example, due to the
expected high heterogeneity in the crust, it is assumed that short
wavelength features in the gravity field generally have a crustal origin
while long wavelength anomalies have a deeper source. On the other
hand, tomography models provide increasingly detailed images of the
seismic velocity structure of the upper mantle.

In order to quantitatively investigate the implications of existing
tomography models for the dynamics of the upper mantle, most
geodynamic models use simple conversions of seismic velocity
perturbations to density anomalies through the design of a
conversion factor (e.g. Karato and Wu, 1993; Becker, 2006; Conrad

and Lithgow-Bertelloni, 2006; Steinberger and Calderwood, 2006;
Conrad et al., 2007; Karato, 2008; Conrad and Behn, 2010; Ghosh
et al., 2010; 2017; Wang et al., 2015; Liu and Zhong, 2016; Adam et al.,
2021). Previous studies assume a positive constant value for this factor
for the entiremantle (e.g., Becker, 2006; Conrad and Lithgow-Bertelloni,
2006; Conrad et al., 2007; Conrad and Behn, 2010; Ghosh et al., 2010;
2017; Wang et al., 2015; Liu and Zhong, 2016). For example, Becker
(2006), Conrad and Lithgow-Bertelloni (2006), and Conrad and Behn
(2010) use a conversion factor between shear velocity anomalies and
density anomalies of 0.15, while Ghosh et al. (2010, 2017) and Wang
et al. (2015) assume a conversion factor of 0.25. Some studies consider
the mineral physics approach of Stixrude and Lithgow-Bertelloni
(2005a, 2005b, 2007, 2011) to derive depth-dependent values for the
conversion factor typically varying between 0.2 and 0.4 (e.g., Steinberger
and Calderwood, 2006; Adam et al., 2021). Other studies determine the
conversion factor through laboratory experiments to range between
0.2 and 0.4 (Karato and Wu, 1993; Steinberger and Calderwood, 2006;
Karato, 2008). An important observation is that these cited studies all
derive positive values for the conversion factor, which implies that every
positive velocity perturbation will convert to positive density anomalies
and vice versa, which is not always true in nature. For example, the ultra-
low velocity zones (ULVZs) at the core-mantle boundary have
extremely low seismic velocities but have higher density than their
surroundings in order to remain stable on the core-mantle boundary.
Another example is given by cratonic keels, which are mostly
characterized by negative density anomalies due to compositional
effects (e.g., Kaban et al., 2003; 2016; this study) and by very high
seismic velocities due to low temperatures.

FIGURE 1
(A). Map of the East African Rift (EAR) showing the Eastern andWestern Branches. TheWestern Branch of the EAR has fewer volcanic centers (red triangles
are Holocene volcanoes) than the Eastern Branch. The Holocene volcanoes are from the Smithsonian Global Volcanism Program (Global Volcanism Program,
2013). The Cenozoic volcanic rocks (yellow) are outlined after Thiéblemont et al., 2016 and indicate the large igneous province (LIP) in East Africa. RVP =
Rungwe Volcanic Province. KR = Kenyan Rift. MER =Main Ethiopian Rift. The black rectangle shows the location of Figure 1B. Dashed blue lines represent
plate boundaries from Stamps et al. (2008). The inset map shows the relative location of part of the EAR (pink rectangle) on Earth. The diffuse deformation
offshore of the Eastern Branch is based on geodetic study by Stamps et al. (2021). (B). Map of major terranes and geological features in the southern part of the
Western Branch of the EAR that are based on Fritz et al. (2013). The major rift faults are extracted from Muirhead et al. (2019). Black triangles from north to
south represent the three large active volcanoes (Ngozi, Rungwe and Kyejo; Harkin, 1962; Fontijn et al., 2010) of the RVP.
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In this study, we investigate the density structure beneath the
Rungwe Volcanic Province (RVP; Figure 1A, B) and surroundings,
which is the southernmost volcanic center in the magma-poor
Western Branch of the East African Rift (Figure 1A). The RVP lies
within the Ubendian-Usagaran mobile belts that circumvent the thick
lithosphere of the Tanzanian and Bangweulu cratons (Figure 1B; e.g.;
Corti et al., 2007; Fritz et al., 2013) and consists of three large
volcanoes, Ngozi, Rungwe, and Kyejo, that were last active about
500 years ago (Fontijn et al., 2010; black triangles; Figure 1B).
Magmatism in the RVP is highly localized with past eruptions
covering ~1,500 km2 (Figure 1B; Ebinger et al., 1989; 1997; Fontijn
et al., 2012). 40Ar/39Ar radiometric dating of samples from the RVP
suggest that magmatism in the RVP started by 19 Ma (Mesko et al.,
2014; Mesko, 2020) and possibly as early as ~25 Ma (Roberts et al.,
2012) which predates rifting in the northern Malawi Rift at ~8.6 Ma
(Ebinger et al., 1993). These ages suggest that magmatism in the RVP
might have played an important role in thermally weakening the
lithosphere, thereby facilitating rifting.

