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Abstract: Questions involving Bayesian Reasoning often arise in events of everyday life, such
as assessing the results of a breathalyser test or a medical diagnostic test. Bayesian Reasoning
is perceived to be difficult, but visualisations are known to support it. However, prior research
on visualisations for Bayesian Reasoning has only rarely addressed the issue on how to design
such visualisations in the most effective way according to research on multimedia learning. In
this article, we present a concise overview on subject-didactical considerations, together with the
most fundamental research of both Bayesian Reasoning and multimedia learning. Building on
these aspects, we provide a step-by-step development of the design of visualisations which support
Bayesian problems, particularly for so-called double-trees and unit squares.

Keywords: visualisation; double-tree; unit square; Bayesian Reasoning; multimedia learning

1. Introduction

Exercises in schoolbooks are often presented with a supporting visualisation, as in
Figure 1, where a task on Bayesian Reasoning is presented along with a probability tree
diagram as a structure of the Bayesian situation.

With digital tools such as e-books and animations being used more and more often,
opportunities arise to examine different realisations and designs of visualisations, such as
the tree diagram provided [1]. Thus, the question emerges of how these visualisations can
be designed in order to increase their suitability for the exercise at hand, e.g., by highlighting
specific attributes or adding sliders in order to make the visualisation dynamic. To design
such visualisations appropriately, multiple perspectives need to be combined. Firstly,
subject-didactical aspects should be recognised, e.g., for identifying the specific demands
and difficulties of the particular task, which should be supported by a visualisation from
a theoretical as well as empirical perspective [2,3]. Secondly, results from research on
multimedia learning can be applied, to clarify the (previously identified) specific demands
or overcome difficulties of the task [4].

In this paper, we focus on the design of visualisations for Bayesian Reasoning (as in
Figure 1). The task provided in Figure 1 is an example of a Bayesian Reasoning task, as a
hypothesis (e.g., being under the influence of alcohol, “A”) needs to be evaluated based
on an indicator for that hypothesis (e.g., positive test result in a breathalyser test, “+”;
cf. [5]). Bayesian Reasoning is unintuitive and causes many misunderstandings, especially
if presented without any additional support [6]. However, a beneficial strategy for Bayesian
Reasoning is to display the structure of the situation in a visualisation (for a short overview
on possible visualisations for Bayesian Reasoning, see Figure 2 below; for a comparison
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of these visualisations, see Sections 2.1 and 2.2) [7]. It has previously been shown that the
application of multimedia principles and design features of the visualisation affect the
performance of Bayesian Reasoning (see, e.g., [8–11]).

Figure 1. Exercise on Bayesian Reasoning with a probability tree as a supporting visualisation, in a
form typically found in schoolbooks.

Previous studies have already addressed isolated features of the visualisation. Addi-
tionally, studies have been carried out which focused on the effects of adjusting the text
of the Bayesian situation according to multimedia principles. For instance, Khan et al. [8]
applied the principles of multimedia instruction to text describing the Bayesian situation. They
thus demonstrated that adding features such as coherence, signalling, segmenting or spatial
contiguity (among others) to the textual description of the situation improves performance.
Furthermore, Clinton et al. [11] have empirically tested the effects of labelling and colour cod-
ing in an instructional setting for Bayesian problems with text and 2 × 2 tables, and showed
that labelling seems to be especially beneficial, whereas colour coding of text and tables did
not improve the learning outcome. Moreover, Binder et al. [9] have proposed arguments for
specific design decisions regarding visualisations in a Bayesian situation according to multime-
dia principles. However, when doing so, they focused on isolated design features, i.e., pruning
the tree diagrams to the most relevant aspects according to the redundancy principle or em-
phasising the relevant aspects using the highlighting principle [12]. Moreover, previous works
have implicitly used promising designs of visualisations for Bayesian Reasoning based on
multimedia principles, such as in Budgett and Pfannkuch [13] or in Martignon and Kunze [14]
or in Khan et al. [15]. In these specific contributions, the focus is on the use of the particular
(well-designed) visualisations, as opposed to explicitly spelling out how multimedia principles
have been applied to them. In this paper, we wish to add to these studies by systematising
such designs according to results from research on multimedia learning. Previously, also other
design elements (apart from aspects resulting from multimedia principles) have been studied
with regard to visualisations of Bayesian situations, e.g., how the combination of visualisations
with text affects performance (e.g., [16]), how the context-specific labelling in the visualisation
affects performance (e.g., [17]), how interactivity in the visualisation affects performance
(e.g., [18,19]), how personal-dependent variables (e.g., spatial ability, numeracy) affect the
performance with a specific design of the visualisation (e.g., [20–22]). However, in this paper
we intend to focus on the effect of combining multimedia principles with visualisations of
Bayesian situations.
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Figure 2. Different visualisations which have been studied regarding Bayesian Reasoning, without
specific design elements according to multimedia principles (rows 1–3) and with added specific
design elements for the double-tree and unit square (row 4).

The specifically new approach within this paper is designed, therefore, to provide
a systematic and concise overview on criteria from a multimedia perspective, which are
important from a theoretical point of view for the design of visualisations of Bayesian
situations, and to provide a step-by-step development on how to concretely apply these
criteria in designing the visualisations. We illustrate this application of multimedia prin-
ciples in two visualisations that have previously been identified as particularly helpful
for Bayesian Reasoning: the so-called double-tree, and the unit square (compare Figure 2
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and Section 2.2). Thus, we first consider empirical and theoretical aspects of Bayesian
Reasoning and multimedia instruction (Section 2) and then apply these to the creation of
double-trees and unit squares, respectively (Section 3). This results in a stepwise develop-
ment of the visualisations, with advantages and disadvantages discussed from a theoretical
point of view. We argue that this systematic and comprehensive approach improves the
design of static and dynamic visualisations, which prove particularly helpful for in-depth
understanding of a Bayesian situation and can easily be transferred to visualisations for
other contents (not only Bayesian Reasoning) as well.

2. Theoretical Background
2.1. Bayesian Reasoning

Bayesian Reasoning lies at the root of solving Bayesian problems in which a hypothesis
(e.g., whether a person is under the influence of alcohol, “A”) is evaluated based on an
indicator for the hypothesis (e.g., that this person has received a positive test result, “+”, in
a breathalyser test). We understand a Bayesian problem as a task whose solution can be
determined using Bayes’ formula: P(A|+) =

P(A)·P(+|A)

P(A)·P(+|A)+P(A)·P(+|A)
. Thus, the presence

of an indicator (positive test result) is used to make inferences on the risk of a hypothesis
(being under the influence of alcohol). In a Bayesian problem (as in the given example in
Figure 1) the following three parameters are usually provided [23]:

• The so-called base rate: the a priori probability that the hypothesis is true (prior to the
presence of an indicator). In the example above, this corresponds to the probability
of a person stopped by the police being under the influence of alcohol on a Saturday
night, P(A).

• The so-called true-positive rate: the probability that an indicator is present when the
hypothesis is true. In the example above, this corresponds to the probability that the
result of a person’s breathalyser test is positive, if that person is indeed under the
influence of alcohol, P(+|A) .

• The so-called false-positive rate: the probability that an indicator is present even though
the hypothesis is false. In the example above, this corresponds to the probability that
the result of a person’s breathalyser test is positive even if that person is not under the
influence of alcohol, P(+

∣∣A) .

Most often, Bayesian Reasoning is studied concerning the ability to calculate a condi-
tional probability with these given parameters. Usually, one of the following two probabili-
ties is to be determined in a Bayesian problem:

• The so-called positive predictive value (PPV): the probability that a hypothesis is actually
true, if an indicator is given. In the example above, this corresponds to the probability
that a person is actually under the influence of alcohol, if the breathalyser test is
positive, P(A|+) .

• The so-called negative predictive value (NPV): the probability that a hypothesis is actually
false, if no indicator is given or information is given which suggests that the hypothesis
is false. In the example above, this corresponds to the probability that a person is
actually not under the influence of alcohol, if the breathalyser test is negative, P(A

∣∣−) .

