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Understanding the physics of the two-dimensional Hubbard model is widely believed to be a key step in
achieving a full understanding of high-Tc cuprate superconductors. In recent years, progress has been made
by large-scale numerical simulations at finite doping and, on the other hand, by microscopic theories able to
capture the physics of individual charge carriers. In this work, we study single pairs of dopants in a
cylindrical system using the density-matrix renormalization group algorithm. We identify two coexisting
charge configurations that couple to the spin environment in different ways: a tightly bound configuration
featuring (next-)nearest-neighbor pairs and a stripelike configuration of dopants on opposite sides of the
cylinder, accompanied by a spin domain wall. Thus, we establish that the interplay between stripe order and
uniform pairing, central to the models’ phases at finite doping, has its origin at the single-pair level. By
interpolating between the Hubbard and the related t-J model, we are able to quantitatively understand
discrepancies in the pairing properties of the two models through the three-site hopping term usually omitted
from the t-J Hamiltonian. This term is closely related to a next-nearest-neighbor tunneling t0, which we
observe to upset the balance between the competing stripe and pair states on the two-dopant level.
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I. INTRODUCTION

Engineering superconducting materials with improved
properties will most likely require a microscopic under-
standing of unconventional superconductors such as the
cuprates [1–3]. Despite recent progress [4–9] in numeri-
cally determining the ground states of the two-dimensional
single-band toy models believed to contain the relevant
physics [10,11], we still lack a theoretical framework that
would allow efficient predictions guiding the search for
new materials. While studies of the Fermi-Hubbard model
[12] report superconducting domes on both the electron-
and hole-doped side [9], weaker or even no superconduc-
tivity is found [5,7,13] on the hole-doped side in the closely
related t-J model [14–16]. As we highlight in this work,
an important ingredient to resolving this puzzle is the
three-site (or singlet) hopping term arising from the

Schrieffer-Wolff transformation connecting the t-J and
Fermi-Hubbard models. This term is usually not included
in studies of the t-J model but could be vital to the
pairing properties as it has been argued to mediate a
hole-hole repulsion [17,18] and has been found to remedy
key discrepancies in the single-particle spectral function
[19,20]. As it allows next-nearest-neighbor hopping
processes for dopant charge carriers, its effects are inter-
twined with those of the respective t0 tunneling term,
which has already been established to be crucial for
superconductivity [4,9].
The different models and interaction parameters are

accompanied by a sizable array of competing and coex-
isting orderings, including a Mott-insulating state featuring
antiferromagnetic (AFM) correlations, uniform-density
d-wave superconductivity, stripes—which we identify with
a charge-density wave accompanied by spin domain
walls—and various crystalline phases (e.g., denoted as
WC* or W3 in the literature [5,6]).
Two central building blocks for a microscopic under-

standing of these phases are single dopants—known as
magnetic polarons—and pairs of dopants in an AFM
background. The microscopic pairing mechanism, in par-
ticular, has recently gained renewed interest and has been
linked to the Hamiltonian’s sign structure [21,22]. With the
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advent of quantum-simulation experiments [23,24] afford-
ing single-atom, single-site resolution in extended lattices,
significant progress has been made [25], in particular,
concerning polarons [26–30] and, most recently, pairing
[31] and stripe formation [32].
In this work, we investigate a single pair of dopants to

determine which of the finite-doping puzzles can be traced
back to this minimal building block. We use the density-
matrix renormalization group (DMRG) [33,34] algorithm
to extract the ground-state properties of cylindrical systems
of width 6. In both the Fermi-Hubbard and t-J models, we
find bound pairs of dopants in a superposition of a tightly
bound configuration and a single 1=3 filled stripe, as
sketched in Figs. 1(a) and 1(b). By interpolating between
the Fermi-Hubbard and t-J Hamiltonians, we can quanti-
tatively trace back discrepancies in the relative weights of
the two charge contributions and the formation of a spin
domain wall in the Fermi-Hubbard model to the three-site
hopping term. We probe the interplay between charge and
magnetic order and conclude by giving an outlook on the
related t0 term. Overall, our work establishes a competition
of two charge configurations of a single pair of dopants as
the likely microscopic origin of more complex phases
found at finite doping.

II. MODELS

At the core of our work, we consider the Fermi-Hubbard
model

ĤFH ¼ −t
X
hi;ji;σ

ðĉ†i;σ ĉj;σ þ H:c:Þ þ U
X
i

n̂i↑n̂i↓ ð1Þ

characterized by the tunneling t and on-site interaction U.

Here, ĉð†Þi;σ is the fermionic annihilation (creation) operator

at coordinate i ¼ ðx; yÞ with spin σ and n̂i ¼
P

σ n̂i;σ ¼P
σ ĉ

†
i;σ ĉi;σ is the particle number operator. In the strong-

coupling limit t=U ≪ 1, the t-J-3s model

Ĥt−J−3s ¼ −t
X
hi;ji;σ

ðc̃†i;σ c̃j;σ þH:c:Þ þ J
X
hi;ji

�
Ŝi · Ŝj −

ñiñj
4

�

− t3
X
hi;j;ki

ðb̃†i;jb̃j;k þH:c:Þ ð2Þ

emerges as the lowest-order approximation in t=U from the
Schrieffer-Wolff transformation [35]. Double occupancies
are eliminated, and the creation operators are replaced by

c̃†i;σ ¼ ĉ†i;σð1 − n̂i;−σÞ. From c̃ð†Þi;σ , we define the correspond-
ing number operator ñi;σ and the singlet annihilation
operator

