
Fink et al. European Radiology Experimental            (2025) 9:48 
https://doi.org/10.1186/s41747-025-00579-w

OR IG INAL ART ICLE Open Ac c e s s

Artificial intelligence-based automated
matching of pulmonary nodules on
follow-up chest CT
Nicola Fink1,2* , Jonathan I. Sperl3, Johannes Rueckel1,4, Theresa Stüber1,5, Sophia S. Goller1, Jan Rudolph1,
Felix Escher1, Theresia Aschauer1, Boj F. Hoppe1, Jens Ricke1 and Bastian O. Sabel1,2,6

Abstract

Background The growing demand for follow-up imaging highlights the need for tools supporting the assessment of
pulmonary nodules over time. We evaluated the performance of an artificial intelligence (AI)-based system for
automated nodule matching.

Methods In this single-center study, patients with nodules and ≤ 2 chest computed tomography (CT) examinations
were retrospectively selected. An AI-based algorithm was used for automated nodule detection and matching. The
matching rate and the causes for incorrect matching were evaluated for the ten largest lesions (5–30mm in diameter)
registered on baseline CT. The dependence of the matching rate on nodule number and localization was also analyzed.

Results One hundred patients (46 females), with a median age of 62 years (interquartile range 57–69), and 253 CTs were
included. Focusing on the ten largest lesions, 1,141 lesions were identified, of which 36 (3.2%) were other structures
incorrectly identified as nodules (false-positives). Of the 1,105 identified nodules, 964 (87.2%) were correctly detected and
matched. The matching rate for nodules registered in both baseline and follow-up scans was 97.8%. The matching rate
per case ranged 80.0–100.0% (median 90.0%). Correct matching rate decreased in follow-up examinations to over 50
nodules (p= 0.003), with an overrepresentation of missed matching. Matching rates were higher in parenchymal (91.8%),
peripheral (84.4%), and juxtavascular (82.4%) nodules than in juxtaphrenic nodules (71.1%) (p < 0.001). Missed matching
was overrepresented in juxtavascular, and incorrect assignment in juxtaphrenic nodules.

Conclusion The correct automated-matching rate of metastatic pulmonary nodules in follow-up examinations was
high, but it depends on localization and a number of nodules.

Relevance statement The algorithm enables precise follow-up matching of pulmonary nodules, potentially providing a
solid basis for standardized and accurate evaluations. Understanding the algorithm’s strengths and weaknesses based on
nodule localization and number enhances the interpretation of AI-based results.

Key Points
● The AI algorithm achieved a correct nodule matching rate of 87.2% and up to 97.8% when considering nodules
detected in both baseline and follow-up scans.

● Matching accuracy depended on nodule number and localization.
● This algorithm has the potential to support response evaluation criteria in solid tumor-based evaluations in clinical
practice.
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Graphical Abstract

• 100 patients and 253 chest CTs were analysed using 
an artificial intelligence (AI)-based algorithm for 
automated nodule detection and matching. 

• The AI achieved a 97.8% correct nodule matching 
rate in follow-up scans. 

• Matching accuracy depends on nodule number, 
remaining high with < 50 nodules.

• Nodule localization affected accuracy, with better 
matching in parenchymal, peripheral, and 
juxtavascular nodules.

TThis AI algorithm enabled precise
matching of pulmonary nodules

in follow-up CT scans

Artificial intelligence-based automated
matching of pulmonary nodules on follow-up chest CT
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Background
Computed tomography (CT) is considered the standard of
care for detecting pulmonary nodules [1]. In recent years,
CT technology has undergone several improvements,
including higher image resolution and low-dose acquisi-
tion, resulting in a more sensitive detection of pulmonary
nodules and a higher number of scans being performed
[2, 3]. Thus, radiologists are increasingly confronted with
incidental findings, including pulmonary nodules that
may require follow-up to further determine their nature
[4–6]. Although approximately 95% of those nodules are
benign [5, 7], it is crucial to assess all of them appro-
priately, if necessary with follow-up CT scans [4], in order
to detect the malignant ones at an early stage.
Furthermore, the incidence of lung cancer continues to