With the probabilities given in the exercise in Figure 1, the application of Bayes’ formula
results in P(A|+) = 0.1×0.9

0.1×0.9+0.9×0.5 ≈ 17% for the PPV and P
(

A
∣∣−) = 0.9×0.5

0.9×0.5+0.1×0.1 ≈ 98%
for the NPV.

A large variety of studies have contributed to the research on Bayesian Reasoning
by studying the influence of different variables on the ability to calculate the PPV or
NPV. However, calculating an outcome (e.g., in this case, the PPV) is only one facet
of operating with the formula. Another desired facet of operating with a formula is
described by Sokolowski [24]. He points out “it is believed that teaching students how
to perceive formulas as covariational entities based on the provided context is essential.
This skill can enable them to consider formulas as dynamic functions” [24] (p 184). Even
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though Sokolowski has emphasised the importance of “formulas as dynamic functions” for
understanding physics, we consider it to be of equal importance in the Bayes’ formula with
regard to understanding conditional probabilities. For example, Borovcnik [25] demands
that opportunities should be created to “investigate the influence of variations of input
parameters on the result“ (p. 21) in order to develop a conceptual understanding of
conditional probabilities. Adopting the perspective of Bayes’ formula as a function (of three
variables, which is rarely taken in empirical research) opens up the possibility of applying
insights from research about the understanding of functions to Bayesian Reasoning as well.
With Bayes’ formula at the root of Bayesian Reasoning, we propose to generalise the idea
of using Bayes’ formula as a “dynamic function” by relating the different aspects of the
concept of functional thinking to Bayesian Reasoning:

• Static aspect of Bayesian Reasoning: interpreting the formula’s structure in the sense
that the given parameters (e.g., base rate, true- and false-positive rate) directly corre-
spond to one result (e.g., PPV), which is calculated. This relates to the aspect of mapping
in the concept of functional thinking [26,27] or the action conception of a function [28],
because three given parameters, e.g., the base rate P(A), the true-positive rate P(+|A)
and the false-positive rate P(+

∣∣A) , interpreted as independent variables, are used to
calculate the requested dependent variable PPV P(A|+) . Thus, the solution P(A|+)
is a function value mapped to the three given variables P(A), P(+|A) , and P(+

∣∣A)
via the Bayes’ formula. In Bayesian Reasoning, we refer to the ability to map three
given parameters to the solution of Bayes’ formula as the aspect of performance (with
or without the explicit use of Bayes’ formula).

• Dynamic aspect of Bayesian Reasoning: interpreting the formula’s structure in the
sense that changes in the given parameters (e.g., base rate, true- or false-positive-rate)
influence the result (e.g., the PPV). This relates to the aspect of covariation of the
concept of functional thinking [26,27] or the process conception of a function [28]
because a variation in one (or more) of the parameters being interpreted as indepen-
dent variables (e.g., base rate P(A), true-positive rate P(+|A) or false-positive rate
P(+

∣∣A) ) alters the dependent variable (e.g., PPV P(A|+) ) when P(A|+) is under-
stood as a function value of the Bayes’ formula, which is seen as a three-dimensional
function with the given parameters (e.g., base rate, true- and false-positive rate) as
the independent variables. Consequently, we refer to the ability to evaluate the influ-
ence of changes to the given parameters on the result of Bayes’ formula as the aspect
of covariation.

Thus, the static and dynamic aspects (of Bayesian Reasoning and the concept of
functional thinking) describe different ways of thinking (about Bayesian situations and
functions) while performance and covariation relate to different abilities (in Bayesian
Reasoning and working with functions). To the best of our knowledge, Bayesian Reasoning
has (so far) been studied almost exclusively with regard to the static aspect by measuring
performance. It has been shown that without any supportive strategies, performance in
Bayesian Reasoning is generally very poor [6]. However, successful strategies have been
identified to support performance in Bayesian Reasoning: The first one is the use of so-called
natural frequencies, as the format of the given statistical information (see, e.g., [5,6,29–33])
improves the performance of Bayesian Reasoning. In this strategy, a pair of natural numbers
is used to describe the probabilistic information and can represent an expected frequency in
a fictitious sample [33]. The concept of natural frequencies was introduced by Gigerenzer
and Hoffrage [33] and a comparison of the given information in form of probabilities and
natural frequencies is given in Table 1. The second successful strategy is to use adequate
visualisations as a representation of the Bayesian situation (see, for example, [7,15,34–37]).
This strategy is explained in more detail in Section 2.2.
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Table 1. Information provided in a Bayesian situation in form of probabilities and natural frequencies.

Probabilities Natural Frequencies

base rate

The probability is 10% that a
person stopped by the police
is under the influence of
alcohol on a Saturday night.

10 out of 100 people are under
the influence of alcohol when
stopped by the police on a
Saturday night.

true-positive rate

If a person who is under the
influence of alcohol is tested,
the probability is 90% that the
breathalyser test is actually
positive.

In 9 out of 10 people who are
under the influence of alcohol,
the breathalyser test is
actually positive.

false-positive rate

If a person who is not under
the influence of alcohol is
tested, the probability is 50%
that the breathalyser test is
positive nevertheless.

In 45 out of 90 people who are
not under the influence of
alcohol, the breathalyser test
is nevertheless positive.

The dynamic aspect of Bayesian Reasoning, e.g., by measuring covariation, has only
rarely been studied. Yet, Böcherer-Linder et al. [38] showed that the visualisation also
affects covariation in Bayesian problems. Hence, (adequate) visualisations are a supportive
tool for the static, as well as dynamic, aspect of Bayesian Reasoning. We propose that
dynamic visualisations can be particularly supportive for tasks which address the dynamic
aspect (dynamic tasks) while static visualisations are preferable for tasks which address the
static aspect (static tasks) in Bayesian problems, in order to closely tie the specific demands
of the task to its supportive strategy.

With this introduction on Bayesian Reasoning, we aim to highlight that specific
Bayesian problems can differ with regard to the aspect of Bayesian Reasoning (static
or dynamic) which is addressed by a specific task. Additionally, the support that is pro-
vided in the problem can be varied by using different strategies (i.e., natural frequencies
and visualisations).

2.2. Visualisations and Bayesian Reasoning

An overview of typical visualisations for Bayesian situations can be found in Spiegel-
halter et al. [7] or Binder et al. [29]. Furthermore, Khan et al. [15] have categorised these
visualisations into three groups: (1) nested-style, (2) frequency-style, (3) branch-style. In
Figure 2 (compare Section 1), an overview of some of the visualisations discussed here
is given. They are presented without particularly supportive design-elements from a
multimedia point of view (upper three rows). However, they already provide an idea
of what visualisations may look like when designed according to multimedia principles
(lowest row). Empirical studies have investigated a wide variety of visualisations that have
been proven to support Bayesian Reasoning: tree diagrams (e.g., [13,29,39,40]), double-
trees (e.g., [15,34,41]), unit squares (e.g., [42–44]); 2 × 2 tables (e.g., [35,45]), icon arrays
(e.g., [36,46,47]), frequency nets [34,48] and others were all found to increase performance in
Bayesian Reasoning. However, there are also visualisations that provide little or no support
(e.g., Euler diagrams as in [49]). Moreover, comparisons between the helpful visualisations
showed that some of these are more helpful than others. For example, tree diagrams help
only when absolute frequencies are displayed within the diagram, rather than probabilities
as in Figure 1 [29]. The double-tree and unit square are significantly more helpful than
the common tree diagram (even if absolute frequencies are used in the tree diagram) [50].
Both the aforesaid visualisations (double-tree and unit square) are comparably helpful,
with around 60% of participants revealed as able to solve a Bayesian problem when it is
displayed in a double-tree or unit square with frequencies. Empirical results suggest that
other visualisations such as a frequency 2 × 2 table and icon arrays may even outperform
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the double-tree and unit square regarding performance [34,50], yet we consider them less
supportive for covariation (see below).

We wish to point out that, in this and the following analyses, we regard visualisations
as a support for Bayesian problems in which the base rate, true- and false-positive rates in
form of probabilities represent the given information, as this is the most common case in
authentic situations. Moreover, we only refer to the statistical information given directly
within the visualisations. In concrete tasks, there may be further information in the text
surrounding the visualisation. However, we focus on the design of the visualisations here
(for designing textual information according to multimedia principles, also see [8]).