b̃i;j ¼
1ffiffiffi
2

p ðc̃i;↓c̃j;↑ − c̃i;↑c̃j;↓Þ: ð3Þ

The lowest-order terms in t=U correspond to virtual
hopping processes and give rise to the effective
Heisenberg superexchange interaction with J ¼ 4t2=U
and the singlet (or three-site) hopping term with
t3 ¼ J=2. Here, Ŝi denotes the Heisenberg spin operator
at site i and hi; j;ki restricts i and k to nearest neighbors of
j with i ≠ k. Following the common convention, we call
Ĥt-J ¼ Ĥt-J-3sðt3 ¼ 0Þ the t-J model, omitting the singlet-
hopping term. Throughout this work, we considerU=t ¼ 8,
which fixes J=t ¼ 1=2 and t3=t ¼ 1=4. This value of U is
realistic for the study of cuprate materials [36,37], and it is
achievable in typical ultracold-atom setups [38,39].
For an in-depth analysis contrasting the models, we

perform an interpolation controlled by the dimensionless
parameter λ∈ ½0; 1�. To interpolate between the Fermi-
Hubbard and t-J models, we consider the Hamiltonian

Ĥt-J-UðλÞ ¼ −t Ĥt þ
U

1 − λ
ĤU þ λJ ĤJ; ð4Þ

where Ĥt, ĤU, and ĤJ refer to the terms proportional to the
respective parameters t and U in Eq. (1) and J in Eq. (2). In

(a)

(c) (d) (e)

(f) (g) (h)

(b)

FIG. 1. Pair structure: charge and spin correlations for a pair of
dopants in the Fermi-Hubbard, t-J-3s, and t-J models on six-leg
cylinders. (a),(b) Stripelike and tightly bound configurations of
the holes: In the stripe configuration (a), the holes reside on
opposite sides of the cylindrical system, accompanied by a spin
domain wall. In the tightly bound configuration (b), the holes
form a (next-)nearest-neighbor pair in a uniform AFM back-
ground. (c)–(e) Connected density-density correlation function
relative to a reference position, averaged over the center of the
lattice. The color scale cuts off the strong autocorrelation at (0,0).
For the Fermi-Hubbard model, the correlations are corrected for
doublon-hole fluctuations. (f)–(h) Staggered spin-spin correlation
function, relative to a reference position at the edge of the
cylinder. Positive values indicate uninterrupted AFM order in the
t-J model, while a domain wall in the AFM manifests as a sign
change in the Fermi-Hubbard and t-J-3s models.
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this special case of a t-J-U model [40], the dependency of
Ĥt-J-UðλÞ on λ is chosen such that the effective magnetic
interaction

Jeff ¼ ð1 − λÞ 4t
2

U
þ λJ ¼ J ð5Þ

is independent of λ. The model realizes Ĥt-J-Uð0Þ ¼ ĤFH

and Ĥt-J-Uð1Þ ¼ Ĥt−J. To relate discrepancies between
ĤFH and Ĥt−J to the changes introduced by the singlet
hopping term, we define a corresponding model interpolat-
ing between the t-J-3s and t-J models as

Ĥt-J-3sðλÞ ¼ −t Ĥt þ J ĤJ − ð1 − λÞt3 Ĥt3 ; ð6Þ

which again satisfies Ĥt−J−3sð1Þ ¼ Ĥt−J.
In the main part of our work, we analyze the pairing

properties of dopants across these models. Because of
particle-hole symmetry, our results do not distinguish
between electron and hole dopants. However, from this
point onwards, we refer to the dopants as holes to facilitate
a clear distinction between dopant holes and doublon-
hole fluctuations appearing in the Fermi-Hubbard Hilbert
space. We introduce the hole number operator n̂hi ¼ ð1 −
n̂i;↑Þð1 − n̂i;↓Þ and define Nh ¼ hN̂hi ¼ P

ihn̂hi i. Ground-
state searches are performed using DMRG on systems
of size Ly × Lx ¼ 6 × 12 with periodic boundary condi-
tions in the y direction and open boundary conditions in the
x direction. The system is doped with 0, 1, or 2 holes away
from half filling.

III. HOLE PAIRS

We now investigate the pairing of dopants in the Fermi-
Hubbard, t-J-3s, and t-J models. The central questions we
address are as follows:

(i) Do the two dopants form a bound pair? If so, what is
the pair’s charge structure, and how does it relate to
pairing and stripe formation at finite doping?

(ii) How do these properties change between the models
under investigation? How much of the difference
between the FH and t-J models is accounted for by
the singlet hopping term appearing in Ĥt-J-3s?

(iii) How are the spin and charge sectors connected?
As a first step to answering these questions and to obtain
insights into the charge and magnetic order, we consider
the density-density and spin-spin correlation functions of
the two-hole ground states across the three models. We
define the connected density-density correlator for the
holes as

CðcÞ
n̂h
ði; jÞ ¼ hn̂hi n̂hji −

hN̂hi − 1

hN̂hi hn̂hi ihn̂hji; ð7Þ

where the normalization factor accounts for the finite
number of holes in the system. For each model, Fig. 1
shows the correlations between the site j ¼ i0 þ ðΔx;ΔyÞ
with respect to a reference site i0 averaged over the center
of the system: xi0 ∈ ½Lx=2; Lx=2þ 1�; 1 ≤ yi0 ≤ Ly.
In all three models, the density-density correlations

offer a clear picture, indicative of real-space pairing—
with the dopant holes mainly occupying the same or
adjacent rungs of the cylinder.
Comparing the t-J and t-J-3s models, we identify a shift

in weight between two main contributions to the correlation
function: In the t-J model, the holes form a tightly bound
pair with the correlation function assuming its largest value

