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Abstract 

Background:  In the last few years, multi-omics data, that is, datasets containing differ-
ent types of high-dimensional molecular variables for the same samples, have become 
increasingly available. To date, several comparison studies focused on feature selection 
methods for omics data, but to our knowledge, none compared these methods for the 
special case of multi-omics data. Given that these data have specific structures that 
differentiate them from single-omics data, it is unclear whether different feature selec-
tion strategies may be optimal for such data. In this paper, using 15 cancer multi-omics 
datasets we compared four filter methods, two embedded methods, and two wrapper 
methods with respect to their performance in the prediction of a binary outcome in 
several situations that may affect the prediction results. As classifiers, we used support 
vector machines and random forests. The methods were compared using repeated 
fivefold cross-validation. The accuracy, the AUC, and the Brier score served as perfor-
mance metrics.

Results:  The results suggested that, first, the chosen number of selected features 
affects the predictive performance for many feature selection methods but not all. 
Second, whether the features were selected by data type or from all data types concur-
rently did not considerably affect the predictive performance, but for some methods, 
concurrent selection took more time. Third, regardless of which performance measure 
was considered, the feature selection methods mRMR, the permutation importance of 
random forests, and the Lasso tended to outperform the other considered methods. 
Here, mRMR and the permutation importance of random forests already delivered 
strong predictive performance when considering only a few selected features. Finally, 
the wrapper methods were computationally much more expensive than the filter and 
embedded methods.

Conclusions:  We recommend the permutation importance of random forests and 
the filter method mRMR for feature selection using multi-omics data, where, however, 
mRMR is considerably more computationally costly.
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Background
In the past few years, various types of omics data have become available on The Can-
cer Genome Atlas (TCGA) [1] such as data on genomics, epigenomics, transcriptomics, 
proteomics, metabolomics and microbiomics. It is well-known that a large amount of 
omics data is not informative for prediction because they are either redundant or irrel-
evant [2, 3]. The importance of feature selection is beyond doubt and different methods 
have been developed to deal with high-dimensional data. However, it is unclear, how fea-
ture selection should be performed for multi-omics data, that is, data for which there are 
measurements of several types of omics data from the same patients. This is because the 
predictive information in the different omics data types is overlapping, the amount of 
predictive information varies between the data types, and there are interactions between 
features from different data types [4, 5].

Using different types of omics data effectively is challenging. An important character-
istic of multi-omics data is the large dimensionality of the datasets. To address the issue 
of the large number of input features, feature selection algorithms have become crucial 
components of the learning process. The feature selection process aims to detect the rel-
evant features and discard the irrelevant ones. Successful feature selection can lead to an 
improvement of the inductive learner, either in terms of learning speed, generalization 
capacity, or simplicity of the induced model. In addition, the specific structure of multi-
omics data may be accounted for when selecting feature subsets. Lastly, apart from 
multi-omics data, in most cases the corresponding phenotypic dataset features several 
clinical covariates. Several studies have demonstrated that combining omics data with 
clinical data improves predictive performance [6, 7]. Therefore, clinical variables should 
be considered as well.

Presently, numerous feature selection methods exist which can be classified into dif-
ferent types according to specific principles [8]. For example, based on the relationship 
between the feature selection step and the learning procedure of the prediction rule, 
they can be classified as filter, wrapper, embedded, or hybrid methods. Based on the type 
of feature selection output, they can be divided into feature rank and subset selection 
methods. Some studies have compared feature selection methods for single-omics data, 
however, these studies often had limited scopes and no sufficiently large-scale system-
atic comparison in the context of multi-omics data has been conducted. A pioneering 
study by Abusamra [9] analyzed the performance of eight different filter-based feature 
selection methods and three classification methods, using only gene expression data 
of glioma. Liu et al. [10] conducted a comparative study of five feature selection meth-
ods using two datasets (Leukemia and Ovarian cancer). A study by Verónica et al. [11] 
investigated 11 feature selection methods using 11 datasets, including seven filter meth-
ods, two embedded methods, and two wrapper methods, but this analysis was based on 
synthetic data. Though many studies have investigated the strengths and weaknesses 
of existing feature selection algorithms [12–14], the choice of the most appropriate 
approach for a given task remains difficult [15].