rise, further driving the need for follow-up CT examina-
tions to monitor pulmonary nodules. This gets even more
relevant in nodules detected as part of CT-based lung
cancer screening performed in high-risk individuals.
Several randomized trials have demonstrated the added
value of lung cancer screening using low-dose CT by
reducing lung cancer mortality significantly [8–13] and

thus support its implementation for a clearly defined risk
population. At the same time, this potentially results in a
relatively high number of false-positive results [14] and
subsequently an increasing number of follow-up exam-
inations that require standardized assessment. A sys-
tematic review of, among others, eight randomized lung
cancer trials showed that pulmonary nodules were
detected in up to 51% of the included patients [15].
Standardized reporting of changes in size, number, and

morphologic features plays an important role not only in
indeterminate pulmonary nodules [16] but also in asses-
sing treatment response in cancer patients to guide fur-
ther patient management [17–19]. While computer-aided
detection (CAD) systems primarily increase nodule
detection sensitivity and already have been shown to
reduce the individual reading time [20–22], matching and
comparing a pulmonary nodule between two successive
examinations is particularly time-consuming and tedious.
Ideally, this should be conducted according to standar-
dized reporting systems, such as the lung imaging
reporting and data system (Lung-RADS) [23] and the
response evaluation criteria in solid tumors (RECIST)
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[24]. In this context, it has already been demonstrated
that the involvement of a specialized technologist, per-
forming the subsequent measurement during follow-up
instead of the radiologist, reduces radiologists’ reading
time by 87% [25]. Using an artificial intelligence (AI)
algorithm instead of an additional human would make
this task even more cost-effective, as AI-based automated
matching also improves diagnostic efficiency [26].
Hence, the fully automatic identification of the same

nodule(s) over multiple time points, hereinafter referred
to as nodule matching, has the potential to further
improve the follow-up of pulmonary nodules, and thus
may increase radiologists’ efficiency and accuracy when
interpreting serial chest CT scans.
This study aimed to evaluate the performance of an AI-

based system performing automated matching of pul-
monary nodules in successive CT scans of the chest and
to assess its dependence on nodule localization and
number.

Methods
The protocol of this retrospective, single-center study was
approved by the local institutional Review Board, which
waived requirements for informed consent (see
“Declarations”).

Patient population
Data from patients with an underlying malignant disease,
at least one pulmonary nodule, and two or three succes-
sive chest CT scans were retrospectively and randomly
selected. Patient selection was performed by screening our
Picture Archiving and Communication System (PACS)
using keywords indicative of pulmonary nodules. The
cases were manually reviewed to confirm the presence of
pulmonary nodules and to ensure that all inclusion cri-
teria were met. Cases with exclusion criteria were
removed from this cohort. Baseline characteristics of the
study cohort were derived from medical records, includ-
ing patient demographics and the underlying malignant
disease. The exclusion criteria were as follows: (i) age < 18
years and (ii) thoracic surgery in between the included CT
scans. Due to the inclusion criteria, included nodules were
primarily metastatic.

Image acquisition and reconstruction
CT scans were performed on Somatom Force, Somatom
Definition AS+, Somatom Definition Flash, Somatom
Drive (all Siemens Healthineers, Forchheim, Germany), or
Optima 660 (GE Healthcare, Chicago, IL, USA) scanners.
Patients underwent either an unenhanced high-resolution
or a contrast-enhanced CT scan using a standardized
institutional protocol. Key parameters included a tube
voltage of 100–120 kVp, tube current modulation

(100–300mAs), rotation time of 0.5–0.6 s, and pitch of
0.9–1.2. Reconstructed in-plane resolution for axial ima-
ges ranged from 0.5 × 0.5 mm to 0.7 × 0.7 mm, depending
on the scanner and patient size. Images were recon-
structed using iterative reconstruction techniques,
including advanced modeled iterative reconstruction—
ADMIRE) on Siemens Healthineers scanners and Adap-
tive Statistical Iterative Reconstruction—ASiR on the GE
Optima 660 scanner. Standard soft tissue kernels were
used for general assessment, while high-spatial-resolution
lung kernels were applied for detailed nodule evaluation.
Image analysis was conducted on a RadiForce RX370
monitor (EIZO, Hakusan, Ishikawa, Japan) (3 megapixels,
Digital Imaging and Communications in Medicine
(DICOM)-calibrated, maximum brightness 1,000 cd/m²,
contrast ratio 1,000:1) under electronically controlled
optimal lighting conditions (ambient light < 25 lux).