(a) (b) (c) (d)

FIG. 2. Interpolation between Hamiltonians. (a) Illustration of the scan between microscopic models. Starting from ĤFH governed by t
and U, the scan parameter λ gradually suppresses double occupancies and introduces explicit Heisenberg interactions J to keep the
combined magnetic interactions constant. At λ ¼ 1, we arrive at the t-J model. (b) Hole-hole binding radius hr̂hhi observed to decrease
continuously with increasing λ, corresponding to the holes forming a more tightly bound pair in the t-J model. The data for ĤðλÞt-J-U are
corrected for doublon-hole fluctuations. The insets show the corresponding 2D charge structures presented in Figs. 1(d) and 1(e).
(c) Staggered spin-spin correlations from one edge of the cylinder (x ¼ 1) to the other (x ¼ Lx). For the Fermi-Hubbard and t-J-3s
models at λ ¼ 0, a domain wall is observed that disappears between λ ¼ 0.6 and λ ¼ 0.8. At λ ¼ 1, the t-J model shows uninterrupted
AFM order across the length of the cylinder. (d) Binding energy Eb of the pair of doped holes as a function of λ. Across the scan, the pair
stays bound, with the binding energy nearly constant between the t-J-type models. The binding energy in the Fermi-Hubbard model is
lower by more than a factor of 2.
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on next-nearest-neighbor sites, avoiding a kinetic-energy
penalty encountered on nearest-neighbor sites [41]. In
comparison, the t-J-3s model features enhanced correla-
tions around the position ðΔx;ΔyÞ ¼ ð0; Ly=2Þ relative to
the reference hole, i.e., at the opposite side going around
the cylinder. In conjunction with the appearance of a
domain wall in the AFM pattern, we interpret this con-
tribution as the two holes forming a single 1=3 filled stripe
around the cylinder.
In the Fermi-Hubbard model, we unveil a similar pair

structure as in the t-J-3s model, when correcting the
correlation function for doublon-hole fluctuations. In other
words, we subtract the correlation function obtained from
the ground state with only a single dopant hole to remove
fluctuation-fluctuation and fluctuation-dopant contribu-
tions and leave only the connected dopant-dopant corre-
lations. In Appendix (A2), we provide the details of this
correction procedure and show the uncorrected correlation
function, which is dominated by strong nearest-neighbor
anticorrelation and a positive background signal. The fact
that spontaneously formed doublon-hole pairs cloud the
signal in this way renders a quantitative analysis of the
charge order significantly more challenging in the Fermi-
Hubbard Hilbert space. In the spin domain, the staggered
correlation function,

Cŝðx; yÞ ¼ ð−1ÞðxþyÞhŝz1;y0 ŝzx;yi; ð8Þ

with respect to a reference site on the edge of the cylinder
shows an antiferromagnetic pattern extending over the
entire system for the t-J model. However, a domain

wall—indicative of stripe formation—is present in the
Fermi-Hubbard ground state, marking a pronounced differ-
ence between the two models. The data for the t-J-3smodel
also show this domain wall, suggesting the singlet-hopping
term as the origin of this discrepancy.

IV. INTERPOLATION

To carry out a more quantitative analysis and to gain a
detailed understanding of the changes in pair structure,
we now consider the interpolating Hamiltonians Ĥt-J-UðλÞ
and Ĥt-J-3sðλÞ. As we already observed qualitatively, the
pair becomes spatially more tightly bound when approach-
ing the t-J model at λ → 1, which is confirmed quantita-
tively by a decreasing binding radius,

hr̂hhi ¼
P

i0

P
j≠i0 ji0 − jjhn̂hi0 n̂hjiP
i0

P
j≠i0hn̂hi0 n̂hji

; ð9Þ

presented in Fig. 2(b). For ĤðλÞt-J-U, the hole-hole corre-
lation function is again corrected for doublon-hole fluctua-
tions. To deal with the remaining background signal and
allow for a meaningful comparison to ĤðλÞt−J−3s, we limit
the sums in Eq. (9) to distances ji0 − jj ≤ 4 for both
models.
A more accurate comparison of the interpolation

Hamiltonians, unaffected by doublon-hole fluctuations, is
afforded by the spin sector: To quantify the appearance of
the domain wall, Fig. 2(c) illustrates the staggered spin-spin
correlations across the full length of the cylinder. This

(a) (b)

(c) (e) (f)

(d)

FIG. 3. Pair configurations: quantitative comparison of the tightly bound configuration and the stripe configuration, interpolating
between the t-J-3s and t-J models. (a) Weights W of the specified hole configurations as defined in the main text via the hole-hole
correlation function. With increasing scan parameter λ, the weight of the tightly bound configuration increases while that of the stripe
configuration decreases—corresponding to the decrease in binding radius observed in Fig. 2(b). (b) Spin-spin correlations across the
lattice for the different hole configurations accessed via the four-point correlation function Cŝðx; yji; jÞ, with i fixed in the center of the
system. For all values of λ, the stripe configuration [i − j ¼ ð0; 3Þ] features a domain wall while the tightly bound configuration
[i − j ¼ ð1; 1Þ] features uninterrupted AFM order for λ ≥ 0.2. The weighted average of the two contributions [according to the weights
in panel (a)] explains the emergence of a domain wall in the full system presented in Fig. 2(c) [dashed line showing Cŝðx ¼ LxÞ]. (c),(d)
Cŝðx; yji; jÞ for the t-J model with fixed positions of the holes (black circles) and the reference spin (white arrow). This representation
confirms uninterrupted AFM order for the tightly bound configuration (c) and shows that the spin domain wall spatially coincides with
the stripelike configuration (d). The white crosses mark the values of the correlation function across the system used for the respective
lines in panel (b). (e),(f) Local spin-spin correlations around the respective charge configurations. The tightly bound configuration on
next-nearest-neighbor sites shares a 2 × 2 plaquette with two particles forming a singlet (c). The stripe configuration is accompanied by
spin singlets on the rung (d).
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analysis shows that, when approaching the t-J model, the
spin domain wall disappears between λ ¼ 0.6 and λ ¼ 0.8.
Remarkably, the curves for Ĥt-J-UðλÞ and Ĥt−J−3sðλÞ
coincide almost exactly, suggesting that the t3 term captures
the differences in pair structure between the Fermi-Hubbard
and t-J models in a quantitative way.
This finding is further supported by nearly identical