As well as taking into account empirical results, subject-didactical and educational
perspectives also need to be considered when selecting a particular visualisation as a
supportive strategy in a Bayesian problem. For instance, some visualisations require time-
consuming drawing and are therefore not very suitable in a context where the subsets
change or the visualisation needs to be self-drawn, at least when large sample sizes are
given (e.g., icon arrays). Therefore, we do not focus on icon arrays in this paper as a
supporting visualisation. Additionally, an analysis of the demands of the Bayesian problem
can help to identify characteristics of the visualisation that are necessary to solve the
problem. Consequently, we will now evaluate (from a theoretical point of view): which
relationships does a visualisation ideally display for (1) supporting the static aspect of
Bayesian Reasoning (in static tasks), and (2) supporting the dynamic aspect of Bayesian
Reasoning (in dynamic tasks)?

• Static tasks: Static tasks address the static aspect of Bayesian Reasoning. Therefore, in
static tasks, the three given parameters are used to calculate the PPV (for example with
Bayes’ formula). Bayes’ formula for two dichotomous events can be simplified to two
conceptually simpler ratios: P(A|+) =

P(A)·P(+|A)

P(A)·P(+|A)+P(A)·P(+|A)
= P(A∩+)

P(A∩+)+P(A∩+)
=

P(A∩+)
P(+)

.
Both transformations have a simpler structure than the original Bayes’ formula. As a
consequence, we argue that a visualisation that represents the equivalence of these
algebraic transformations can more easily lead to simpler (and correct) calculation of
the result (even if the formula is not explicitly used in the teaching process). In order to
do so, two equivalences should be observable in the visualisation: first, the equivalence
of the product of the simple and conditional probability to the joint probability (first
equal sign), and second, the equivalence of the sum of the two intersects (the true-
and false-positives) to their shared superset (all positives; second equal sign). Conse-
quently, in order to be supportive for static tasks, we argue (from a subject-didactical
perspective) that it is important that the visualisation (in addition to the three pieces
of information given in the task itself) shows these two intersections (or associated
joint probabilities), and also makes it transparent that they both belong to the same
superset. In doing so, the solution to static tasks of Bayesian Reasoning should become
easier from a theoretical point of view.

• Dynamic tasks: Dynamic tasks address the dynamic aspect of Bayesian Reasoning.
The question here is how modifications in the given parameters affect the result (PPV,
NPV). Therefore, from a subject-didactical perspective, we regard it as important that
the three pieces of information, which are given in the task itself, can be represented at
all, and that the structure of the visualisation can visually represent how a change in
these parameters affects the result (or the relevant intersections/joint probabilities).

The aspects relevant to static and dynamic tasks are implemented differently in the
various visualisations (Table 2).



Educ. Sci. 2022, 12, 739 8 of 29

Table 2. Different realisations of the aspects relevant for static and dynamic tasks in simple tree
diagrams, double-trees, 2 × 2 tables and unit squares.

Tree Diagram Double-Tree 2 × 2 Table Unit Square

Static tasks

Given probabilities Represented on the
branches

Represented on the
branches

Not directly represented Represented as the ratio
of the division of the
sides

Representation of the
two relevant
intersections (joint
probabilities)

Joint probabilities can
stand at the end of one
path (probability tree)
or intersections as
frequencies in the
nodes at the end of one
path (frequency tree)

Intersections given in
in the nodes of the
middle level as
frequencies

Intersections given in the
inner fields as
frequencies (2 × 2 table
with frequencies) or joint
probabilities given as
probabilities (2 × 2 table
with probabilities)

Intersections given as
frequencies inside the
inner areas and as the size
of the inner areas

Belonging of the
intersection (joint
probability) to the
superset

Expressed through the
connection of the
intersection to the
superset by a branch;
only given for one
superset (node above
the intersection)

Expressed through the
connection of the
intersection to the
superset by a branch;
given for both supersets
(node above and below
intersections)

Expressed through the
adjoining positions of the
inner fields: next to each
other (as a row) or
underneath each other
(as a column)

Expressed through the
adjoining positions of the
areas (as in the 2× 2 table)

Dynamic tasks

Dependence of the
intersection (joint
probability) on the
given information

Connectedness of the
nodes with the
branches reveals the
influence of the
parameters on the
associated absolute
frequencies

Connectedness of the
nodes with the
branches reveals the
influence of the
parameters on the
associated absolute
frequencies

Cannot be visualised, as
given probabilities are
not directly represented

Size of the inner areas
(i.e., intersections)
depends on its length
and width, which
correspond to the ratios
of the divisions on the
sides (i.e., the given
probabilities)

In Table 2 we provide two pairs of related visualisations, which differ regarding
their support for the static and dynamic aspects: the double-tree is a progression of the
simple tree diagram and the unit square can be seen as a 2 × 2 table with additional
geometric features of area-proportionality [51] (please also see Figure 2 for an overview
of the relevant visualisations). All four visualisations can represent the two relevant
intersections. Additionally, the pairs of visualisations share certain characteristics. Both
types of tree-diagrams (simple tree diagrams and double-trees) express membership of
the superset through a connection by a branch. In contrast, in the unit square and the
2 × 2 table, belonging to the superset is expressed through the adjoining positions of
the inner fields. Apart from that, both the unit square and double-tree represent aspects
that cannot be represented in their related visualisation: The double-tree can represent
membership of both supersets (which is not possible in the simple tree diagram) and the
area-proportionality of the unit squares can represent given (conditional) probabilities
and also their influence on the intersections (which is not possible in the 2 × 2 table).
Thus, regarding the theoretical analysis of requirements of a visualisation for a Bayesian
problem from a subject-didactical point of view, the nature of 2× 2 tables seems problematic
for dynamic tasks especially, since the true- and false-positive rates (typically given in a
Bayesian problem) cannot be visualised directly. Hence, even though empirical results have
shown that 2× 2 tables are a supportive visualisation for static tasks of Bayesian Reasoning,
we argue against them for dynamic tasks especially. However, two visualisations that have
been identified as supportive for static tasks from an empirical perspective also stand out
for their favourable characteristics in theoretical analysis: the double-tree and unit square.
They both represent the relevant subsets, which are necessary for static tasks of Bayesian
Reasoning, and also display the dependence of the intersections or joint probabilities on the
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given parameters. Therefore, they are (unlike the other visualisations discussed) suitable
for Bayesian Reasoning from both empirical and theoretical perspectives. Therefore, in the
following sections of this paper, we focus on describing how to design these two options.

2.3. Aspects of Multimedia Learning

Working with multiple representations (such as the textual description of a Bayesian
problem together with a visualisation of the Bayesian situation) can serve different functions.
Ainsworth [52] distinguishes three essential functions. Firstly, multiple representations
can complement each other (complementary function). Secondly, the multiple linkage of
representations is also suitable for explaining a little-known, or completely unknown, rep-
resentation with a more accessible representation (constraining function). Finally, multiple
representations can support the construction of deeper understanding (constructing function)
by revealing underlying structures of a content concept through their different forms of
presentation and the way they are linked. These functions are not mutually exclusive, but
one set of representations can fulfil multiple functions [53]. All in all, multiple representa-
tions can support the process of extraction and transferral that takes place when learners
recognise that a concept represented in a certain way can also be represented in another
way, and learn how to do so on their own. Arguments for this beneficial effect of using
multiple representations can be found in theories of multimedia learning.

2.3.1. Processing Multimedia Material

According to Schnotz [54] (p. 72), the term ‘multimedia’ at the level of presentation
format refers to “the use of different forms of representation such as text and pictures”.
Text can be in printed or spoken format and the pictures include static pictures (photos,
figures, diagrams, . . . ) and/or dynamic pictures (videos, animations). Therefore, solving a
Bayesian problem with the help of a visualisation implies the use of multimedia.