In this paper, we aim to fill this gap for multi-omics data by providing a large-scale 
benchmark experiment comparing different feature selection methods and strategies. It 
is based on 15 cancer datasets from TCGA and focuses on classification. We compared 
four filter methods, two embedded methods, and two wrapper methods with respect to 
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their performance in selecting combinations of features that perform well in classifica-
tion. Where the output type was feature rank, we explored the effect of using different 
numbers of selected features on the classification performance. We also investigated the 
impact of performing the feature selection separately for each data type and concur-
rently for all data types at the same time. Finally, we studied the impact of combining 
multi-omics data with clinical data on the classification performance.

Results
In the following, the results of the benchmark study will be presented. Detailed descrip-
tions of the design of this study and the compared featured selection methods are given 
in “Methods” section. Consulting the latter section before reading the current section 
should make it easier to follow the results presented in the following.

Main findings

We discuss the results obtained for the area under the receiver operating characteristic 
curve (AUC) here, but analogous conclusions can be drawn for the accuracy and the 
Brier score (Brier). The results obtained for the latter two measures are shown in Addi-
tional file 1: Figures S1–S4.

Figures 1 and 2 show the results obtained for random forests (RF) and support vec-
tor machine (SVM), respectively. Figures 1a and 2a show the distributions of the mean 
cross-validated AUC values across the datasets for all rank methods. Figures 1b and 2b 
show the mean cross-validated AUC values obtained for all subset evaluation methods.

As seen in Figs. 1a and 2a, with regards to the AUC of SVM and RF, the performance 
of the rank methods varies strongly between different nvar values. For nvar = 10, there 
are strong differences in performance between the methods and for the worst methods, 
there is also a considerable variability across datasets. For all ranking methods, these 
differences get smaller for larger nvar values, and starting with nvar = 1000, all methods 
performed similarly well. On average, the Minimum Redundancy Maximum Relevance 
method (mRMR) and the permutation importance of random forests (RF-VI) performed 
best among all methods. These methods already performed well for nvar = 10, meaning 
that these methods can also be used to construct classifiers using few features and there 
is no need to consider larger numbers of features. For both classification methods, reli-
efF performed much worse for small nvar values. For RF, information gain (infor) also 
had a much weaker performance in this range of nvar values.

The genetic algorithm (GA) performed worst among the subset evaluation methods 
for both classification methods. The least absolute shrinkage and selection operator 
(Lasso) performed best for RF and comparable to recursive feature elimination (Rfe) for 
SVM. For RF, Lasso performed best among all methods, but the improvement in perfor-
mance over the other best-performing methods was not strong. Moreover, with an aver-
age of 190 selected features, Lasso required more features than mRMR and RF-VI. The 
wrapper methods Rfe and GA selected 4801 and 2755 features on average, respectively.

Including the clinical information did not improve the predictive performance. How-
ever, we did not prioritize the clinical information in the feature selection and in the 
classification, which likely explains this result. Previous work has demonstrated that 
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prioritizing the clinical information in the prediction can considerably improve the per-
formance [6, 16].

There were also no notable differences between results when performing the feature 
selection for all data types simultaneously or separately. There was one exception in the 
case of RF: Here, performing the selection separately for each data type delivered better 
prediction results in the case of GA.

The results of the Friedman test for performance differences between the methods 
were significant with the exception of the results for SVM in the case of the subset eval-
uation methods. Here, we saw significant differences only for separate selection when 
excluding the clinical variables. There were less significant results in the case of the other 

Fig. 1  Prediction performance using RF after feature selection. Panels a and b show the distributions of the 
mean cross-validated AUC values across the datasets for all rank and subset evaluation methods, respectively. 
The p-values  show the results of the Friedman tests



Page 5 of 18Li et al. BMC Bioinformatics          (2022) 23:412 	

two performance metrics (Additional file 1: Figures S1–S4). In the case of the accuracy, 
for RF, the results were all significant with the exception of the rank methods for the set-
tings with the largest nvar value 5000. However, for the SVM there were frequent non-
significant results; in the case of the rank methods, in particular for larger numbers of 
nvar.