energies per dopant,

ϵ2 ¼
E2h − E0h

2
; ð10Þ

comparing ĤðλÞt-J-U and ĤðλÞt-J-3s (data presented in
Appendix D). As shown in Fig. 2(d), the binding energy

Eb ¼ ðE2h − E0hÞ − 2ðE1h − E0hÞ; ð11Þ

which we obtain from separate ground-state searches in the
sectors with zero, one, or two dopants, differs by more than
a factor of 2 between the Fermi-Hubbard and t-J-type
models. We find that the discrepancy is predominantly
accounted for by the single-dopant energy ϵ1 ¼ E1h − E0h.

It is important to keep in mind, however, that Eb ≪ ϵ1; 2.
Interpolating between the t-J and t-J-3s models, the
binding energy is almost constant despite the changes in
pair structure, suggesting that the two distinct pair con-
figurations are similarly strongly bound. The combination
of these features supports an interpretation in terms of
two coherently coupled, near-degenerate contributions to
pairing—mirroring the competition between stripe order
and uniform superconductivity that characterizes the finite-
doping phase diagrams. We further motivate this interpre-
tation in the language of a simple two-level model in
Appendix F. To perform a quantitative analysis of the two
contributions, we define the weights of each of the two
charge configurations identified earlier as

W ¼
P

i0

P
Δi ∈ config hn̂hi0 n̂hi0þΔiiP
i0

P
j≠i0hn̂hi0 n̂hji

; ð12Þ

where i0 is again restricted to the center of the system.
We define the tightly bound configuration as nearest-
neighbor or next-nearest-neighbor pairs; i.e., in this case,
the sum over Δi ¼ ðΔx;ΔyÞ runs over jΔxj ≤ 1; jΔyj ≤ 1.
The stripe configuration is identified with jΔxj ≤ 1;
jΔyj ¼ Ly=2 ¼ 3.
As shown in Fig. 3(a), we find that the weight of the

tightly bound pair (stripe) increases (decreases) monoton-
ically with increasing λ, which is consistent with the
singlet hopping term introducing a repulsion between the
holes [17]. A more striking feature presents itself by
investigating the tendency to form a spin domain wall
separately for each charge configuration. Introducing the
four-point correlation function

Cŝðx; yji; jÞ ¼ ð−1ÞðxþyÞ hn̂hi n̂hj ŝz1;y0 ŝzx;yi
hn̂hi n̂hji

; ð13Þ

we find the correlator across the system to be negative for
i, j in the stripelike configuration for all λ and positive
(except for λ ¼ 0) in the tightly bound configuration; see
Fig. 3(b). The full spin-spin correlation maps conditioned
on the hole locations [Figs. 3(c) and 3(d)] show the
uninterrupted AFM pattern accompanying the tightly
bound configuration and the spin domain wall in the
stripelike configuration. We also confirm that the stripelike
charge configuration and the spin domain wall spatially
coincide in Fig. 3(c) and Appendix E—solidifying the
picture of a bound, partially filled stripe. This qualitative
difference in the spin sector between the two charge
configurations makes the coexistence of these orderings
in the system’s ground state quite remarkable. Moreover,
the weighted average of the two contributions suffices to
explain the appearance of a spin domain wall in the full
system, observed in Fig. 2(c).

(a) (b)

(c) (d)

FIG. 4. Pinning field: impacts of modifications in the spin
sector on the charge order in the t-J-3s model. (a),(b) Hole-hole
correlation functions: In panel (a), an antiferromagnetic pinning
field h > 0 on the edges of the system weakens the positive
correlations in the stripe configuration compared to the case
h ¼ 0 presented in Fig. 1(d). The nearest-neighbor and next-
nearest-neighbor correlations, corresponding to tightly bound
holes, stay large and positive. In panel (b), a modification to the
spin interactions has a qualitatively similar but stronger effect. In
this case, the stripe configuration is eliminated as the correlations
at Δy ¼ 3; Δx∈ f−1; 0; 1g become negative. (c),(d) Quantitative
impact of a pinning field of varying strength h on the weights of
the tightly bound (c) and stripelike (d) charge configurations. As
observed in panel (a), turning on a pinning field h > 0 shifts
weight from the stripe to the tightly bound configuration. When
pinning a domain wall in the system (h < 0), the effect is
reversed. The magnitudes of the changes are comparable to
modifying the spin interactions to J⊥ ¼ J=2.
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The local spin structure around the pairs of holes is
presented in Figs. 3(e) and 3(f). In agreement with early
numerical studies of pairing [41], the tightly bound pair is
accompanied by a strong singlet on the diagonal of a 2 × 2
plaquette. In contrast, the stripe configuration is accom-
panied by two singlets on a single rung of the cylinder. The
next-nearest-neighbor correlations across this rung are
negative, indicating the formation of the spin domain wall.