A number of previous studies have been conducted to investigate
the crustal and upper mantle structures beneath the RVP and
surrounding using controlled-source seismic (lake-bottom
seismometers), body and surface wave tomography, receiver
function stacking and from the analysis of gravity and
aeromagnetic data (O’Donnell et al., 2013; Accardo et al., 2017;
Grijalva et al., 2018; Njinju et al., 2019a; Njinju et al.; 2019b; Emry
et al., 2019). O’Donnell et al. (2013) used Rayleigh wave phase
velocities to invert for a 3-D shear wave velocity model and
observed pronounced velocity lows beneath the RVP. Grijalva et al.
(2018) used P and S wave seismic tomography to also image the low
velocity zones (LVZ) beneath the RVP and the northern Malawi Rift
and interpret it to represent the flow of warm, mantle superplume
upwelling from the southwest, beneath, and around the thick
lithosphere of the Bangweulu Cratonic Block. Although the source
of these LVZs still remains enigmatic, their presence suggests density
perturbations beneath the RVP and surroundings. Lateral and vertical
variability of in situ density structure beneath the RVPmay be inferred
from a joint inversion of seismic and gravity data (Forte and Claire
Perry, 2000; Deschamps et al., 2002; Tondi et al., 2012), however, the
main limitation is the non-uniqueness of the relationship between
seismic velocities and density (Barton, 1986; Deschamps et al., 2001;
Lee, 2003; Brocher, 2005).

We use shear-wave velocity perturbations (dlnvs) from Emry et al.
(2019) as a reference model to perform a constrained inversion of
satellite gravity data centered on the RVP. We use the code jif3D
(Moorkamp et al., 2011) with a dlnvs-density coupling criterion based
on mutual information (MI; Haber and Holtzman Gazit, 2013;
Mandolesi and Jones, 2014; Lösing et al., 2022; Moorkamp, 2022),
which constructs a one-to-one relationship between the dlnvs and
density directly from the gravity data without considering an empirical
relationship. In the inversion, a joint probability distribution of the
gravity data and the reference model (dlnvs) is estimated and its
entropy minimized in order to generate a density model that is
statistically compatible with the reference model. The algorithm
generates a 3D density model of the lithosphere and
sublithospheric mantle beneath the RVP and surroundings down to
a depth of 660 km by seeking a combined dlnvs-density model that fits
the gravity data with maximum correspondence between the dlnvs
and density. Our results reveal a conspicuous negative density
anomaly (−200 kg/m3) in the sublithospheric mantle (extending at

depths from ~100 km to ~250 km) beneath the central part of the
Malawi Rift extending to the west, beneath the Niassa Craton. This
negative density anomaly beneath the Niassa Craton is coincident with
locations of positive seismic velocity perturbations (+7%). We
calculate a 3D model of the velocity-to-density conversion factor
(f), which is defined as the ratio of the derived density
perturbations to the shear-wave velocity perturbations (e.g., Root
et al., 2017; Liang et al., 2019). We find negative f-values beneath
the Niassa Craton which suggest the observed negative density
anomaly is mostly due to compositional variations. Apart from the
Niassa Craton, there are generally positive f-values in the study area,
which suggest dominance of temperature control on the density
structure. Although the RVP generally shows negative density
anomalies and positive f-values, at shallow depths (<120 km), f ≈ 0,
which suggests important contributions of both temperature and
composition on the density structure beneath the RVP. We suggest
that the presence of plumematerial at shallow depths beneath the RVP
thermally reduces the upper mantle density. The plume material
contributes metasomatic fluids that precipitate dense minerals that
slightly increase the density due to compositional variations. We
suggest the negative buoyancy of the Niassa Craton contributes to
its long stability, while constituting a barrier to the southward flow of
plume material, thus restricting the southward continuation of
magmatism in the Western Branch of the EAR. The presence of a
negative-density anomaly where dlnvs values are positive is
incompatible with models based on the use of simple dlnvs to
density conversion factors. Thus, these results have implications on
how dlnvs models are converted to density perturbations.