The best performing methods per setting

In Table  1, for each setting, the feature selection strategies that performed best 
with respect to the AUC (averaged across all datasets) are displayed for the results 
obtained with RF. As seen in Table  1, mRMR performed best among the rank 

Fig. 2  Prediction performance using SVM after feature selection. Panels a and b show the distributions of the 
mean cross-validated AUC values across the datasets for all rank and subset evaluation methods, respectively. 
The p-values  show the results of the Friedman tests
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methods regardless of the setting, while Lasso outperformed the other two sub-
set evaluation methods for all settings; mRMR achieved its best AUC values for 
nvar = 100 and separate selection. Lasso also performed best with respect to the 
AUC for separate selection. In general, the results did not notably differ between 
excluding and including the clinical features for any of the settings. The correspond-
ing results for SVM are shown in Additional file  1: Table  S1. Here, while mRMR 
was still the best-performing method most frequently, there was a greater variety in 
the best-performing methods. For example, RF-VI performed best frequently as well 
and Rfe was the best method in two of the four settings for the subset evaluation 
methods.

The best performing methods and settings per dataset

For each dataset, the results obtained with RF for the best methods and settings 
according to the AUC are displayed in Table 2. For most datasets, the best perfor-
mance was achieved with the mRMR selector, while Lasso performed best second 
most often. For all datasets where the mRMR selector performed best, it used only a 
small subset of features (nvar = 10 or 100). For no dataset, the t-test or reliefF were 
able to achieve the best classification results. For SVM (Additional file 1: Table S2) 
t-test and RF-VI performed best most often, followed by mRMR and Lasso. Another 
difference to the results obtained with RF is that the best settings more often fea-
tured large nvar values.

Table 1  The best performing methods (according to the AUC) per setting

The values of the performance metrics were obtained by averaging over the cross-validation repetitions and datasets; ‘nvar’ 
denotes the number of selected features, ‘selsep’ whether the features were selected separately by data type, and ‘clivar’ 
whether clinical variables were included or not

nvar selsep clivar Selector AUC​ Brier accuracy

10 Yes Yes mRMR 0.8299 0.1347 0.8217

10 Yes No mRMR 0.8266 0.1357 0.8189

10 No Yes mRMR 0.8263 0.1323 0.8281

10 No No mRMR 0.8247 0.1331 0.8261

100 Yes Yes mRMR 0.8405 0.1287 0.8359

100 Yes No mRMR 0.8406 0.1286 0.8363

100 No Yes mRMR 0.8345 0.1307 0.8311

100 No No mRMR 0.8354 0.1307 0.8290

1000 Yes Yes mRMR 0.8374 0.1342 0.8196

1000 Yes No mRMR 0.8376 0.1339 0.8200

1000 no yes mRMR 0.8290 0.1364 0.8171

1000 No No mRMR 0.8274 0.1366 0.8172

5000 Yes Yes mRMR 0.8264 0.1383 0.8148

5000 Yes No mRMR 0.8260 0.1384 0.8128

5000 No Yes mRMR 0.8227 0.1401 0.8111

5000 No No mRMR 0.8215 0.1402 0.8107

- Yes Yes Lasso 0.8387 0.1335 0.8219

- Yes No Lasso 0.8413 0.1330 0.8219

- No Yes Lasso 0.8190 0.1374 0.8205

- No No Lasso 0.8185 0.1386 0.8213
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Computation time

The time it takes to run a method is an important factor that influences its applica-
bility. For this reason, we not only evaluated the performance of the feature selec-
tion methods with respect to the performance of the resulting prediction rules, but 
also in terms of computation time. The latter was measured as the time needed for 
one feature selection process to be completed on the training data. All values were 
obtained by averaging over the cross-validation repetitions and then averaging across 
the datasets.

Since the wrapper methods take considerably more time (Rfe: more than 1  days, 
GA: more than 2  days), Fig.  3 only shows the computation times of the filter and 
embedded methods. For the rank methods, we considered the feature selection 

Table 2  The best performing methods and settings (according to the AUC) per dataset

Here, ‘nvar’ denotes the number of selected features, ‘selsep’ whether the features were selected separately by data type, 
and ‘clivar’ whether clinical variables were included or not