V. MAGNETIC PINNING FIELD

To determine the hierarchy between charge and magnetic
order, we study how modifications in the spin sector affect
the pair structure. First, we introduce an AFM pinning field
on the edges of the cylinder,

Ĥh ¼ jhj
X
ðx;yÞ

x∈ f1;Lxg

ð−1Þyð−sgnðhÞÞxŝzðx;yÞ: ð14Þ

The sign convention is chosen such that h > 0 pins an
uninterrupted AFM pattern while h < 0 pins a domain
wall. Such a pinning field is often used in numerical studies
to make spin-spin correlations accessible via local expect-
ation values [8,9]. To put the potential changes into
perspective, we contrast the pinning field with the effects
of modified spin interactions that also break the SU(2)
symmetry. In other words, we compare to a case where
we replace the Heisenberg term in Ĥt−J−3s with XXZ
interactions,

J Ŝi · Ŝj →
J⊥
2
ðŝþi ŝ−j þ ŝ−i ŝ

þ
j Þ þ Jzðŝzi ŝzjÞ; ð15Þ

and set J⊥ ¼ J=2 < Jz ¼ J. By weakening the flip-flop
interactions, the overall antiferromagnetic correlations
hŜi · Ŝji are enhanced, which we expect to disfavor the
formation of a spin domain wall. Therefore, we expect a
qualitatively similar response to a pinning field h > 0.
The results are shown in Fig. 4, confirming the one-to-

one connection between the charge and spin sectors
promoted earlier: Pinning the uninterrupted AFM pattern,
or weakening the interactions J⊥, significantly reduces the
weight of the striped charge configuration, while pinning a
spin domain wall suppresses the tightly bound pair state.
This result is in line with, and extends upon, the results of
the previous section, where we find that the different charge
configurations correlate with the respective spin states with
and without a domain wall.
We point out that the magnitude of changes in the charge

sector induced by the pinning field is comparable to those
resulting from the modified interactions. This feature
highlights the presence or absence of the domain wall
(controlled via h) as the main driver of changes in the
charge sector—compared to other effects introduced by
modifying the bulk microscopic interactions.

VI. DISCUSSION

In summary, we find bound pairs with properties that we
trace back to two coexisting contributions: a spatially
tightly bound configuration and a stripe around the
width-6 cylinder, featuring a spin domain wall. We argue
that the contributions are near degenerate, which is
reflected in integer-pair-striped and pair-density-wave
phases reported in the finite-doping literature [4–7,22].
While the pair structure is consistent across the Fermi-

Hubbard, t-J-3s, and t-J models, the relative weights of the
two contributions are shifted when performing interpola-
tions between these different Hamiltonians. In line with
arguments made for one-dimensional systems [17], the
omission of the singlet-hopping term in the t-J model leads
to spatially more tightly bound pairs. Its reintroduction
quantitatively explains the emergence of a spin domain wall
in the Fermi-Hubbard model.
As it mediates next-nearest-neighbor tunneling for the

holes, the singlet hopping is intimately connected to the t0
term crucial to the physics of doped cuprates. This term
breaks the particle-hole symmetry and thus creates a
distinction between the electron- and hole-doped models.
In the cuprates, band-structure calculations estimate the
strength of this term to be t0 ≈ −0.2 t [42,43]. Flipping the
sign of t0 is equivalent to exchanging electron and hole
dopants by means of a particle-hole transformation.
As an outlook, we show the pair structure in the presence

of t0 in Fig. 5. We find the term to shift the weight almost
fully to either the tightly bound ðt0 > 0Þ or stripe ðt0 < 0Þ
configuration. This change in pair structure is in remarkable
agreement with finite doping studies that report pairing and
uniform-density superconductivity on the electron-doped

(a) (b)

(c) (d)

FIG. 5. Next-nearest-neighbor hopping: charge structure of the
pair in the t-J [(a),(b)] and Fermi-Hubbard [(c),(d)] models in the
presence of a next-nearest-neighbor tunneling term t0. In both
models, electron doping (t0 > 0) [(a),(c)] leads to tightly bound
pairs while hole doping (t0 < 0) [(b),(d)] has dopants arranged in
the stripe configuration.
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ðt0 > 0Þ side [5–7,9,22] and find crystalline phases [5,6]
and non-integer-pair stripes [9] with increasing hole dop-
ing. Here, the strong tendency to form spin domain walls
matches the rapid suppression of AFM order in the lightly
hole-doped cuprates [2,3]. Notably, a superconductor
formed from the tightly bound pairs we identify would
be expected to behave BEC-like, which has been argued
not to be the case for the cuprates [44]. Thus, while
numerical studies demonstrate superconducting correla-
tions on the electron-doped side of the Fermi-Hubbard
and t-J models, we speculate that these models may feature
a different kind of superconductivity compared to the
materials they aim to describe, necessitating further studies.
Our finding that pairing and stripe formation are present

on the single-pair level puts their competition within reach
of simplified effective theories. We believe that such a
theory could be constructed by complementing our ground-
state results with alternative approaches [20,45,46], which
can give access to pair spectra. Additionally, quantum
simulation experiments have emerged as a powerful tool
for probing microscopic physics, having direct access to
multipoint correlations at system sizes intractable by
numerics. In recent years, local charge and magnetic
structures of dopants have been observed and interpreted
in terms of a geometric string picture [26,27,47], and efforts
are ongoing to reach the low temperatures needed to
observe pairing and eventually superconducting correla-
tions. In this regard, the binding energies presented in this
work indicate that experimental setups working in the t-J
Hilbert space [48,49] are at an advantage due to the absence
of doublon-hole pairs.
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APPENDIX A: DOUBLON-HOLE CORRECTION