Two theories of multimedia learning are at the forefront of research: Mayer’s [55]
Cognitive Theory of Multimedia Learning (CTML), and the Integrated Model of Text and
Picture Comprehension (ITPC) of Schnotz [54]. Both of these theories propose arguments
as to why using multimedia fosters learning, a consequence which is also known as the
multimedia-effect (a “benchmark finding” according to Schweppe et al. [56] (p. 24)) and
which may occur when solving a Bayesian problem, for example.

According to Mayer’s [55] CTML, working memory has two channels in which exter-
nally represented information can be processed via mental representations: one channel for
(printed or spoken) verbal information and one for non-verbal information. The capacity
of these channels is limited but their independence from each other means that they are
not competing to achieve greater capacity [55]. Separate mental representations of two
channels are integrated into a coherent mental model when appropriate prior knowledge is
retrieved from long-term memory. If, for example, a non-verbal graphical representation of
given textual representation is generated, this means that two, instead of one, channels are
involved. As cognitive capacity is limited, using both channels means that more working
memory resources are available and can be used to, e.g., deepen understanding.

By problematising the assumption of parallel text and image processing of Mayer’s
CTML [55] within a theoretical point of view the ITPC model of Schnotz [54] points out
the fundamental assumption that texts and images are based on different sign systems and
therefore follow different principles of representation. However, from a practical point of
view, the ITPC model [54] is consistent with the CTML regarding its outcomes for designing
multimedia-based learning environments.

This means that, according to CTML as well as ITPC, it can be theoretically reasoned
that the use of double-trees or unit squares (which complement the text of a Bayesian
problem) results in more available and sophisticated mental models compared with use
of the text of the Bayesian situation alone. However, it is important to recognise that
combinations of representations, such as the description and depiction of a Bayesian
situation, are not helpful per se, but processing multiple external representations (MERs)
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can evoke translation processes between single representations which may be difficult
and cognitively demanding. Thus, such translation processes should be carefully planned,
designed and implemented in the learning setting, i.e., the Bayesian problem.

2.3.2. Cognitive Load

One theoretical reference theory for planning and designing learning scenarios, (par-
ticularly regarding cognitive demand), by using MERs is Sweller’s Cognitive Load theory
(CLT; [57]). This theory integrates knowledge about limited working memory capacity
with design principles for instructions, to reduce unnecessary cognitive load in order to
enhance learning. It is often used in combination with Mayer’s [55] CTML. According to
CLT, the cognitive load imposed on working memory originates from three categories of
cognitive load [57]: intrinsic cognitive load (ICL), extraneous cognitive load (ECL) and
germane cognitive load (GCL). The ICL of a subject matter derives from its complexity
and the learner’s prior knowledge. The ECL refers to the cognitive load of aspects that are
irrelevant to learning. This depends in particular on how the external representation of
learning materials is designed. GCL refers to the cognitive load relevant to learning; in
this approach, it is a desirable type of load. However, according to latest research, GCL is
no longer assumed to contribute to the total cognitive load by assuming that GCL “has a
redistributive function from extraneous to intrinsic aspects of the task rather than imposing
a load in its own right” [58] (p. 264).

For our purposes, this means that: if either ICL and/or ECL in the Bayesian situation is
high, working memory can become overloaded and inhibit successful learning [59]. Unlike
ICL, which is inherent to the Bayesian problem itself, ECL can be reduced by changing the
design of instructions [58]. Thus, the cognitive processing of any surface features (such as
the visualisation which depicts the Bayesian situation) that are non-essential to the content
can be reduced.

2.3.3. Design Principles

There are several design principles and guidelines for the design of educational
material which different researchers derive from theories of multimedia learning (e.g.,
CTML) on the one hand and from CLT on the other hand with the goal of supporting
multimedia learning and reducing ECL.

In this paper, we do not report all the principles of multimedia learning and design
guidelines to optimise cognitive load (for an overview see [55,60]), but we refer to those
features which are of special interest from a theoretical viewpoint regarding the design of
visualisations, such as the unit square and double-tree used in Bayesian problem situations.

Split-attention: When learners are required to split their attention between at least two
sources of information (e.g., text and diagram), one is speaking of a split-attention effect [61].
Split-attention can be caused by either spatial or temporal separation and increases ECL,
which might inhibit learning (e.g., [62]). Research results suggest that a split-attention
design has negative consequences and should be replaced by an integrated-format design,
where relevant data are presented close to each other [63]. This could be an additional
argument (alongside the empirical and theoretical reasonings from Section 2.2) against tree
diagrams, as the two intersecting paths that belong together are not close to each other and
therefore hard to recognise as belonging together, since the observer’s attention is split.
Thus, in Section 3, we present design realisations of the double-tree and unit square, where
the relevant information is not, or as little as possible, spatially separated.

Redundance: The redundancy effect (similar to Mayer’s redundancy principle [12])
suggests that learning is hindered when learners are presented with the same information
in two or more forms, and/or with additional information that is not relevant for solving
the task [64]. Processing redundant information takes up working memory capacity that
could be put to better use. Research shows that eliminating redundant information from
tasks results in enhanced learning (e.g., [65]). Consequently, we pay attention to designing
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the visualisations in Section 3 in such a way that each information is presented in one
form only.

Coherence: Similarly to the redundancy principle, the coherence principle states that
people learn better when extraneous material is excluded rather than included [12]. This
means that words, audio and graphics that do not support instructional goals should
be removed since they cause irrelevant cognitive load as learners’ working memory is
overloaded with distracting details that do not contribute to the learning goals. The aim
is to support coherence formation [66] between different multiple representations, since
knowledge acquisition requires creating referential connections between corresponding
representational elements in different formats. The coherence principle may be particularly
important for learners with low working-memory capacity or low domain knowledge [67].
Therefore, in the realisations of the double-tree and unit square in Section 3, we specifically
emphasise aspects of the visualisations concerning design features which support the goal
of the learning scenario (e.g., the identification of the relevant subsets for calculating the
PPV) but are mindful not to insert additional design features for irrelevant aspects of the
Bayesian problem.

Signalling: According to van Gog [68], the signalling principle refers to the finding
that people learn better with multimedia when supported by attention-guiding cues to the
relevant elements of the learning material (e.g., via highlighting). Research reports on three
different kinds of cues: picture-based cues (e.g., [69,70]), text-based cues (e.g., [71,72]) and
cueing of corresponding elements in written text and pictures (e.g., [73,74]). Throughout
research on signalling, colour coding is important because it is a frequently used element
in all three different kinds of cueing mentioned previously. Although there were mixed
findings regarding significance and effect sizes in studies of different kinds of cueing, it can
generally be stated that most studies reveal cueing to have a positive effect on cognitive
load and learning outcomes (cf. [68]). As a result, we use the signalling principle as a means
to design the double-tree and unit square in Section 3 by highlighting particularly relevant
elements of the visualisation for solving Bayesian problems.

Summing up Section 2, it becomes apparent that Bayesian Reasoning, where the Bayesian
situation is characterised by text as well as visualisations, refers immediately to learning
with multimedia material including symbolic representations (e.g., Bayes formula and its
verbalisation) as well as different graphical representations, i.e., visualisations such as double-
trees and unit squares on which we focus because they appear to be particularly advantageous.

3. Designing the Double-Tree and Unit Square

In this section we outline how we have integrated the above-mentioned implications
from research on multimedia learning into digital realisations of the double-tree and unit
square, which are used to support work on Bayesian problems. Thereby, we differentiate
between static and dynamic realisations.

3.1. Static Visualisations

Static visualisations are used for Bayesian problems in which the static aspect of
Bayesian Reasoning is addressed. There are many authentic scenarios in which the static as-
pect of Bayesian Reasoning is necessary, e.g., in the scenario when the police first stop a mo-
torist. Unfortunately, probabilistic information (such as the characteristics of a breathalyser
test or other diagnostic instruments) in the “real world” is most often given in probabilities
and not in the more easily comprehensible frequencies. Thus, we adapt the visualisations
so that both formats of statistical information are presented. According to Ainsworth [52],
this could be regarded as the complementary function of visualisations. Therefore, the
given probabilities (base-rate, true- and false-positive rate) as well as the complementary
information in frequencies are displayed in the visualisation (Figure 3).
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Figure 3. Double-tree (left) and unit square (right) with frequencies and probabilities given in the
Bayesian situation.