Automatic nodule matching
All data sets were analyzed using the cloud-based proto-
type “AI-Rad Companion Research Chest CT Explore”
(Siemens Healthineers), involving four subsequent steps:
1. AI-based detection of lung nodules (LungCAD,

VD20);
2. AI-based extraction of anatomical landmarks,

including a mesh of the lung lobes [27–29];
3. affine co-registration of the landmarks over multiple

time points using an iterative closest point algorithm
[30]; and

4. identification of nodule pairs in the coregistered space.

The third step is a data-minimalistic approach suitable
for cloud-based processing where the full three-
dimensional data set of the prior study is no
longer available in the cloud at the time point of the
follow-up exam. In the fourth step, the Euclidean dis-
tance is calculated for the coregistered nodules, and a
pair is considered a match if the distance is below
15 mm. This distance threshold was established by
analyzing the matching performance on an independent
cohort. Figure 1 illustrates a sample case for the visua-
lization of the AI-based results. This algorithm was a
prototype at the time of initial evaluation but is now
commercially available as part of the AI-Rad Companion
Chest CT product (version VA20, Siemens Healthi-
neers). The nodule detection component has been
shown to have high sensitivity and specificity in prior
studies [31–33].
Overall, the underlying AI is the anatomical landmark

detection, as well as lung lobe segmentation. Anatomical
landmark detection has been trained on over 15,000 CT
data sets [27]. The lung lobe segmentation U-Net has
been trained on over 5,000 CT data sets [31].
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Radiological reading and algorithm performance
Regardless of whether the included patients received two
or three CT scans, each follow-up was evaluated sepa-
rately, resulting in 153 follow-up examinations. The
entire process of nodule detection and segmentation was
fully automated. The validation of the AI algorithm’s
results was performed by a radiologist with an experi-
ence of five years in thoracic imaging (N.F.), whose role
was to identify false positives, to verify whether the
nodules matched by the AI corresponded to the same
nodules on follow-up scans and to identify the root
causes of incorrect matching. Nodules missed during
detection were not included in the analysis, as the pri-
mary aim of this study was to assess the algorithm’s

matching performance. The radiologist received the
anonymized CT data as axial reconstructions, as well as
AI results (Fig. 1), and was allowed to perform various
analyses, utilizing standard tools available in a conven-
tional DICOM viewer, such as size measurement,
region-of-interest placement, and density analysis. The
analysis was focused on a maximum of ten pulmonary
nodules (size between 5 mm and 30 mm in diameter)
found by the AI algorithm in the baseline CT scan.
Nodules that had completely disappeared on follow-up
CT and subsolid nodules, including mixed (solid and
subsolid) nodules, were excluded. For each lesion
assigned as “incorrectly detected/matched” the root
cause was documented as follows:

Fig. 1 Sample case of the visualization of the AI-based results for automated matching
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1. false-positive detection (other, non-nodular
structures, such as atelectasis, vertebral bodies, or
ribs, incorrectly identified as pulmonary nodules by
the algorithm)

2. missed matching (nodule registered at baseline but
not in follow-up CT despite its presence); and

3. incorrect assignment (nodule present in both
baseline and follow-up scans but incorrectly linked
to a different nodule instead of its true counterpart).

In addition, the total number of pulmonary nodules was
documented, and the selected pulmonary nodules were
classified according to their localization as parenchymal,
peripheral, juxtavascular, or juxtaphrenic. Peripheral
nodules were defined as being located within 10mm of the
pleura, juxtavascular and juxtaphrenic nodules as directly
adjacent to a vessel and the diaphragm, respectively.