Without corrections, the hole-hole correlation function
in the Fermi-Hubbard model is dominated by nearest-
neighbor anticorrelation and a positive background signal
(see Fig. 6)—obscuring the pair structure of dopant charge

carriers and complicating a quantitative analysis. We
attribute this feature to the presence of doublon-hole
fluctuations in the Fermi-Hubbard model. Despite the large
coupling U=t ¼ 8 employed here, the number of holes
produced in this way is significantly larger than the
maximum number of two dopant holes, leading to the
strongly anticorrelated nearest-neighbor signal dominating
the hole-hole correlation function. Here, we present two
ways to correct the fluctuation effects to uncover the pair
structure of the dopant holes, similar to the t-J-3s model.
The most natural approach is to subtract doublon-

doublon correlations from the hole-hole correlation func-
tion, i.e.,

CðcÞ
h−dði; jÞ ¼ CðcÞ

n̂h
ði; jÞ − CðcÞ

n̂d
ði; jÞ; ðA1Þ

where CðcÞ
n̂h
ði; jÞ is defined in Eq. (7) and CðcÞ

n̂h
ði; jÞ replaces

the hole number operator n̂h for the corresponding operator
n̂d counting double occupancies. This method amounts to
subtracting fluctuation-fluctuation correlations that do not
involve dopant holes. Notably, this type of correction is
available to quantum simulation experiments (as long as the
employed detection scheme can differentiate double occu-
pancies from holes [51–53]).
A more sophisticated type of correction is afforded by

precise control of the doping level: By subtracting the
doublon-corrected hole-hole correlator obtained from cal-
culations with a single dopant hole from that obtained from
a pair of dopants, we remove all parts of the correlation
function involving holes originating from fluctuations,
which includes dopant-fluctuation contributions that are
not corrected for by the first approach. The corrected
correlation function is defined as

CðcÞ
2h−1hði; jÞ ¼ CðcÞ; ð2Þ

h−d ði; jÞ − 2
Nd

ð2Þ
Nd

ð1Þ
CðcÞ; ð1Þ
h−d ði; jÞ; ðA2Þ

where the number in brackets refers to the number of
dopants L − N and the normalization factor accounts for
the different number of dopants and expected number of
holes from fluctuations between the two calculations. This
definition of the correlation function is used to obtain the
pair structure in the Fermi-Hubbard model presented in
the main text. The binding radius presented in Fig. 2(b)
is evaluated according to the unconnected version of
Eq. (A2), i.e., without subtracting density terms.
The correlation functions obtained from correcting the

Fermi-Hubbard data are compared to those presented for
the t-J-type models in Fig. 6. The first correction approach
succeeds in removing most of the positive background
signal observed at longer ranges and reveals slightly
enhanced next-nearest-neighbor correlations. The more
sophisticated correction approach makes this trend even
clearer and removes most of the strong, negative nearest-
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neighbor signal. The positive correlations observed for the
stripe configuration and on next-nearest-neighbor sites are
about equal in strength—consistent with the t-J-3s model.
This finding adds further support to our interpretation of

the λ scan, where we argue that the discrepancies between
the Fermi-Hubbard and t-J models are largely explained by
the t3 term. For a quantitative comparison of the weights
of different charge configurations—as presented in Figs. 3
and 4 of the main text—it remains beneficial to work in the
t-J Hilbert space.

APPENDIX B: NORMALIZATION
FACTOR IN CðcÞ

n̂h
ði; jÞ

In the thermodynamic limit, the connected density-
density correlation function is given by

hn̂hi n̂hji − hn̂hi ihn̂hji: ðB1Þ

However, at low particle numbers, combinatoric effects
begin to play an increasingly important role, and a
normalization factor is introduced to ensure that the
connected correlations vanish for an uncorrelated state.
For such a state, the n-point correlation function is given by
the number of possibilities to choose n holes from the total
number Nh, divided by the number of choices for n lattice
sites from the total number L. This process gives the two-
point correlator of randomly placed holes as

hn̂hi n̂hjirandom ¼ NhðNh − 1Þ
LðL − 1Þ : ðB2Þ

The respective density term is given by

hn̂hi ihn̂hjirandom ¼ ðNhÞ2
L2

; ðB3Þ

leading to a normalization factor

Nh − 1

Nh

L
L − 1

: ðB4Þ

Because of the large lattice size, we neglect the
L-dependent part of Eq. (B4), equivalent to reducing the
factor to that of particles without a hardcore constraint (see,
e.g., Ref. [54]). In the Fermi-Hubbard Hilbert space, where
Nh is not a good quantum number, we replace it by hNhi,
arriving at Eq. (7).