Dat Selector nvar selsep clivar

BLCA mRMR 100 Yes Yes

BRCA​ Lasso – No Yes

COAD mRMR 10 No Yes

ESCA infor 1000 No No

HNSC mRMR 10 Yes Yes

LGG Lasso – No No

LIHC mRMR 100 Yes Yes

LUAD mRMR 100 No No

LUSC Rfe – No No

PAAD mRMR 10 Yes Yes

PRAD mRMR 100 yes Yes

SARC​ GA – Yes Yes

SKCM mRMR 100 No No

STAD RF-VI 100 Yes No

UCEC Lasso – Yes No

Fig. 3  Mean computation times of feature selection methods averaged across the different datasets. The 
red and the blue lines indicate the results obtained when selecting from all data types concurrently and 
separately, respectively
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times resulting when setting nvar = 5000. As seen in Fig.  3, with concurrent selec-
tion, mRMR and reliefF took the longest, but the computation times of mRMR were 
reduced for separate selection. Finally, t-test, RF-VI, and Lasso took about the same 
time regardless of whether the selection was performed separately from each data 
type or concurrently from all data types.

Of course, the computation times may also depend on the size of the dataset. Fig-
ure  4 shows the average computation times of one feature selection process for the 
different selectors and datasets. The datasets are ordered from smallest (ESCA) to 
largest (BRCA) with respect to the numbers of values in the datasets. Except for in 
the case of reliefF, the computation times increased only slightly for larger datasets.

Discussion
For the ranking methods infor and reliefF, the number of selected features strongly 
affected the predictive performance in our benchmark study. If the number of 
selected features was small, these methods performed considerably worse. However, 
the ranking methods mRMR and RF-VI were observed to be quite robust with respect 
to the nvar value, where the predictive performance was already strong for small 
nvar values. These methods can thus be used for selecting features for both predic-
tion rules based on few genes and prediction rules based on many genes. Using Lasso 

Fig. 4  Mean computation times of feature selection methods for the different datasets. Panel a shows the 
results obtained for separate selection and panel b, those obtained for concurrent selection from all data 
types
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for feature selection was also associated with strong predictive performance, but the 
number of selected features was quite large.

We did not observe notable differences in predictive performance when selecting 
the features concurrently from all data types or separately for each data type. How-
ever, from a theoretical point of view, we would assume that separate selection may 
degrade the performance for wrapper methods as this type of selection may lead to 
redundant feature subsets from different data types. We did, however, not observe a 
degraded performance when using separate selection for the wrapper methods.

In our study, including clinical variables did not improve the predictive perfor-
mance. However, it must be considered that the clinical variables are very small in 
number compared to the omics features. As noted above, we did not prioritize the 
clinical variables over the omics features. It can be highly beneficial to take the clini-
cal variables into account because they contain important predictive information, but 
they need to be prioritized over the omics variables to exploit this predictive informa-
tion [6, 16].

The choice for a method is not only influenced by its performance, but also by the 
computation time associated with it. Among the best-performing methods RF-VI 
and Lasso required reasonable computation times. However, mRMR took excessively 
long, in particular for concurrent selection. In general, Rfe and GA do not seem to be 
suitable for multi-omics data because the computation times associated with these 
methods were much too long for practical use in our benchmark study.

As seen in Figs. 1 and 2, there is strong variability of the results across different data-
sets. The superiority of one method over another is dependent on the dataset under 
consideration. This emphasizes the importance of large benchmark studies which use 
many datasets, like the one performed in this paper. The fact that we need many obser-
vations because of the high variability among them is well known to statisticians when 
performing sample size calculations, but is often ignored when designing benchmark 
experiments using real datasets [17]. Had we conducted the study with four, six, or eight 
datasets (as is common in the literature), we would have obtained different and more 
unstable results. The variability of results across datasets also illustrates that no method 
is preferable over all other methods for all datasets. With benchmark studies, we always 
only measure mean performances but the rankings of the performances of the methods 
vary across datasets. The fact that, in the case of the accuracy and the Brier score, we did 
not observe statistically significant differences between the methods for many of the set-
tings confirms the conclusion of Boulesteix et al. [17] that large numbers of datasets are 
required to obtain significant differences in benchmark studies.