2 Input data and reference model

2.1 Gravity data

In this study, we use the Bouguer gravity data extracted from the
Experimental Global Gravity Field Model (XGM 2016; Pail et al.,
2018) which is publicly available via the International Center for
Global Earth Models (ICGEM) website (http://icgem.gfz-potsdam.de/
tom_longtime). XGM2016 is a combination of satellite gravity
information and terrestrial gravity data parameterized as a
spherical harmonic series expansion resolved to degree and order
(d/o) 719, which is the maximum resolution supported by the 15’ × 15’
terrestrial gravity grid with an application of a regionally dependent
weighting strategy in order to cope with the varying data quality of the
ground data. The terrestrial gravity data is provided by the
United States National Geospatial-Intelligence Agency (NGA). The
Bouguer gravity data are already terrain corrected using topographic
heights calculated from the spherical harmonic model of topography
(ETOPO1) used up to the same maximum degree as the gravity field
model; we therefore seek to extract Bouguer gravity data close to mean
sea level. The Bouguer gravity data were extracted with a resolution of
0.1° at a constant height of 30 cm above sea level in order to prevent
divergence in the numerical code, which in rare circumstances will
occur if the measurement height is directly at the surface. Although the
divergence problem can be avoided by shifting the nominal
measurement height a few centimeters above mean sea level, we
chose 30 cm in order to account for differences in the cumulative
height anomalies between XGM2016 and the Earth Gravitational
Model 2008 (EGM 2008; Pavlis et al., 2012), which is ~26 cm in
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Africa (Pail et al., 2018). Within the RVP area, the Bouguer gravity
data vary within −252 to −12 mGal with a mean value of −132 mGal.
We subtract the mean gravity from the gravity data in order to obtain
the required gravity anomalies which range within ±120 mGal. The
gravity anomalies are plotted on a 0.1°×0.1° geographical grid in
Figure 2. The gravity data domain has dimensions
of ~890 x ~780 km along latitude (i.e., −14° to −6°), and longitude
(i.e., 30°–37°), respectively (Figure 2). The satellite gravity component
of XGM2016 uses the satellite-only gravity field model GOCO05s
(Mayer-Guerr, 2015), which is based on more than 10 years of data of
the Gravity Recovery and Climate Experiment (GRACE; Tapley et al.,
2004) mission, the complete period of the Gravity field and steady-
state Ocean Circulation Explorer (GOCE; Drinkwater et al., 2003)
mission, kinematic orbits of 9 low-flying satellites, and 6 satellite laser
ranging (SLR) satellites.

2.2 3D tomography model

As a reference model for our constrained inversion, we use shear-
wave velocity anomalies in the upper mantle (>33 km depth) beneath
the RVP and surroundings which is part of the 3D seismic tomography
model of the upper mantle of the African continent developed by
Emry et al. (2019). Although there are several seismic tomography
models of the upper mantle beneath the RVP and surroundings
(O’Donnell et al., 2013; Accardo et al., 2017; Grijalva et al., 2018;
Emry et al., 2019), we use shear-wave velocity anomalies from Emry
et al. (2019) mainly because the model has a rich dataset covering the
entire African continent. Emry et al. (2019) used full-waveform
tomography on data collected from 186 broadband seismic stations
throughout Africa and surrounding regions to determine the 3D
seismic tomography model from long-period ambient noise

constrained by fundamental mode Rayleigh waves. The shear-wave
velocity anomalies (Figures 3A,B) are derived from the perturbation of
shear-wave velocities relative to the AK135 global average EarthModel
(Kennett et al., 1995). At 150 km depth, a region of lowest velocity
anomaly (−7%) is focused beneath the RVP and the highest velocity
anomaly (+7%) occurs in the southern part of the Malawi Rift
(Figure 3A). In order to account for edge-effects, we choose a
model space that extends 0.5° outward at all the edges of the data
space. Thus, our model domain has dimensions of ~1,000 x ~890 x
660 km along latitude (i.e., −14.5° to −5.5°), longitude (i.e., 29.5°–37.5°),
and depth, respectively (Figure 3B). Figure 3B shows a 3D
representation of the shear-wave velocity anomalies in our model
space, which indicates that the low velocity zone (−2%) beneath the
RVP is generally shallow (<200 km depths) but extends to ~600 km
depth at the westernmost edge of the model.

3 Constrained inversion

Gravity exploration has the advantages of low cost and high
efficiency but its low vertical resolution hampers the inversion
process. Therefore, some a priori information can be used as
constraints to enhance the inversion accuracy. Here, we used
seismic velocity perturbations (dlnvs; Emry et al., 2019) as
reference models to investigate the density structure beneath the
RVP and surroundings through a constrained inversion of satellite
gravity data (Pail et al., 2018).

We use the code jif3D (Moorkamp et al., 2011) with a
dlnvs-density coupling criterion based on mutual information (MI;
Haber and Holtzman Gazit, 2013; Mandolesi and Jones, 2014; Lösing
et al., 2022; Moorkamp, 2022). MI is an unsupervised machine-
learning approach that quantifies the amount of information
shared by two random variables. For our model, the MI coupling
constructs a one-to-one relationship between the reference model
(dlnvs) and density directly from the gravity data without requiring a
pre-defined relationship. During the inversion, the joint probability
distribution of the gravity data and the reference model is estimated
and its entropy minimized in order to guide the inversion results
towards a solution that is statistically compatible with the
dlnvs-model. Although the MI technique does not presume any
explicit relationship between the estimated density-model and the
reference dlnvs-model, if a link exists in the gravity data, then it is
highlighted in the estimation of the joint probability distribution
(Eq. 1a).