A Bayesian situation is usually characterised by two attributes (e.g., 1. intoxication
of the person, 2. result in the breathalyser test) with two outcomes each (e.g., 1a. under
the influence of alcohol, 1b. not under the influence of alcohol, 2a. positive test result, 2b.
negative test result). Their combination results in four subsets (e.g., i. under the influence
of alcohol and positive test result, ii. under the influence of alcohol and negative test result,
etc.). These subsets are visualised in the double-tree as the four nodes in the middle level,
and in the unit square as the four inner areas. Their relations to each other are expressed
by the connectedness to different supersets, via the branches in the double-tree, and by
being nested into to geometrically different superordinate structures (e.g., different rows
and columns) in the unit square.

Generally, there are various ways to illustrate this 2-attributes × 2-outcomes structure
in a multimedia context. In designing the double-tree and the unit square, we focused on
the use of colours in the visualisations to highlight this structure by using different colours,
different methods of colouring (colouring the surface vs. the border of a node, using
different transparencies of the same colour, etc.) and different styles of the borders (colours
or dashed vs. solid lines). In the following sections, the resulting different multimedia
realisations are presented and directly evaluated with the principles of multimedia learning
outlined above.

3.1.1. Static Double-Trees

The double-tree represents a node-branch structure that can be seen as an extension
of the simple tree diagram. A major advantage of node-branch structures is that there is a
fixed place for the frequencies (in the nodes) and a fixed place for the probabilities (on the
branches). Through this structure, the helpful strategy of frequencies can be used to better
understand the probabilities. In the double-tree (unlike the simple tree diagram), there are
also nodes for the outcomes of the second attribute (e.g., positive vs. negative result in the
breathalyser test) see Figure 2.

First, we considered whether the labelling in the double-tree should take place inside
or outside of a node (see Figure 4).

Due to the split-attention principle, it makes sense from a multimedia point of view to
position the text, i.e., the label, inside the representative node (double-tree on the right-hand
side in Figure 4). Thus, the respective node is better linked with the label (i.e., the respective
outcomes). Since the space in the node is limited, abbreviations must be used in some cases.
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Figure 4. Double-tree with labelling outside the nodes, (not selected, on (left)) or inside the nodes,
(selected, on (right)).

One difficulty of the double-tree is that two branches cross each other in the lower half.
Thus, the number of individuals with positive tests is not composed by the frequencies
directly above the node “positive breathalyser”. Consequently, in a second step, we set out
to counteract the difficulty of crossing branches in the lower half by using different methods
of highlighting according to the signalling principle (e.g., colouring the nodes). There are
several different possibilities for highlighting, including the use of different colouring in
the nodes or colouring the borders of the nodes. In addition, it would be conceivable to
vary the type of lines linking the nodes.

Figure 5 shows two double-trees in which only colouring of the nodes according to
the highlighting principle is used to clarify their belonging to different supersets.

Figure 5. Double-trees with each outcome of an attribute in a different colour; (left,right) tree show
two different variants of displaying two colours in each node of the middle row (neither one selected).

In both cases, one colour is used for each outcome of an attribute. In this colouring
method, however, the use of four different colours means that it is not possible to recognise
which two outcomes belong to the same attribute. Thus, neither signalling method in
Figure 5 is ideally suited for labelling the two attributes with two outcomes each. This
disadvantage can be eliminated by working with one basic colour for each attribute and
marking the outcomes of one attribute by a lighter or darker colouring (Figure 6, left).
However, in those double-trees with two colours in one node (Figure 6, left; Figure 5), the
impression could be conveyed that the number of people is always distributed in the same
proportion. For example: half of the individuals under the influence of alcohol produce a
positive breathalyser test and the other half of individuals under the influence of alcohol
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produce a negative breathalyser test. This impression is created by the equal proportions of
the coloured areas in the middle level. Since the proportions of colourings of the inner nodes
(50:50) do not correspond to the proportions of individuals with the respective outcomes of
the attributes (as is the case with the unit square), this could represent a cognitive hurdle,
which is why this signalling method would not appear to be optimal. Additionally, the
redundancy principle suggests that this colouring method is not supportive, because two
forms (two colours plus split area) are used to represent the intersections and therefore
may elicit wrong interpretations. Thus, this form of misleading representation (a split area)
is unnecessary and should be avoided. To avoid such misinterpretation, another method
besides colouring only the inner part of the nodes must be used for highlighting, such as
colouring the borders of the nodes (compare Figure 6, right).

Figure 6. Double-tree with one basic colour for each attribute and coding the outcomes based on the
transparency of the colours, (not selected, on (left)) and double-tree with colouring of the borders for
one attribute and colouring of the inner part of the nodes for the other attribute, (selected, on (right)).

The two different colouring methods (colouring the borders of the nodes vs. colouring
the inner part of the nodes) highlight the two attributes differently. In the selected realisation
(Figure 6, right) the result of the breathalyser test (positive vs. negative) is marked by the
colouring of the inner part of a node, while the intoxication of a person (alcohol vs. no
alcohol) is highlighted by colouring the border of a node. Reverse colouring methods would
also be possible, i.e., a person’s intoxication is illustrated by colouring the inside of the node
and the result of the breathalyser test is illustrated by colouring the border of the node.
However, we chose the first option (Figure 6, right) because the upper part of the double-
tree is analogous to the simple tree diagram and thus does not need to be emphasised
to any particular degree. Furthermore, studies have shown that the crossed branches in
the lower half make it difficult to correctly assign probabilities to the branches [34]. Thus,
by colouring the inner parts of the nodes in the lower half of the double-tree it should
be clear which two nodes belong to the node “positive breathalyser result” (or “negative
breathalyser result”).

Furthermore, variations of the line types (rather than colouring of the border of the
nodes) would have been conceivable. However, we decided against this highlighting
method as it could cause confusion with regard to the lines from the branches. Presumably,
one would then need several different types of lines to be able to differentiate clearly and
this would unnecessarily increase the cognitive load.

3.1.2. Static Unit Squares

The unit square is related to the 2 × 2 table, as the same additional structure of the
rows and columns is inherent in the unit square. An advantage of the unit square is that
this structure is geometrically expressed by the area-representation. Thus, the areas of
neighbouring inner fields always add up to the value of one row or column. The columns
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are just as easy to identify in the unit square as in the well-known 2 × 2 table. However, the
rows are harder to recognise in the unit square since the horizontal division is usually (in
the case of the two attributes not being stochastically independent) not on the same level
for the neighbouring areas which add up to the value of one row. Consequently, there is no
single division line which separates the upper from the lower row. In research on Bayesian
Reasoning with unit squares, identifying the row has also been empirically identified as a
difficulty of unit squares [35]. Therefore, we have used different design methods, which
are specifically used to overcome this difficulty.

First, we altered the position of the labels in the unit square in order to more clearly
illustrate the “rows” in the unit square. Thus, we aligned the labels on the left- and right-
hand side of the unit square so that they are both on the same level as their counterparts
and not displaced to a mid-height position adjacent to the area to which they correspond
(compare Figure 7).

Figure 7. Unit squares with labelling of the rows either in the mid-height position adjacent to the
area to which they correspond, not selected (left) or on the same level for both labels of one row,
selected (right).

The split-attention principle suggests that recognition of the row should be easier in
the second version of the unit square, as the left and right labels are now at the same height
and therefore easier to identify as belonging to the same row.

Another way to highlight the rows in the unit square is to colour the areas of one row
in the same colour and thereby make use of the highlighting principle. Two examples with
different colours are displayed in Figure 8.

After colouring the rows it makes sense (a) to colour the labelling of the corresponding
row (on the left- and right hand side) in the same colour as the areas which belong to this
row (Figure 8) and (b) to use colours which are also clearly visible (such as green and blue,
cf. [75]). Consequently, the colouring system with green and blue seems more appropriate.