In this paper, we compared various feature selection strategies with respect to their 
performance in selecting combinations of features that perform well in classification 
using multi-omics data. Feature selection is, however, only one step in the process 
of obtaining a strong prediction rule. The recently introduced tool BioDiscML [18] 
integrates feature selection and classifier selection for omics data in a fully-auto-
mated pipeline. More precisely, it combines different feature selection procedures and 
selects an optimal classifier out of a large pool of possible classifiers in an effort to 
maximize the predictive performance of the resulting biomarker signature. Continu-
ous outcomes are supported as well.
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Our study has some limitations. First, we considered only binary outcomes and it is 
not clear how transferable our results are to other types of outcomes, such as survival 
data. Second, we did not include methylation data due to their large size. However, 
methylation data can contain a great deal of predictive information.

Conclusions
Feature selection has been an active and productive research area in machine learning. 
Its importance is unquestionable, and it has proven to be effective in improving pre-
diction accuracy and reducing the complexity of machine learning models. Given the 
unique structure of multi-omics data, it is unclear how feature selection for these data 
should be performed. With the benchmark study presented in this paper, in which we 
compared eight common feature selection methods using 15 real cancer multi-omics 
datasets with binary outcomes, we have tried to close this gap.

Given the results of this benchmark study we recommend the embedded method 
RF-VI and the filter method mRMR for feature selection, where it is sufficient to use 
only small numbers of best features (e.g., 10). While mRMR seems to be associated 
with a slightly better predictive performance than RF-VI, but mRMR is computationally 
costly. Feature selection based on the Lasso delivers comparable or even better predic-
tive performance, but the selected models generally have many more features than those 
required when using RF-VI or mRMR. Lastly, it does not seem to be necessary to per-
form feature selection separately for each data type. Instead, it seems to be sufficient to 
select the features concurrently from all data types.

Methods
Datasets

Herrmann et al. [19] selected cancer datasets from the TCGA (http://​cance​rgeno​me.​nih.​
gov) with more than 100 samples and five different omics blocks (mRNA, miRNA, meth-
ylation, CNV, and mutation), resulting in 26 datasets, where each contained samples 
from a different cancer type. Their study, similarly to our own, did not include methyla-
tion data due to their large size which would have resulted in excessive download and 
computational times. Therefore, for each type of cancer, there were four molecular data 
types accompanied by clinical data, resulting in a total of five sets of variables.

In the present paper, 11 of the 26 available datasets originally considered by Herrmann 
et al. were excluded. Three datasets were excluded because they did not have observa-
tions for every data type. Two datasets that did not include the outcome variable, pres-
ence of the TP53 mutation, were also excluded. Finally, five datasets with TP53 mutation 
rates less than 0.1 and one dataset with a mutation rate greater than 0.9 were excluded. 
Table 3 provides an overview of the 15 included datasets. Note that while it is not mean-
ingful contextually to predict the presence of TP53 mutations, they have been found 
to be associated with poor clinical outcomes in cancer patients [20]. Against this back-
ground, we use TP53 as a surrogate for a phenotypic outcome.

A general overview of feature selection methods

Feature selection methods for classification can be classified in different ways. Accord-
ing to the relationship between feature selection and prediction, they can be classified 

http://cancergenome.nih.gov
http://cancergenome.nih.gov
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into filter, wrapper, embedded, and hybrid methods [21–29], which is the most common 
classification. According to the type of the output, feature selection methods can be clas-
sified into individual evaluation and subset evaluation methods. Individual evaluation, 
also known as feature ranking [30], evaluates individual features by assigning weights 
based on their degrees of relevance. In contrast, subset evaluation generates a subset of 
candidate features based on a certain search strategy.

Filter methods

Filter algorithms carry out the feature selection process as a pre-processing step inde-
pendent of the method used in the subsequent classification. They can be classified into 
univariate and multivariate methods. In the univariate approach, each feature is evalu-
ated independently according to specific criteria, thus ignoring feature dependencies. 
Examples of these methods include infor [31] and Correlation-based Feature Selection 
[32]. To overcome the problem of ignoring feature dependency, multivariate feature 
selection methods have been proposed, for example, the mRMR method [33] and ReliefF 
[34].

The advantages of filter-based methods are that they are easy to implement, are 
expected to be faster than other types of feature selection algorithms, and are independ-
ent of the classifier. Thus, feature selection needs to be performed only once, and then 
different classification algorithms can be evaluated. A disadvantage of filter methods is 
that they ignore the interaction with the choice of the classifier.