We use a kernel density approach with a Gaussian kernel to
calculate the MI between dlnvs and density in three main steps:

(1) We estimate the probability density distribution (pdd) for the
joint parameters and the marginal distributions for each parameter. If
we denote the pairs of transformed parameters in each model cell as
(xi; yi) where i = 1 . . . M and M is the number of cells used to
discretize the inverse problems, the pdd is approximated as:

p ρj, dlnvs,k( ) � 1���
2π

√
M

∑M

i�1 exp
xi − ρj( )2 + yi − dlnvs,k( )2

2σ2
⎡⎢⎢⎢⎣ ⎤⎥⎥⎥⎦ (1a)

where ρj and dlnvs,k are the discrete variables at which we
approximate the pdd. Since we extract the Bouguer gravity data
with a resolution of 0.1° (~11 km), only subsurface density
anomalies >11 km (in each dimension) will be properly resolved by

FIGURE 2
Bouguer gravity anomaly map extracted from the Experimental
Global Gravity Field Model (XGM 2016; Pail et al., 2018). RVP = Rungwe
Volcanic Province. Red triangles from north to south represent the three
active Holocene volcanoes (Ngozi, Rungwe, and Kyejo; Harkin,
1962; Fontijn et al., 2010) of the RVP. The Holocene volcanoes are from
the Smithsonian Global Volcanism Program (Global Volcanism Program,
2013). Black lines indicate the outline of rift lakes.

Frontiers in Earth Science frontiersin.org04

Njinju et al. 10.3389/feart.2023.1118566

https://www.frontiersin.org/journals/earth-science
https://www.frontiersin.org
https://doi.org/10.3389/feart.2023.1118566


the gravity data. We therefore refine the entire model domain (with
dimensions of ~1,000 x ~890 x 660 km; Figure 3B) to a global mesh
refinement of 6 such that each cell is ~16 x 14 x 10 km. For this study,
we use M = 64 (i.e., 26, where 6 = global mesh refinement) evenly
spaced values across the expected parameter range for each parameter
and choose the standard deviation of the Gaussian, σ, as half the
discretization width.

From the joint pdd we can also calculate the marginal pdd’s:

p ρj( ) � ∑
k
p ρj, dlnvs,k( ) (1b)

and

p dlnvs,k( ) � ∑
j
p ρj, dlnvs,k( ) (1c)

(2) We then calculate the Shannon Entropy of the marginal and joint
pdd’s:

H(x) � −∑
i

p xi( )logp(xi) (2)

(3) We finally retrieve the MI, which is given by:

MI ρj, dlnvs,k( ) � H ρj( ) +H dlnvs,k( ) −H ρj, dlnvs,k( ) (3)

The full objective function that we minimize iteratively includes
the data misfit term for the gravity anomaly data (Φd,grav), the
regularization term (Φreg,ρ), and the mutual-information term (MI):

Φ ρ( ) � λgΦd,grav ρ( ) + λρΦreg,ρ ρ( ) + λMIMI ρ, dlnvs( ) (4)

Details of each term in the objective function is given in
Moorkamp et al. (2011). The gravity data misfit (Φd,grav) is defined
as the l2 norms of the data residuals weighted by the uncertainties
(10 mGal). The data misfit for the density model ρ with respect to the
gravity data set d is given by:

Φd,grav ρ( ) � g ρ( ) − dobs,grav[ ]TC−1
d g ρ( ) − dobs,grav[ ] (5)

where g(ρ) is the synthetic gravity data from the forward calculation
for the given ρ-model, and dobs,grav, is the observed gravity data. C−1

d is
the inverse of the data covariance matrix, which is included in the
objective function to reduce the influence of uncertainties or errors in
the gravity observations.

The regularization term (Φreg,ρ) is included in the objective
function in order to stabilize the inversion and yield smooth
models and possibly coherent and geologically meaningful
structures (e.g., Jupp and Vozoff 1975; Zhdanov 2002). Φreg,ρ is
the ρ-model norm, which in our case is defined as the second spatial
derivative of the ρ-model weighted by individual a priori model
covariance matrix. In more details, the regularization term is
given by:

Φreg,ρ ρ( ) � ∑
i
αi ρ − ρo( )TW i

TC−1
MW i ρ − ρo( ) (6)

The model regularization term is obtained by summing over the
three axis directions i = {x, y, z} and weight the contribution for each
direction by a weight αi. In order to obtain a smooth ρ-model with
minimum curvature between adjacent cells, we choose the matrices
W i as finite difference approximations to the second spatial derivative
of the ρ-model. The inversion is regulated by keeping the result (ρ-
model) close to an a priori reference model ρo; C

−1
M is the inverse of a

diagonal model covariance matrix whose elements can be changed to
limit the variation of certain parts of the model. We use an a priori
model covariance that increases as the square of depth to balance the
decrease in sensitivity of the gravity measurements with the distance
from the causative body (Li and Oldenburg, 1998). The parameters λg,
λρ, and λMI are weights that control the balance between the different
terms of the objective function. The choice of the regularization
parameter is guided by the analysis of trade-off curves or L-curves
(Hansen, 1992; Supplementary Figure S1).