APPENDIX C: DMRG

We use DMRG in the framework of matrix product states
(MPS) [55] to calculate the ground state of up to two
dopants with respect to half filling; i.e., for a lattice with L
sites, we consider the L − 2 ≤ N ≤ L particle sectors. All
calculations are done using the SyTen toolkit [56]. The

calculations are performed on cylindrical systems where we
define the y direction as going around the cylinder (periodic
boundary conditions) while the x direction is defined
parallel to the cylinder axis (open boundary conditions).
Throughout this work, we consider six-legged cylinders
with system size Ly × Lx ¼ 6 × 12.
Since we consider only a single pair of holes—not a

fixed doping level—the finite system size is crucial for
learning about the system’s tendencies to form stripes at
finite doping. If bound, the holes may form a stripelike
structure with nonvanishing filling 1=3.
The DMRG simulations are performed using the SyTeN

toolkit. Depending on the model, we work in either the
Fermi-Hubbard [ĤFH; Ĥt-J-UðλÞ] or t-J [Ĥt-J-3sðλÞ] Hilbert
space. Whenever the SU(2) spin symmetry of the models is
not broken, we exploit the full Uð1Þ × SUð2Þ symmetry
of the particle number and spin, working in the
(N ¼ L − 2; S ¼ 0) sector. If the SU(2) symmetry is
broken, e.g., by pinning fields on the edges of the system,
calculations are instead performed in the (N ¼ L − 2;
Sz ¼ 0) sector of the reduced Uð1Þ × Uð1Þ symmetry.

(a)

(b)

(d) (e)

(c)

FIG. 6. Doublon correction: comparison of the pair structure of
doped charge carriers for the Fermi-Hubbard and t-J-type
models. The color coding truncates the large positive signal in
the center, as well as the strongly negative nearest-neighbor
doublon-hole signal in the Fermi-Hubbard model. (a) Connected
correlations function hn̂hn̂hiðcÞ ¼ hn̂hn̂hi − hn̂hihn̂hi for the
Fermi-Hubbard model as presented in Fig. 1. (b),(c) Approaches
to modify panel (a) to correct for doublon-hole fluctuations.
(b) Subtracting the doublon-doublon correlator as a proxy for
correlations between nondopant holes. (c) Subtracting the corre-
lations obtained from a calculation with a single dopant hole. This
approach uncovers the clearest signature in our numerical study
but is not immediately available for experiments. (d),(e)
Connected correlation functions for the t-J-type models as
presented in Fig. 1.
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To present observables uniformly throughout this work,
we always provide spin information in the ŝz basis—
directly accessible in U(1) calculations, or determined
via hŝzi ŝzji ¼ 1=3 hŜi · Ŝji when the SU(2) symmetry is
preserved.
For the interpolation Hamiltonian ĤðλÞt-J-U, we perform

calculations in the Fermi-Hubbard Hilbert space up to a
maximum value of λ ¼ 0.9. For λ ¼ 1, double occupancies
suffer an infinite energy penalty, so the calculation is
performed in the t-J Hilbert space.
To find the ground state, we use a mixture of the single-site

and two-site DMRG algorithms. The observables we inves-
tigate are well converged using bond dimensions up to m ¼
6144, wherewe find that the effectiveU(1) bond dimension of
SU(2) calculations with m ≈ 6000 is meff ≈ 18 000.

APPENDIX D: BINDING ENERGY
AND ENERGY PER HOLE

In Fig. 2(d) of the main text, we present the binding
energy Eb of a pair of dopants, which is calculated from the
energy per dopant

ϵNh
¼ ENh

− E0h

Nh
ðD1Þ

as Eb ¼ 2ðϵ2 − ϵ1Þ: ðD2Þ

Here, we investigate the components ϵ1; 2 separately to
determine the origin of the smaller binding energy in the
Fermi-Hubbard model compared to Ĥt-J-3s.
As displayed in Fig. 7, ϵ2 is almost identical for ĤðλÞt-J-U

and ĤðλÞt-J-3s throughout the interpolation. In particular,

the large difference ϵðFHÞ2 − ϵðt−JÞ2 ≈ 0.57 t is accounted for
within the accuracy of our numerics by introducing the t3
term, complementing the closely matched pair properties
we observe between ĤFH and Ĥt-J-3s in the main part of
our work.
Consequently, the difference in binding energy between

these two models stems almost exclusively from the
energy of a single dopant. As we note in the main text,
jEt−J

b j ≈ jEt−J−3s
b j ≈ 0.23 t does not change significantly

with λ for the t-J-type models. This value agrees well with
results for open boundary conditions [41], indicating that
the six-leg geometry is free of the strong dependence on
boundary conditions established for width-4 systems [57].

In contrast, we find a notably lower value jEðFHÞ
b j ≈ 0.1 t in

the Fermi-Hubbard model, which will likely translate to
lower temperatures required to observe pairing effects
experimentally.

APPENDIX E: SPATIALLY RESOLVING
THE DOMAIN WALL

In the main text, we have established a correspondence
between the stripelike charge configuration and the pres-
ence of a domain wall in the spin sector. This one-to-one
correspondence is further supported by a detailed analysis
of the spin sector through the four-point correlation
functions defined in Sec. IV. Figure 8 displays the AFM
domains over the full lattice for fixed dopant positions.
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FIG. 7. (a) Energies per hole ϵ1; 2 from calculations with one
and two dopant holes. Comparing ĤðλÞt-J-U and ĤðλÞt−J−3s, the
curves for ϵ2 coincide. The values ϵ1 differ, as the Hamiltonians
ĤFH and Ĥt−J are approached in the λ → 0 limit. (b),(c) Binding
energy Eb calculated from the difference between ϵ2 and ϵ1 in
units of t (b) and ϵ1 (c).

(a) (b)

(d)(c)

FIG. 8. Four-point correlations: staggered spin-spin correlation
functions for different locations of the dopant charge carriers.
(a) Two-point correlation function Cŝ ðx; yÞ for the t-J model, as
shown in Fig. 1(h). The location of the reference spin is indicated
by a white arrow. (b)–(d) Four-point correlation function
Cŝ ðx; y j i; jÞ, providing the spin-spin correlations with the
positions of the two dopants fixed. The fixed hole positions
are indicated by black circles. As established in Fig. 3, the tightly
bound configuration of dopants (c) is accompanied by unin-
terrupted AFM order while the stripelike configuration [(b),(d)]
shows a spin domain wall. The location of the spin domain wall
coincides with that of the holes, which we confirm by shifting the
charges to the left by one site in panel (d).
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Making use of this full spatial resolution, we can confirm
that the location of the spin domain wall exactly coincides
with that of the stripelike configuration of charges.