Wrapper methods

The wrapper approach uses a given classifier to evaluate feature subsets and thus the fea-
ture selection process is ‘wrapped’ around the classifier [30]. In other words, the wrapper 

Table 3  Summary of the datasets used for the benchmark experiment

C. indicates carcinoma, AC Adenocarcinoma, CC Cell carcinoma, M Melanoma, and EC Endometrial carcinoma.

The third to the seventh column show the numbers of features in the respective feature groups and the eighth column the 
total amount of features (f). The last three columns show the numbers of observations (n), the numbers of TP53 mutation 
cases (m), and the ratio between the numbers of mutation events and the numbers of observations (r_m), in that order

Dataset Cancer Clin cnv mirna mutation rna f n m r_m

BLCA Bladder urothelial 5 57,964 825 18,577 23,081 100,455 382 186 0.49

BRCA​ Breast invasive C 8 57,964 835 17,975 22,694 99,479 735 255 0.35

COAD Colon AC 7 57,964 802 18,538 22,210 99,524 191 106 0.55

ESCA Esophageal C 6 57,964 763 12,628 25,494 96,858 106 83 0.78

HNSC Head–neck squamous CC 11 57,964 793 17,248 21,520 97,539 443 307 0.69

LGG Low grade glioma 10 57,964 645 9235 22,297 90,154 419 195 0.47

LIHC Liver hepatocellular C 11 57,964 776 11,821 20,994 91,569 159 44 0.28

LUAD Lung AC 9 57,964 799 18,388 23,681 100,844 426 212 0.50

LUSC Lung squamous CC 9 57,964 895 18,500 23,524 100,895 418 346 0.83

PAAD Pancreatic AC 10 57,964 612 12,392 22,348 93,329 124 78 0.63

PRAD prostate AC 4 57,925 585 11,702 21,769 91,981 407 48 0.12

SARC​ Sarcoma 11 57,964 778 10,001 22,842 91,599 126 48 0.38

SKCM Skin cutaneous M 9 57,964 1002 18,593 22,248 99,819 249 39 0.16

STAD Stomach AC 7 57,964 787 18,581 26,027 103,369 295 139 0.47

UCEC Uterine corpus EC 11 57,447 866 21,053 23,978 103,358 405 144 0.36
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model is an iterative search process that uses the performance of the classifier at each 
iteration to guide the search process [35]. Wrapper methods can be classified into greedy 
and random search methods [14, 36]. A greedy algorithm is a simple, intuitive algorithm 
that makes locally optimal choices in the hope that this will lead to a globally optimal 
solution. It usually starts with an initial solution and updates this solution iteratively. In 
each iteration, some alternative solutions are generated and, based on the profitability of 
these solutions, the algorithm selects the best alternative solution to replace the current 
solution. The algorithm terminates as soon as a certain stopping criterion is fulfilled, 
for example, if no alternative solution would be better than the current solution or if a 
maximum number of iterations is reached [36, 37]. Sequential backward selection and 
sequential forward selection are two well-known greedy search methods [36]. The main 
drawback of the greedy algorithm is that large numbers of possible feature subsets must 
be evaluated. For high-dimensional data this number becomes too large to handle com-
putationally. As a solution, wrapper methods based on evolutionary algorithms can be 
applied. These methods search the solution space randomly. Five well-known stochastic 
search methods are the GA [22, 38], particle swarm optimization [39, 40], bacterial for-
aging optimization [41], simulated annealing [42, 43], and ant colony optimization [23, 
44, 45].

The main advantage of wrapper methods over filter methods is that they take the 
classifier into account in the feature selection. The feature subsets selected by wrapper 
algorithms tend to produce more accurate classifiers because the selected features are 
determined in such a way that they perform well when considered in combination. With 
filter methods we can select features that are influential, but they are less suitable for 
selecting combinations of features that perform well in classification. In general, "the m 
best features are not the best m features" [46]. A common drawback of wrapper tech-
niques is that they have a higher risk of overfitting than filter methods if the iterative 
process is not stopped early and that they tend to be computationally very intensive.

Embedded methods

Embedded methods are feature selection mechanisms that are integral to the training 
process of specific prediction methods [11]. These include regularization methods and 
various types of decision tree algorithms. Regularization or shrinkage methods are based 
on a regularized model of the objective function with feature weighting to minimize the 
estimated generalization error while forcing the feature coefficients to be small. Some of 
the methods of this kind, such as Lasso [47] and elastic net [48], shrink a proportion of 
the coefficients exactly to zero and thus perform feature selection implicitly. An example 
of a decision tree-based algorithm is the RF-VI [49]. This measure ranks the features 
according to their importance to prediction. This ranking can be used for feature selec-
tion by selecting the features with the largest variable importance score values.