FIGURE 3
(A). 150 km depth slice of shear-wave velocity anomaly beneath the Rungwe Volcanic Province and surroundings derived from Emry et al. (2019). The
velocities are relative to the AK135 global average EarthModel (Kennett et al., 1995). RVP =Rungwe Volcanic Province.White triangles represent the RVP. Black
lines indicate the outline of rift lakes. The N-S dashed line represents the cross-section in Figure 5A. (B). A 3D representation of the shear-wave velocity
anomaly beneath the Rungwe Volcanic Province and surroundings derived from Emry et al. (2019).
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The objective function is minimized iteratively using the limited
memory quasi-Newton approach (L-BFGS, Avdeev and Avdeeva,
2009) for parallel forward solvers; flexible model parametrization
and large-scale model optimization. Each model cell (rectangular
prism with dimensions ~16 x 14 x 10 km) is assigned a value from
the starting density model ρo and the starting model is optimized
iteratively until the misfit reaches a minimum or the user prescribed
number of iterations is exhausted. The gravity forward problem is
based on a parallelized analytical solution of the gravitational
attraction of adjacent cells (Moorkamp et al., 2010). We first ran
independent gravity inversions for up to 100 iterations in order to
determine the gravity data weight λg and the density regularization
weight λρ. We found an acceptable trade-off that minimizes both the
data-norm and the model-norm when λg = 1 and λρ = 103.5

(Supplementary Figure S1). For the constrained inversion, we start
with a large weight for the MI term (λMI = 108) and successively relax
the weight until the inversion has converged to a data misfit
comparable with the misfit for inversions based on the gravity data
set individually, which occurred for λMI = 106 (Supplementary Figure
S2). The inversion termination criteria were the same as the
independent gravity inversion termination criteria except that we
ran the constrained inversion for up to 300 iterations since the
minimization of the full objective function converges more slowly
than the independent gravity inversion and requires a larger number
of iterations to reach a comparable level of fit.

4 Results

The shear-wave velocity anomalies beneath the RVP and
surroundings from Emry et al. (2019) that we use as our reference
model exist only for the upper mantle (>33 km depth down to
660 km). Thus, the density structure in the crust (<33 km) is only
from the gravity inversion without a seismic constraint. However, an
extraction of the crustal density structure at 20 km and 30 km depths
(Supplementary Figures S6A, B) reveals geologically meaningful
structures like negative density anomalies (<−50 kg/m3) beneath rift
basins, possibly due to the low density of rift basin sedimentary covers
and a positive density anomaly (~+200 kg/m3) beneath the Mughese
Shear Zone. We note again that only subsurface density
anomalies >11 km can be properly resolved by the gravity data,
thus more heterogeneous smaller wavelength (<11 km) crustal
density structures will be unresolved by our technique. We focus
our interpretation of the vertical and lateral variability of in situ
density structures beneath the RVP and surroundings at
depths >33 km. Figures 4A–D respectively show 100, 150, 200, and
250 km depth slices of density anomalies resulting from our
constrained inversion of gravity data with dlnvs-model as the
reference.

Our results reveal a conspicuous negative density anomaly
(−200 kg/m3) in the sublithospheric mantle (with depth extending
from ~100 to ~250 km) beneath the central part of the Malawi Rift
extending to the west, beneath the Niassa Craton. This negative
density anomaly beneath the Niassa Craton is coincident with
locations with positive seismic velocity perturbations (+7%). At
depths >100 km, there is a region of negative density anomalies
(−50 to −10 kg/m3) that extend from the Eastern Branch, through
the Usangu Basin (Figure 1B), to focus beneath the RVP, which is
coincident with locations with low seismic velocity anomalies (−7%).

This result suggests a possible linkage of the Western Branch and the
Eastern Branch through the Usangu Basin (Figure 1B; Mulibo, 2022).

Within the low-density region beneath the RVP, we highlight a
denser anomaly that is highly focused beneath the volcanic centers
(denoted by red triangles in Figure 4B). In order to better visualize the
density anomaly at depth, we extract a cross-section along a N-S
profile that cut across the RVP (Figure 5) and observe that the denser
anomaly beneath the RVP is confined at shallow depths within the
asthenosphere (~110–150 km) where the lithosphere is thinnest
(~110 km; Fishwick, 2010; Njinju et al., 2019a). Figure 5 also
indicates the fit between gravity observations and the forward
calculated gravity and shows that the Niassa Craton extends to
depths reaching ~350 km, however, the buoyant cratonic nucleus is
restricted at a depth range of 100 to 250 km. We suggest that the
denser anomaly in the lithospheric mantle beneath the RVP is possibly
due to compositional heterogeneity from metasomatization, while the
negative buoyancy of the Niassa Craton contributes to its long
stability. See Section 5 in which we discuss a possible origin of
these density anomalies.