APPENDIX F: TWO-LEVEL MODEL

In the main text, we argue that we can think of the tightly
bound and the stripelike configurations as coherently
coupled, near-degenerate contributions to pairing. Here,
we provide further motivation for this picture by comparing
our results to the expectations from a simple, phenomeno-
logical two-level model: We assume that we can write the
ground state of the system as a superposition of the two
configurations:

jGSi ¼ α j tightly boundi þ β jstripelikei: ðF1Þ

We take the two contributions to be orthonormal, so the
Schrödinger equation ĤjGSi ¼ E0jGSi in the basis of the
two configurations becomes

ĤjGSi ¼
�
0 g

g Δ

��
α

β

�
¼ E0

�
α

β

�
: ðF2Þ

Thereby, we have introduced two phenomenological
parameters: the coupling g and the detuning Δ, which
determine the ratio

α

β
¼ 1

2g
ðΔ − ðΔ2 þ 4g2Þ1=2Þ ðF3Þ

in the ground state. The smooth control and wide range of
these relative weights between the tightly bound and
stripelike configurations observed in scans of the param-
eters λ, h, and t0 lead us to conclude that g and Δmust be of
similar magnitude. In other words, both the coupling and a
comparably small detuning are important to explain our
observations.
As a concrete example, let us consider the scan of the

pinning field h presented in Sec. V: This field introduces an
energy penalty or gain for the spin domain wall present in
the stripelike configuration. Thus, in the two-level model,
we would expect Δ to increase with h. As the interactions
are not modified, the coupling g is expected to change only
a little. Taking the configuration weights W in the charge
sector as proxies for α2=β2, we can read off a shift from
α2=β2 ∼ 1=2 at h ¼ −t to α2=β2 ∼ 1=4 at h ¼ t from
Figs. 4(c) and 4(d). In the two-level model, this shift
translates to a change from Δ=g ∼ 0.35 to Δ=g ∼ 0.75—
matching the anticipated increase with h and similar
magnitudes of Δ and g.

APPENDIX G: DMRG CONVERGENCE

To monitor the convergence of our calculations, we track
the binding energy Eb and hole densities hnhi i with

increasing bond dimension m. As a small difference of
energies—with jEbj=jE0j ≈ 0.01 (and E0 a typical ground-
state energy)—the binding energy is highly sensitive to the
overall convergence and, in particular, to the relative
convergence of calculations with different numbers of
dopants. As

Ĥt-J-Uðλ ¼ 1Þ ¼ Ĥt-J-3sðλ ¼ 1Þ ¼ Ĥt-J; ðG1Þ

we can cross-check our calculations in the different Hilbert
spaces. We find this check to be highly valuable due to
the distinct and complementary computational challenges
faced in either Hilbert space at low doping. While calcu-
lations in the larger Fermi-Hubbard Hilbert space require a
significantly larger bond dimension to converge, the
calculation is less prone to getting stuck during sweeping
as the motion of particles is much less constrained. To
reduce the risk of getting stuck, we utilize global subspace
expansion, as proposed for use in time evolution by Yang
and White [58], to increase the bond dimension in the early
stages of our calculations.
The convergence of Eb with the bond dimension is

shown in Fig. 9. The aforementioned differences in con-
vergence are clearly visible, but the values of Eb approach
one another as λ → 1.
Complementary to the binding energy, we also present

convergence data for the hole density at fixed λ ¼ 0.0. As
changes of delocalization of two holes cost very little
energy (a fraction of t), the hole density along the x
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FIG. 9. DMRG convergence. (a),(b) Binding energy Eb as a
function of the tuning parameter λ and the bond dimension m for
Ĥt-J-UðλÞ (a) and Ĥt-J-3sðλÞ (b). At low m, the calculation in the
Fermi-Hubbard Hilbert space tends to overestimate the binding
energy, while Eb is underestimated in the t-J Hilbert space. For
λ → 1, the values converge toward one another, which we use as a
cross-check between the different Hilbert spaces. (c),(d) Hole
densities n̂h as a function ofm and coordinate x, summed over the
periodic (y) direction. Here, λ ¼ 0.0 is fixed; i.e., we compare
ĤFH to Ĥt−J−3s. The total number of holes hN̂hi is larger in the
Fermi-Hubbard Hilbert space (c) due to doublon-hole fluctua-
tions. Convergence with m is slower in the Fermi-Hubbard than
in the t-J Hilbert space. The asymmetry at low m corresponds to
the direction of the first DMRG sweep; the initial state features
uniform hole density.
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direction serves as a sensitive measure of convergence that
is (in contrast to Eb) mostly independent of the pairing
properties. Based on these properties, we can report good
convergence for computations that are significantly less
demanding than their finite doping counterparts. There,
studies routinely find the type of order that is stabilized to
sensitively depend on the initial state used in the DMRG
[5,8]. Comparing an antiferromagnetic Néel product state
with localized dopants to a Fermi-sea state, we observe no
such dependence. While the same pairing order is stabi-
lized, convergence is typically slower when starting from
the localized state. Hence, all data presented in this work
are obtained from the more efficient Fermi-sea initial state.
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