The colouring method used so far only highlights the belonging of the inner area to the
row. Thus, it neglects any membership of the inner area to the column. While the intention
was to focus on the relation of the inner areas to the row, it might nevertheless be beneficial
to use unobtrusive methods for signalling belonging to the column, in order to make the
structure clearer.

In the first realisation (Figure 9, left), a line style was used in order to differentiate
between the left and right columns. In the second realisation (Figure 9, right), the colour
shade was varied to differentiate between the left and right columns. Both methods are less
noticeable than the colouring of the areas itself (used to express their belonging to the row).
As such, they correspond to the redundancy principle, since information which is already
easy to identify (belonging to the column) is not reinforced in a second ostentatious way.
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Figure 8. Unit squares with rows coloured yellow and blue, (not selected, on (left)) or green and blue,
(selected, on (right)).

Figure 9. Unit squares with unobtrusive methods of signalling belonging of an area to the column:
line style (not selected, on (left)) vs. transparency of the colours (selected, on (right)).

Finally, the frequencies in the unit square are so far only given for the intersections,
not for the supersets. Even though the supersets are geometrically represented in the unit
square (as the sum of both inner areas, which belong to the superset), it might be beneficial
to also explicitly add this relation by adding the sums of the rows and columns (compare
Section 2.2). However, according to the split-attention principle, it is important to also add
the numbers in the vicinity of what they represent. We have considered two different ways
of doing so (compare Figure 10).

While in the left realisation, the frequency is closer to the label of the attribute (the text),
in the right realisation the frequency is closer to the geometrical feature of that attribute (the
row or column). Depending on the context in which the visualisation is used, either one of
these realisations can be more useful. In accordance with the split-attention principle, we
propose focusing on the second realisation, if the geometrical aspects of the unit square
are necessary or highlighted. Additionally, the left realisation seems unfavourable, as two
numbers (frequencies and percentages) are right on top of each other. Furthermore, as
the added frequencies represent sums (of the inner areas), the positioning in the right
realisation is more natural in so far as sums usually appear in the lowest line (e.g., of
addition by hand), or on the right-hand side of the equation. Finally, the positioning in the
right-hand realisation makes the relation of the unit square to the 2 × 2 table more evident.
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Figure 10. Unit squares with different positions of the frequencies which represent the rows and
columns: close to the label (not selected, on (left)) vs. close to the geometrical feature (selected,
on (right)).

To summarise, in Section 3.1 we have shown that different design techniques can be
used in order to emphasise the related nature of the different (sub-)sets of the structure
of the Bayesian situation. Some of these techniques (e.g., colouring areas) are more eye-
catching than others (e.g., line styles of borders, transparency of colours). Thus, they
should be implemented carefully in order to facilitate recognition of more difficult relations
(with use of more obtrusive methods) and easily understandable relations (with use of less
ostentatious methods).

We have analysed the difficulties in the double-tree and the unit square in order to
implement these different methods effectively. In doing so, we hope to have presented
a design of each of the visualisations which clarifies the relations in the structure of the
Bayesian situation. Consequently, this design should support identification of the relevant
subsets which are needed in order to calculate a required probability (e.g., PPV or NPV).
In the next section, we will discuss design possibilities for dynamic realisations of the
same visualisations.

3.2. Dynamic Visualisations

The dynamic visualisations are relevant for assessing the influence of changes in the
given parameters on the PPV. As the PPV is calculated with the ratio comprising the two
relevant subsets (e.g., true-positives and false-positives), it is necessary firstly to assess the
influences of changes in the given information on these subsets and, secondly, to identify
the consequences of these changes for the ratio.

Thus, assessing changes in a Bayesian situation is fairly complex as, for instance,
changes in the base rate affect all four subsets simultaneously. As a consequence, the ICL
when evaluating the change of the base rate (for example) is assumed to be fairly high. A
dynamic visualisation where the changes within the structure are observable through the
employment of a slider can help to identify those changes [76,77]. Yet, as it is a demanding
task where multiple changes are observable and ICL is high, it needs to be very carefully
designed in order to minimise ECL.

3.2.1. Dynamic Double-Tree

In the double-tree, the probabilities given in a typical Bayesian task are found as
percentages on the branches in the upper half of the visualisation (e.g., Figure 11). Various
positions are conceivable for the arrangement of a slider with which the three percentages
can be changed. Basically, two different positions can be discussed: (1) A slider along
a branch (2) A horizontal slider (on a node). We argue that these different positions of
the slider may represent different conceptual ideas about percentages and, therefore, also
probabilities. Thus, we rely on two fundamental mental representations about fractions



Educ. Sci. 2022, 12, 739 18 of 29

(here: realised as percentages) [78]: (i) fraction (or percentage) as a part–whole relationship
and (ii) fraction (i.e., percentage) as the idea of odds. Then, by applying these conceptual
ideas to the interpretation of probability, the first idea of a part–whole relationship leads
to the understanding that a probability represents a smaller part of a reference group (i.e.,
the whole). In that case, the given percentage for a probability (e.g., 10% for the base rate)
specifies the proportion of the whole (i.e., all the people who are tested) for whom the
attribute of the probability (i.e., being under the influence of alcohol) applies, i.e., 10% of
all people are under the influence of alcohol. On the other hand, the second conceptual
idea of odds leads to the understanding that a probability specifies the chances for both
outcomes of a particular attribute by way of a ratio of the two subsets simultaneously.
Then, the given percentage (e.g., 10% for the base rate) stands for a ratio of 10% to 90% by
which the chances for the different outcomes (i.e., the state of being or not being under the
influence of alcohol) are assigned. The two proposed positionings aim at deploying these
two different ideas of probabilities, i.e., the part–whole relationship and the idea of odds
(see Figure 11).

Figure 11. Double-tree with sliders along branches (not selected, on (left)), with horizontal sliders
between two branches (not selected, in (middle)) or on the nodes (selected, on (right)).

The slider along a branch: The branch in the double-tree connects the part with the whole.
Thus, positioning the slider on the branch, results in an emphasis of the part–whole relation-
ship. Moreover, colouring the percentage of the branch which corresponds to the probability
on the branch also highlights this feature. Therefore, increasing the percentage on the branch
with a movement of the slider directly illustrates that more of the whole (i.e., the node at the
upper end of the branch) now belongs to the part (i.e., the node in the lower end of the branch).
However, in the double-trees, there are always two branches that stem from one node, which
means that with one probability P(A), also its complement P

(
A
)
—despite not being depicted

as a percentage—is visualised (i.e., on the adjacent branch). Therefore, a second slider must be
arranged at the adjacent branch, which represents the complement. This second slider then
moves automatically when the first slider is changed. This might result in the learning effect
that you can observe: a probability and its complement always change inversely to each other
and always add up to 100%. Yet, this is a relatively basic concept which we consider rather
simple, so this simultaneous move could be eliminated here. Moreover, this representation has
major disadvantages from a multimedia point of view: many changes occur simultaneously
(as well as all numbers, which need to change, also two sliders move at the same time) and,
moreover, one slider moves automatically which is counter-intuitive as usually the concept
of a slider is that it only changes if you drag its handle. Therefore, this realisation increases
cognitive load and diverts attention away from the essential concept, namely the change in
the relevant frequencies for the PPV.

The horizontal slider (on a node): On the other hand, the positioning of the horizontal
slider (on a node) relates to the idea of odds (e.g., 10:90). The considered quantity (in the
upper node) is divided into two disjoint outcomes by only one slider, and thus a change of
one percentage number. The ratio of the given probability is immediately observable on
the slider itself, which shows clearly (compared to the slider along a branch) that the sum
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of the probabilities of event and counter-event is 1. Thus, it also illustrates how the sample
in the Bayesian situation (i.e., all people tested) is divided into the different subsets (by the
respective ratio). Furthermore, with this positioning—in contrast to Figure 11, left—only
one slider per pair of branches is necessary. Thus, cognitive resources can be saved and
applied to the observation of changes in the relevant frequencies.

With this type of slider, we believe there are two possible different arrangements.
One, where the slider is between the two branches of the respective probability (Figure 11,
middle) and another, where the slider is attached directly to the nodes (Figure 11, right).