5 Discussion

5.1 Velocity-density conversion factor:
Implications for thermal versus compositional
effects on the density structure

Studies suggest that S-wave velocity perturbations in the upper
mantle relate more to temperature variations (e.g., Goes and Van der
Lee, 2002; Stixrude and Lithgow-Bertelloni, 2005a) than
compositional variations. We examine the assumption that S-wave
velocity perturbations in the upper mantle are controlled only by
temperature effects (e.g., Goes and Van der Lee, 2002; Stixrude and
Lithgow-Bertelloni, 2005b) and that the S-wave velocity anomalies can
be converted to density anomalies through a constant conversion
factor of 0.15 (e.g., Becker, 2006; Conrad and Lithgow-Bertelloni,
2006; Conrad et al., 2007; Conrad and Behn, 2010). With these
assumptions, the calculated density anomalies (dρ) beneath the
RVP and surrounding region are given by (Eq. 7):

dρ � 0.15ρ dlnvs( ) (7)
where ρ is the reference mantle density (we use 3,300 kg/m3) and dlnvs
is the S-wave velocity perturbation (Figure 3) from Emry et al. (2019).

The assumption of only temperature control on the density
structure in the upper mantle and the use of a uniform positive
conversion factor of 0.15 results in density anomalies ranging
between −150 kg/m3 and 150 kg/m3 (Figure 6A). We observe that
all regions with negative S-wave velocity perturbations (Figure 3A)
convert to negative density anomalies (Figure 6A) and vice versa. The
resultant density structure based on these assumptions is unable to fit
the observed gravity data (Figure 2) because it generates predicted
gravity anomalies (Figure 6B) and gravity residuals (Figure 6C) that
are double and very different from the observed gravity (Figure 2).
Since the resultant density structure does not fit the observed gravity
data, we suggest that the use of a positive and uniform conversion
factor between S-wave velocity perturbations and density anomalies is
not a valid assumption for the upper mantle. This comparison also
suggests that the density structure does not depend strictly on
temperature variations. In contrast, our inverted density variations
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in the upper mantle beneath the RVP fit the observed gravity in the
region (Figure 7). These comparisons suggest S-wave velocity
perturbations are affected by both thermal and compositional
anomalies (Root et al., 2017).

In order to investigate the effect of temperature versus
composition in our inverted density structure, we estimate a 3D
model of velocity-to-density conversion factor (f) for the study area
(Figure 8 and Supplementary Figure S5) (Eq. 8).

f � dρ/ρ( )/ dlnvs( ) (8)
where dρ is the inverted density anomaly in this study, ρ is the
reference mantle density (we use 3,300 kg/m3) and dlnvs is the
S-wave velocity perturbation (Figure 3) from Emry et al. (2019).

Studies by Root et al. (2017) and Liang et al. (2019) show that both
the thermal and compositional effects in the upper mantle can be
quantified from a velocity-to-density conversion factor, where positive
values in the conversion factor imply dominance of thermal effects in
the density anomaly, whereas negative conversion factors indicate that
the density anomaly is likely related to compositional variations

(Cammarano et al., 2003; Root et al., 2017; Liang et al., 2019). For
example, Root et al. (2017) estimates lateral variations of the
conversion factor between S-wave velocities and gravity-based
densities in the British Isles and surroundings and find negative
values in central Fennoscandia, which they interpret to mean that
the compositional effect is more important than the thermal effect on
the dlnvs to density conversion in that area. Similarly, Liang et al.
(2019) determine 3D variations of conversion factors beneath the
Philippine Sea Plate and obtain pronounced negative values at depths
of 50 km and below 200 km. They suggest that the density anomalies
in the uppermost and lower layers in the upper mantle beneath the
Philippine Sea Plate are likely dominated by compositional effects.

Figure 8 shows lateral variations in the conversion factor at depths
ranging from 100 km to 250 km with cold colors representing regions
with negative conversion factors (dominance of compositional effects)
and warm colors presenting regions with positive conversion factors
(dominance of temperature effects). A pronounced negative
conversion factor occurs beneath the Niassa Craton at depths
ranging from 110 km (Supplementary Figure S5) to 250 km

FIGURE 4
Depth slices showing in situ density anomalies beneath the RVP and surroundings at (A) 100 km, (B) 150 km, (C) 200 km and (D) 250 km depth. Red
triangles represent the Rungwe Volcanic Province (RVP). Black lines indicate the outline of rift lakes. Blue contours show lines of equal lithospheric thickness at
20 km intervals from Fishwick (2010). Black dotted lines delineate plate boundaries from Stamps et al. (2008). Blue profile N-S in Figure 4B is the profile
location for Figure 5B.
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(Figure 8D) indicating that the negative density anomalies beneath the
Niassa Craton are likely dominated by compositional heterogeneity.
Another prominent area with a negative conversion factor occurs in
the southern tip of the Luangwa Rift (Figure 1B) at depths of ~130 km
(Supplementary Figure S5). This negative conversion factor suggests a
strong compositional control on the densification of the lithospheric

mantle beneath the Luangwa Rift. The Ruhuhu and Maniamba
Troughs (Karoo rifts) in the eastern part of our models show a
strong temperature control on the densification at depths ranging
from 100 km to 250 km. We also find positive conversion factors at
depths of ~140–150 km (Supplementary Figure S5) in the region
connecting the southern tip of the Tanganyika Rift and the Rukwa