Embedded methods have the same main advantage as wrapper methods. Compared 
to wrapper methods, embedded methods may be less computationally intensive and 
less prone to overfitting. However, embedded methods often use quite strict modeling 
assumptions. The classification performance of embedded methods can sometimes be 
worse compared to filter methods and wrapper methods [50]. We did, however, not 
observe this in our benchmark study (see Section “Discussion”).
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Hybrid methods

Hybrid techniques are often developed by combining two or more feature selection algo-
rithms of different types (filter, wrapper, and embedded). They attempt to combine the 
benefits of these various methods into a single approach for feature selection.

For example, when dealing with high-dimensional data, the computational efficiency 
of a filter method is often combined with the strong predictive performance of a wrap-
per or embedded method to form a hybrid approach. First, a filter method is used to 
reduce the size of the feature space; second, a wrapper or embedded method is used to 
find the optimal subset of features from the retained features. For example, Akadi et al. 
[51] combined the mRMR method and the genetic algorithm to form a filter-wrapper 
hybrid method.

Configurations of the feature selection methods compared in the benchmark study

To identify relevant feature selection methods we reviewed the overview of Momeni 
et al. [52], which investigated about 300 papers from Scopus in the field of feature selec-
tion and cancer classification published from 2009 to 2019, and Al-Tashi et al. [53], who 
surveyed multi-objective feature selection algorithms published from 2012 to 2019. We 
also surveyed gene selection methods used in papers on human cancer classification 
from PubMed published in the last 10  years. Finally, we determined the eight feature 
selection methods that were considered most often for cancer classification in the sur-
veyed papers. These eight popular methods included four filter methods, two wrapper 
methods, and two embedded methods. An overview of all methods considered in our 
benchmark study is displayed in Table 4. We used R version 4.1.2 [54] in all our analy-
ses. For all algorithms, the default parameter values in the respective R implementations 
were used if not indicated otherwise.

Filter methods

T-test based feature selection [55] is a popular univariate approach. The two-sample 
t-test is a statistical test used to assess whether the means of two classes are statistically 
different from each other. For each feature, a t-test is performed and then features are 
ranked according to the p-values  from these tests.

Infor [56] is an entropy-based feature evaluation method that provides an ordered 
ranking of the features. Entropy is a measure of the amount of information contained in 

Table 4  Summary of methods compared in the benchmark experiment

Method Selector R package::function

Filter t-test ::t.test

Information gain (infor) FSelector::information.gain

ReliefF FSelector::relief

The Minimum Redundancy Maximum Relevance (mRMR) mRMRe::mRMR.ensemble

Wrapper Recursive feature elimination (Rfe) Caret::rfeControl and rfe

Genetic algorithm (GA) Caret::gafsControl and gafs

Embedded The least absolute shrinkage and selection operator (Lasso) Glmnet::cv.glmnet

The permutation importance of random forests (RF-VI) Ranger:: ranger
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a feature. When used in feature selection the information gain is the difference between 
the entropy of the outcome feature measured unconditionally and conditionally on an 
input feature. The more important the input feature is, the smaller the entropy of the 
outcome feature conditional on the input feature, that is, the information in the outcome 
feature when controlling for the input feature. Therefore, the information gain will be 
larger for more important input features. To use the information gain for feature selec-
tion, the input features are ranked according to their associated infor values and the larg-
est valued features are then selected.

ReliefF [34] is a multivariate filter algorithm that is extended from the original Relief 
algorithm [57]. For each sample R in the dataset, the algorithm considers its k nearest 
neighbors from the same class as R and its k nearest neighbors from the other class. 
Subsequently, for each feature, the average distance of its value in R from the k nearest 
neighbors in the same class and the average from the k nearest neighbors in the other 
class are averaged. If the average distance from the opposite class is larger than that 
from the same class, this indicates that the feature could be useful for prediction and its 
weight is increased; otherwise, its weight is decreased. This is performed for all samples 
in the dataset and the features are ranked in descending order according to their weights.