In the illustration (Figure 11, middle) where the horizontal slider is positioned between
the two branches, an additional line is required for the slider. This may cause confusion
because each branch (which is marked by a line) stands for a concrete probability. However,
due to the node-branch structure in the double-tree, the horizontal lines in the node itself
can be used (in order to avoid confusion, Figure 11, right). Therefore, in the realisation
on the right of Figure 11, the bottom horizontal line of a node is used to place the slider
directly on this border of the node. Then, it is also clearly evident that the population (from
the node) is divided into the two following subsets (given in the nodes beneath) by the
ratio of the slider. Thus, we prefer the double-tree on the right-hand side of Figure 11 as a
positioning of the slider.

In addition to the positioning of the sliders, it is also useful to highlight the sliders and
the associated percentage on the respective branch by colouring. This makes it easier to see
which percentage can be changed by the slider (compare Figure 12, left). Since changing one
of the three probabilities (such as the base rate) in the double-tree can change up to eight
frequencies (all except the number of the sample) at the same time, it makes sense to also
focus attention on the frequencies that are relevant to the task at hand (coherence principle).
For example, if the effect of change of the true positive rate on the PPV is concerned, it
makes sense to highlight only the changing probability and the relevant frequencies in the
visualisation (compare Figure 12, right).

Figure 12. Additional changes made: Double-tree with coloured sliders (left) and with highlighted
values relevant for the specific task of evaluating changes of the true-positive rate on the PPV (right).

3.2.2. Dynamic Unit Square

Similar matters need to be given consideration in the design of dynamic unit squares.
Here, changes in the given parameters result in different positions of the dividing lines
in the unit square. Thus, due to the area representation of the unit square, changes to
the Bayesian situation are linked to changes in size of the inner areas in the visualisation
(compare Figure 13).
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Figure 13. Unit squares with different proportions: base rate of 10% (left) and 50% (right).

This feature makes the positioning of the slider more straightforward than in the
double-tree, as the sliders should be clearly associated with the dividing line (which is
“moved” by a change to its value). Thus, the use of a slider makes this change even more
dynamically “observable”.

There are basically three possible locations for the slider: (1) next to the dividing lines,
(2) inside the unit square on the line they are moving, (3) on the side of the unit square
(see Figure 14).

Figure 14. Unit squares with sliders next to the dividing lines (not selected, on the (left)), inside the
unit square (not selected, in the (middle)) or, on the side of the unit square (selected, on the (right)).

According to the split-attention principle, the slider should be spatially as close to the
changing object as possible. Consequently, we prefer the second and third realisation of
the slider as the sliders in these versions are closer to the dividing line they move. In the
second realisation, the handle of the slider is further away from the percentage it changes
than in the third. Moreover, sometimes (as in the example in Figure 14 in the middle) the
position of the handle on the vertical line is unfortunate, as it is at the same height as one
(or both) of the horizontal lines and thus it might be unclear what the slider is actually
changing. Finally, the most crucial change is to the division on the sides (with changes of
the given parameters), as the movement of the inner dividing lines are only a consequence
of the changes in ratios on the side of the square. Therefore, our preferred version is the
third realisation, where the handle of the slider is closest to the relevant changing feature.

As well as positioning the slider, its colour can be used to facilitate recognition of its
connection to the percentage and line segment, which the slider changes (as already spelled
out in the double-tree). We need to bear in mind that the slider changes three aspects
simultaneously: (i) the percentage, (ii) the line segment on the side of the unit square,
(iii) the position of the corresponding dividing line inside the unit square. By colouring
the slider in a specific way, the reference to some, or all, of these aspects can be spelled out
(see Figure 15).
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Figure 15. Unit squares with different colouring of the sliders: highlighting the changing line segment
on the side of the unit square (not selected, on the (left)) or the dividing line inside the unit square
(not selected, in the (middle)) or both (selected, on the (right)).

In the colouring of the first two realisations, only two of the features which change are
highlighted. However, the third realisation highlights the relation to all relevant features
that are linked to, and changed, by the slider. Therefore, we argue that this is the easiest
dynamic realisation of the unit square, where it is clearly evident which properties of the
visualisation are affected by a change in the percentage.

Finally, we now discuss whether the frequencies in the unit square can or should be
removed in a dynamic version of the unit square. The redundancy principle suggests that
learning is hindered if information is presented in two or more forms. The four subsets in
the unit square are represented by the size of the inner area as well as the frequency, which
is inside that area. While the frequency is crucial in being able to determine the PPV (hence
the static aspect is addressed), it is not necessary to be aware of concrete numerical changes
in order to assess the influences of changes to a given percentage (when the dynamic aspect
is addressed). Therefore, we argue that frequencies are redundant for the dynamic setting,
and should be removed from the visualisation.

Removing the frequencies from the unit square has another advantage. If the per-
centages are close to 0% or 100%, one or multiple inner areas become so small that the
number of the frequency no longer fits into the inner area. This would result in an am-
biguity about what the number actually represents (see Figure 16, left). This problem is
avoided by removing the frequencies but not the percentages (see Figure 16, right). This is
particularly important for the dynamic visualisation since, in the dynamic aspect, the focus
is not on concrete numbers (unlike in the static aspect, where the concrete numbers are
indeed relevant and should not be removed).

Figure 16. Unit square with frequencies (not selected, on the (left)), where the proportions seem
ambiguous, as the frequency of the upper right area is not fully in this section, and without frequencies
(selected, on the (right)), without the ambiguity of the frequency for the upper right-hand area.
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4. Discussion

We have presented an approach for designing visualisations, which is based on the
following elements. Firstly, it is necessary to analyse the specific demands of the mathe-
matical tasks. We showed this in Section 2.1 through a discussion of the different aspects
of Bayesian Reasoning, which demand different types of visualisations: tasks addressing
the static aspect of Bayesian Reasoning should be supported with a static visualisation,
whereas tasks addressing the dynamic aspect of Bayesian Reasoning should be supported
with a dynamic visualisation. Secondly, it is necessary to select a visualisation type. We
argue that two types of considerations should be involved in this decision: previous em-
pirical results and subject-didactical considerations. In Section 2.2, we have first provided
empirical results of comparisons between different visualisations for Bayesian problems.
Afterwards, we have discussed probability tree diagrams, double-trees, 2 × 2 tables and
unit squares from a subject-didactical perspective, by comparing how different subsets and
their relations to each other are represented in the different visualisations. Through the
combination of both considerations, we opted for the double-tree and the unit square [50].
The third element of our approach is the actual design process of the visualisations. For that,
we used principles of multimedia learning [55,60], which were presented in Section 2.3 [79],
and applied them to the design of the visualisations in Section 3. In the design process, the
multimedia principles are used primarily for two goals. First, they are used for reducing dif-
ficult aspects of the visualisations, which have previously been identified (e.g., identifying
the “rows” in the unit square, which was a recommended finding from previous empirical
studies). Second, the multimedia principles are used to highlight the task-specific aspects
within the visualisation (e.g., the sliders are coloured in the same colour as the number they
alter). Finally, subject-didactical considerations are also relevant in the design process, e.g.,
for positioning the sliders in the double-tree. We have presented the different decisions
relevant within the design-process in a step-by-step development of the double-tree and
unit square. In doing so, we discussed the advantages and disadvantages of every option
arising in the decision-making process.

In the following passages we demonstrate briefly how this approach can be applied to
other visualisations that can be used to represent a Bayesian situation, and thereby broaden
and generalise the results presented in Section 3.

As mentioned at the beginning, probability tree diagrams as representations of
Bayesian situations are commonly used. However, as their benefit is inferior to the use of
double-trees and unit squares (cf. Section 2.2), a careful design of the tree diagram is of
particular importance.

The most difficult feature of the regular tree diagram concerning Bayesian problems is
that the belonging of the different joint probabilities represented by paths is given to only
one superset, while membership of the second superset is completely ignored. A colouring
method such as that in Figure 17 can support the identification of one path to the second
superset. Here, two features are explicitly used to make the relations in the tree diagram
more explicit: (1) the complete path (e.g., first and second branch) is coloured in order to
clarify that the joint probability relates to both branches, (2) the belonging of two paths to
their respective superset is highlighted by the same colour in different intensities of shade.