FIGURE 5
Profile across the Rungwe Volcanic Province (RVP) and the Niassa Craton (profile N-S; Figure 3A) showing (A) fit between observed (red) and forward
calculated gravity (blue). (B) The shear-wave velocity perturbation from Emry et al. (2019) along profile N-S used as the reference model for the constrained
inversion. The lowest shear-wave velocity occurs beneath the RVP at depths of ~33–300 km. (C) Profile showing the derived density anomaly (profile N-S;
Figure 4B). Beneath the RVP, the lowest density anomaly (~-50 kg/m3) occurs at depths between 200 and 250 km. At shallower depths beneath the RVP
corresponding to the lithospheric mantle, the density anomaly is more positive (??) probably due to compositional heterogeneity.

FIGURE 6
(A) A 150 km depth slice of the density anomaly beneath the RVP and surrounding regions based on Eq. 7 assuming strictly temperature control. (B) The
predicted gravity anomaly using the derived density anomaly from Eq. 7 as the starting model. (C) The residual gravity, which is the difference between the
observed gravity anomalies (Figure 2) and the predicted gravity anomaly (Figure 6B) showing a poor fit between the predicted and observed gravity data.
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Rift. This positive conversion factor suggests a dominance of
temperature effects for the dense anomaly in this region. The RVP
shows conversion factors near zero at shallow sublithospheric depths
(~110–140 km; Supplementary Figure S5), which suggests equal
contribution of thermal and compositional effects on the upper
mantle density structure beneath the RVP at this depth range.
Figure 8 and Supplementary Figure S5 also show clear boundaries
marking the transition from negative (compositional effects) to
positive (temperature effects) conversion factors, which might
delineate the boundaries of previously unresolved tectonic entities.
Root et al. (2017) suggests a correlation between laterally varying
conversion factors and major tectonic regions in the British Isles and
surroundings. Similarly, Liang et al. (2019) suggests a relationship
between conversion factors and the tectonic fragmentation of the
Philippine Sea Plate.

5.2 Compositional modification of the Niassa
Craton and tectonic implications

The lithospheric mantle is the chemical and thermal boundary
layer formed as residue after melt extraction from the convective
mantle (Carlson et al., 2005). Secular cooling of the Earth leads to
formation of the lithospheric mantle under changing mantle
temperature and melting conditions, resulting in secular
variations in its major element composition and in bulk
properties (elastic moduli, seismic velocities, and densities).
High mantle temperatures on the early Earth produced the
unique (Fe-poor) composition of the cratonic lithospheric
mantle (Carlson et al., 2005) with low density and high seismic
velocities (Lee, 2003), thus it is possible that a significant portion of
the low-density anomaly beneath the Niassa Craton was formed
from secular cooling of the early Earth. Further reduction of the
lithospheric mantle density beneath the Niassa Craton due to high-

temperature melt extraction might have happened in the Middle
Jurassic to Early Cretaceous, during the emplacement of alkaline
igneous intrusions (Ring-Complexes, Figure 8B) in the southern
Malawi Rift, as part of the Chilwa Alkaline Province (Castaing,
1991; Nyalugwe et al., 2019). High-temperature melt extraction as a
possible mechanism for cratonization has been suggested
elsewhere. For example, Deng et al. (2017) develop a 3D density
model of the crust and upper mantle in central Asia from a joint
analysis of seismic velocity, gravity, topography and temperature
data and found low density but high velocity mantle lithosphere
beneath the southern Tarim craton. Deng et al. (2017) suggest that
the low-density anomaly results from high-temperature extraction
of melts from the mantle lithosphere as documented in voluminous
plume-related Permian intrusions (Zhang et al., 2013; Xu et al.,
2014) in southern and western Tarim. The melt extraction removes
hydrous, aluminous, and iron-rich phases, leaving behind a residue
with increased modal Mg and olivine but decreased garnet and
clinopyroxene and therefore decreased density (e.g., Schutt and
Lesher, 2010). Thus, the negative density anomalies in the
lithospheric mantle beneath the Niassa Craton could result from
compositional variations due to secular cooling of the early Earth
and subsequent melt extraction in the Cretaceous during the
formation of the Chilwa Alkaline Province (Castaing, 1991;
Nyalugwe et al., 2019). The buoyant nature of the craton
contributes to its long stability over geologic time. It is generally
accepted that the lithospheric mantle beneath cratonic regions is
more depleted in heavy elements (e.g., CaO, Al2O3, and FeO) than
the average lithospheric mantle (Griffin et al., 2004; 2009),
particularly at the shallowest levels of the lithospheric keels.
This idea is not only supported by what it is directly observed
in mantle samples (Griffin et al., 2009) but also by geophysical and
geodynamic arguments (e.g., Forte and Claire Perry, 2000; Carlson
et al., 2005; Afonso et al., 2008; 2019; Cammarano et al., 2011;
Wang et al., 2015).