The mRMR [33] method is a multivariate filter procedure that ranks features accord-
ing to their predictive information, while accounting for their mutual information. The 
goal of mRMR is to retain features that have the highest relevance for predicting the tar-
get class and are also minimally redundant among each other.

Wrapper methods

GAs [58] are among many optimization algorithms that are inspired by nature. A simple 
GA starts by initializing the so-called population and subsequently runs several itera-
tions. Each iteration consists of several steps, called GA operators: selection, crossover, 
and mutation. At the end of each iteration, a new generation is created as input for the 
next iteration. The algorithm terminates when it reaches a pre-specified number of itera-
tions or finds the optimal solution.

Rfe [59] is a well-known iterative feature selection algorithm that employs a backward 
elimination method. It performs feature selection by iteratively training a classifier pro-
vided with the current set of features and discarding the least important feature as indi-
cated by the performance of the classifier.

An important factor determining the performance of wrapper methods is when to 
stop the iterative process. If this process is not stopped prematurely, the resulting classi-
fier will eventually overfit the training data, which can lead to poor performance on new 
data. To avoid this kind of overfitting, we used fivefold cross-validation on each training 
data set for determining the optimal number of iterations in the GA and the optimal 
number of features to retain in Rfe.

Embedded‑based feature selector

Random forest is a tree-based ensemble method introduced by Breiman [49]. Random 
forest itself does not perform feature selection. RF-VI ranks the features with respect 
to their importance for prediction and this ranking is then used for feature selection by 
selecting the features with the largest variable importance scores.
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Lasso [47] is a very popular embedded feature selection method due to its simplicity 
and effectiveness. It fits a high-dimensional regression model with a linear predictor and 
applies L1-regularization to penalize large feature coefficient values. In the process of 
shrinking the coefficients, numerous coefficients are set to zero. The features with non-
zero coefficients are considered relevant.

Experimental settings

We varied five parameters in our analyses:

•	 Feature selection method: eight methods were compared, see Table 4; according to 
their relationship with the classification method: four filter methods, two wrapper 
methods, and two embedded methods; according to the type of the output: five rank 
methods and three subset evaluation methods.

•	 The number of selected features: for the rank methods, the number of selected fea-
tures (nvar) was set to 10, 100, 1000, and 5000. An alternative would have been to 
establish thresholds in the values of the feature importance scores. However, deter-
mining where to establish such thresholds is not an easy problem to solve. Moreover, 
the different numbers of selected features considered in our study correspond to dif-
ferent types of prediction rules. For example, the choice 10 corresponds to predic-
tion rules based on only a few markers, while the choice 5000 corresponds to high-
dimensional prediction rules that take large numbers of features into account. For 
the subset evaluation methods, the numbers of selected features were determined by 
the optimized feature subsets.

•	 Feature selection type: separate selection and selection from all blocks at the same 
time (non-separate selection). For separate selection, in the case of the rank meth-
ods, the numbers of selected features per data type were set proportional to the total 
of the numbers of features in all data types.

•	 Clinical variables: including versus excluding clinical data.
•	 Classification method: support vector machine, random forests.

For both considered classification methods, we considered all possible combinations 
of these parameter values, and there are 16 settings for the rank methods (4 × 2 × 2) and 
four settings for the subset evaluation methods (2 × 2).

In the cases of the wrapper methods and the embedded methods, the computation 
time becomes very large if the number of features is large, which is the case for multi-
omics data. Therefore, before applying these methods, we used t-test based filtering to 
select the top 10% of features to reduce the computational consumption.

The accuracy, the AUC, and the Brier were used to evaluate the predictive perfor-
mance. As an evaluation scheme, we used fivefold cross-validation repeated three times 
to measure the performance of each method on each dataset.

For each setting, we tested for differences between the dataset-specific performance 
measure values obtained with the different methods using the Friedman test. Applying 
the Holm-Bonferroni procedure [60], we adjusted the resulting p-values  for multiple 
testing, separately for the two considered classification methods and for rank methods 
and subset evaluation methods, respectively. Note that, while the performance measure 
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values obtained for the cross-validation iterations based on the same datasets are not 
independent, the mean performance measure values per dataset are independent of one 
another. Thus, the assumption of independence of the observations that is underlying 
the Friedman test is not violated.
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