The design of this tree diagram can also be implemented as a dynamic tree diagram
with sliders for the given parameters in a Bayesian situation (Figure 18).

Additionally, 2 × 2 tables could be designed according to considerations made in this
article. For instance, in Figure 19, we have added a colouring of the rows (and columns) based
on the different colouring methods proposed for the double-tree and unit square. For the
2 × 2 table, we suggest the third colouring method (even though we decided against it in
the double-tree). The reason is that, unlike in the double-tree and unit square, the set–subset
relations are equally strong for both supersets (rows and columns) in the 2× 2 table. Therefore,
we do not select an option where belonging to one superset is emphasised less strongly than
belonging to the other superset. This also illustrates the necessity for a didactical analysis of
the structure of the visualisation to be designed (see Section 2.2).
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Figure 17. Static tree diagram with supportive colouring of the paths to express belonging to the
second superset.

Figure 18. Dynamic tree diagram with supportive positioning and colouring of the sliders.

Figure 19. Static 2 × 2 table with different colouring methods: double-tree colouring (not selected,
(left)), unit square colouring (not selected, (middle)), colouring with equally highlighted set–subset
relations for both supersets (selected, (right)).

Designing a dynamic 2 × 2 table is challenging, as the given probabilities (which
change) are not directly provided in the visualisation. Therefore, they have to be added
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outside the visualisation with sliders (see Figure 20). In our realisation of a dynamic
2 × 2 table, it can be seen that the influence of the changing percentages is in no way
(visually) linked to changes within the visualisation, which is unfavourable from the
perspective of the split-attention principle and the reason why we argued against their use
in dynamic tasks of Bayesian Reasoning.

Figure 20. Dynamic 2 × 2 table with changing percentages added outside the visualisation, but
without any (visual) link between the changing parameters and changing values inside the 2× 2 table.

Furthermore, discussing the design aspects of the double-tree and unit square also
paves the way for adapting known visualisations or creating new ones.

For instance, the geometrical aspect of the unit square seems to be of particular
advantage for identifying changes within the visualisation. Therefore, it might be worth
considering how an area representation can be added to a node-branch-like visualisation.
Thereby, a visualisation such as that in Figure 21 is conceivable, realized similarly in
Brock [80] and Gigerenzer and Hoffrage [33].

Figure 21. A node-branch-like structure with area proportionality.

Here, the structure is similar to a tree diagram with frequencies. Additionally, the
area representation is inherent in this visualisation as the widths of the “nodes” depend on
the percentage on the “branch”. Therefore, the idea of probabilities as chances becomes
observable. However, there are also disadvantages to this realisation; for instance, with a
change to the division of the top level (100), both sliders in the consecutive level move as
well. This might be unintuitive and result in a high cognitive load.

Furthermore, the area-representation may be added to the frequency net (Figure 22),
another beneficial Bayesian visualisation (see, e.g., [34]).

These implications are intended to illustrate how the consideration of multimedia
aspects when designing visualisations can be transferred to other forms apart from the
double-tree and unit square. Thus, they should inspire to acknowledge similar design
decisions when working with visualisations as a supportive tool for mathematical problems.
Of course, they cannot represent a fully comprehensive overview on designing the variety
of Bayesian and/or mathematical visualisations.
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Figure 22. Area-proportionality within a frequency net.

The presented approach to designing visualisations adds to current research on
Bayesian Reasoning, as it provides guidance on how to develop such visualisations, step-
by-step, in order to boost understanding. Previously, the support of individual design
elements has been empirically tested (e.g., [8–11]), yet we are aware of no other contribution
that provides a similarly systematic approach to designing visualisations in the field of
Bayesian Reasoning by using principles of multimedia learning. Moreover, the presented
approach can also be used more generally, and thereby assist in the design of various
visualisations for mathematics education. With the presentation of our approach, it should
have become apparent that the potential of a visualisation to increase understanding de-
pends on its specific design. Therefore, differences in design may also be one factor which
can explain the varying results regarding performance with the same visualisation. For
instance, performance with frequency tree diagrams varies between 32% in a study with a
non-coloured tree diagram [50] and 68% with a coloured tree diagram whose colouring
emphasises the belonging to the whole path [9]. Yet, there are certainly also other variables
which explain differing performances, such as the sample of the study (e.g., [32]), the
context of the Bayesian problem (e.g., [31]), the numerical information (e.g., [81]), and the
question format, etc.

Naturally, the presented approach and methods also have certain limitations. Firstly,
we have not made use of the whole spectrum of opportunities for applying principles
of multimedia learning. Other approaches are also feasible. For example, an interactive
visualisation (beyond a dynamic variation of the values or [sub]sets) could be another way
to highlight relevant aspects of the visualisation. Previous empirical results for interactivity
with the visualisation are diverse. For instance, Tsai et al. [19] used checkboxes to colour and
show the values of the different subsets of a unit square and suggest that this interactivity
feature helped participants to solve (static) Bayesian tasks. However, Mosca et al. [18]
compared icon arrays without any opportunity to interact, with other icon arrays with
different opportunities to interact (checkboxes, drag and drop, hover) and could not
replicate any benefit of interactivity for the static Bayesian task.

Secondly, we have only applied principles of multimedia learning in the design process
in order to boost the design of visualisations (as illustrated above). However, other methods
are also conceivable. Therefore, future research should also analyse implications deriving
from different research areas. For instance, it might be worth discussing the specific colours
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which are used for highlighting the relevant relations in the visualisations. For this, it might
be necessary to consider the effect of certain colours themselves (e.g., that some are calming
whereas others excite emotion or catch the observers’ attention). Additionally, it might
also be important to regard a colour’s compatibility with the represented outcome in the
specific context. For example, a positive test result in a breathalyser test or even a medical
diagnostic test often does not entail a positive outcome (in the context) for the tested person
and therefore should possibly not be represented in colours which often have positive
connotations, such as green. These considerations could then beneficially complement the
aspects presented in this article.

Thirdly, while we consider the approach presented here as fruitful for creating un-
derstanding, we acknowledge that the approach may not be suitable in all circumstances.
For instance, the proposed designs for the static aspect are (from our perspective) particu-
larly useful for instructional purposes. However, they may be neglected when students
themselves create or draw the visualisations. Additionally, the design features we have
developed for the dynamic aspect are of special importance in the instructional setting, yet
may also be fruitful when students interact with the dynamic representation. Thus, the
presented step-by-step development is most likely not used for designing every visualisa-
tion in mathematics lessons. We do assume, however, that they always add a scaffolding
for understanding of the structure represented by the visualisation. This is based on the
fact that a design created according to the steps we have suggested can help to reduce
extraneous cognitive load and thereby free up resources for the actual learning process.

Finally, further empirical studies are needed to study the effects of using the presented
elements of this approach on understanding of the visualisations.

5. Conclusions

Bayesian Reasoning and multimedia aspects in teaching mathematics are two areas
that have been intensively researched in the past. Surprisingly, however, there are very few
analytical studies that examine both aspects joined together. With the present theoretical
analysis, we have tried to find overlaps between the two fields of research.

As we have indicated in this article, there is a variety of concrete implementations
that could be further explored. These implementations of multimedia aspects could also
produce a positive impact on teaching probability in schools and universities, because
thinking about design features always implies reflection on the visualised content.

An empirical study wherein these carefully designed visualisations have been imple-
mented in a training course on Bayesian Reasoning has already been carried out, with more
than 500 students from law or medicine faculties. Within the study, training courses on
Bayesian Reasoning with different visualisations are compared, and the learning material
of the training courses (as well as the visualisations used as the central element within
the training courses) have been developed in accordance with multimedia principles [51].
The results of the study are described by referring to the effect of the different training
courses on the static aspect of Bayesian Reasoning, i.e., performance and on the dynamic
aspect of Bayesian Reasoning, i.e., covariation separately. Interesting further research
questions would now of course, deal with the effect that individual design elements have
on the understanding of corresponding probabilities or changes of probabilities. Therefore,
additional empirical studies are needed to gain further insights from data analyses.
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