FIGURE 7
(A) 150 km depth slice of the resultant density anomaly beneath the Rungwe Volcanic Province and surroundings derived from constrained inversion of
gravity data with shear-wave velocity perturbations from Emry et al. (2019) as referencemodel. (B) The predicted gravity calculated from our resultant density
anomaly. (C) Residual gravity, which is the difference between the observed gravity anomalies (Figure 2) and the predicted gravity anomaly (Figure 7B) showing
a good fit between the predicted and observed gravity data. RVP = Rungwe Volcanic Province. White and red triangles represent the RVP. Black lines
indicate the outline of rift lakes.
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5.3Origin of the density structure beneath the
Rungwe volcanic province

Generally, the RVP shows negative density anomalies but near zero
conversion factors at shallow sublithospheric depths (~110–140 km;
Supplementary Figure S5), which suggests important contributions of
both thermal and compositional effects (including fluids and melt) on
the upper mantle density structure beneath the RVP at this depth range.
Mantle metasomatism is a possible mechanism that may cause density
heterogeneities in the lithospheric mantle beneath the RVP.Metasomatism
of depleted lithosphericmantle, usually associated with basalticmagmatism
(e.g., Griffin et al., 2005; Howarth et al., 2014), decreases the Mg/Fe ratio,
increases lithospheric mantle density, and decreases seismic velocities
(Jordan, 1981; Lee, 2003). Although the geodynamic study by Njinju
et al. (2021) suggests the occurrence of present-day sublithospheric melt
beneath the RVP, radiometric dating of samples from the RVP using 40Ar/
39Ar dating techniques suggests that magmatism in the RVP started by
19Ma (Mesko et al., 2014; Mesko, 2020) and possibly as early as 25Ma

(Roberts et al., 2012). Thus, melt extraction beneath the RVP 19–25million
years agomay have left the lithosphericmantle depleted.Njinju et al. (2021)
suggests the presence of plume material beneath the RVP at present-day.
Subsequent interactions of the plume material with the depleted
lithospheric mantle beneath the RVP likely introduced metasomatic
fluids leading to compositional densification that we resolve with the
technique used in this study. The presence of metasomatic fluids
beneath the RVP is supported by geochemical studies by Furman
(1995) based on–amphibole, zircon, ilmenite, and phlogopite. Ivanov
et al. (1998) also suggest the likelihood of melting of metasomatized
mantle beneath the RVP using geochemical techniques.

6 Conclusion

Wepresent a 3Dmodel of the uppermantle density structure beneath
the Rungwe Volcanic Province (RVP) and surrounding regions derived
from a constrained inversion of satellite gravity anomalies with shear-

FIGURE 8
Lateral distribution of the conversion factor between the S-wave velocity perturbations (dlnVs) and our final density anomalies at (A) 100 km, (B) 150 km,
(C) 200 km and (D) 250 kmdepth. Black circles in Figure 8B represent the location of Ring-Complexes observed on Shuttle Radar TopographyMission (SRTM)
Digital Elevation Model (DEM) by Njinju et al. (2019a).
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wave velocity perturbations from Emry et al. (2019) as a reference model.
For the inversion, we used the mutual information coupling technique in
which a joint probability distribution of the gravity data and the reference
model is estimated and its entropy minimized in order to generate a
density model that is statistically compatible with the reference model.
Our results reveal a conspicuous negative density anomaly beneath the
Niassa Craton and less pronounced negative density anomalies beneath
the RVP. We further determined a 3D model of the velocity-to-density
conversion factor (f) and found negative f-values beneath the Niassa
Craton which suggest the observed negative density anomaly is mostly
due to compositional variations. Apart from the Niassa Craton, there are
generally positive f-values in the study area, which suggest dominance of
temperature control on the density structure. Although the RVP generally
shows negative density anomalies and positive f-values, at shallow depths
(<120 km) the f-value is near zerowhich suggests important contributions
of both temperature and composition on the density structure beneath the
RVP. We suggest that the presence of plume material at shallow depths
beneath the RVP thermally reduces the upper mantle density. The plume
material contributes metasomatic fluids that precipitate dense minerals
that slightly increase the density due to compositional variations. The
negative buoyancy of the Niassa Craton contributes to its long stability,
while constituting a barrier to the southward flow of plume material, thus
restricting the southward continuation of magmatism in the Western
Branch of the EAR. The presence of negative-density anomaly where
dlnvs are positive is incompatible with models based on the use of simple
dlnvs to density conversion factors. These results have implications on
how dlnvs models are converted to density perturbations.
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