Statistical analysis
The software GraphPad Prism (version 8.4.2, GraphPad,
San Diego, CA, USA) and R-Studio (version 1.4.1717,
RStudio Inc., Boston, MA, USA) were used for statistical
analyses and graphical illustration. Continuous variables
are reported as median with interquartile range, categorical
variables as absolute frequencies and relative frequencies.
Based on a binary outcome (correct or incorrect), we eval-

uated the matching rate depending on nodule number and
localization. The association between nodule number
and matching rate, as well as between nodule localization and
matching rate, each including root causes for incorrect
matching, has been screened for independence by χ2 analysis
based on contingency tables including Pearson residuals.
Mann–Whitney U-test was used to evaluate differences in
matching rates between follow-ups with different numbers of
pulmonary nodules.

Any test result with a p-value smaller than 0.05 was
considered statistically significant.

Results
Patient population
The study population included 100 patients (46 females)
with a median age of 62 years (interquartile range 57–69),
with an underlying malignant disease and pulmonary
nodules. The most frequent origin of the underlying
malignant disease was colorectal (n= 24), followed by
thyroid carcinoma (n= 17), sarcoma (n= 12%), and
malignant melanoma (n= 11). Six patients had signs of
lung emphysema, but none of the included patients had
lung fibrosis. A total of 253 thoracic CT scans were
included (Table 1). With some patients having two and
some three CT scans, this resulted in a total of 153 follow-
up examinations. The median time between scans per
follow-up was 13.7 (range 11.1–18.5) weeks. Detailed
baseline characteristics of all included patients are shown
in Table 2.

Automatic nodule matching
Focused on the ten largest lesions registered in baseline CT
scan per follow-up examination by the algorithm, a total of
1,141 lesions were included for further analysis. Among
these, 36 lesions (3.2%) were false positives, meaning they
were other, non-nodular structures (e.g., atelectasis, ver-
tebral bodies, ribs) incorrectly identified as pulmonary
nodules in the baseline scan. Among the remaining 1,105
pulmonary nodules, 141 (12.8%) were not correctly mat-
ched at follow-up, with the following root causes: 119
(10.8%) were missed at follow-up (detected at the baseline
but not in the follow-up scan despite being present; “missed
matching”) and 22 (2.0%) were incorrectly assigned (two
different nodules were erroneously matched; “incorrect
assignment”). This resulted in 964 nodules that were both
correctly identified at baseline and correctly matched at
follow-up, leading to a correct nodule matching rate of
87.2% (964/1105). The median correct matching rate per
follow-up was 90.0% (80.0–100.0%).
Additionally, considering only nodules that were

detected as pulmonary nodules in both CT scans (baseline
and follow-up), a total of 986 nodules were included.
Among these, 964 were correctly matched, resulting in a
correct nodule matching rate of 97.8% (964/986).
Figure 2 shows a flowchart that illustrates nodule

categorization. The median size of included pulmonary
nodules was 9.0 [IQR 7.1–11.7] mm.

Performance depending on the number and localization of
pulmonary nodules
Among the 153 included follow-up examinations, 93
(60.8%) had less than 20 and 31 (20.3%) had 20 to 50, and

Table 1 Type of CT examinations and radiation doses

Total scans (n= 253)

Use of intravenous contrast agent

Unenhanced 51 (20.2)

Contrast-enhanced 202 (79.8)

Initial examination range

Neck and thorax 3 (1.2)

Neck, thorax, and abdomen 36 (14.2)

Thorax and abdomen 129 (51.0)

Thorax 85 (33.6)

Radiation dose

CTDI (mGy) 6.7 (5.1–8.5)

DLP 387.0 (267.9–527.6)

Values are median with interquartile range or n (%)
CTDI Computed tomography dose index, DLP Dose length product

Fink et al. European Radiology Experimental            (2025) 9:48 Page 5 of 11



29 (19.0%) had more than 50 pulmonary nodules. The
correct matching rate differed depending on the number
of pulmonary nodules (p= 0.003). The matching rate was
similar in follow-ups with less than 20 nodules (median
100.0%, range 80.0–100.0%) and 20–50 nodules (90.0%,
80.0–100.0%) (p= 0.372). It was significantly lower in
examinations with more than 50 pulmonary nodules
(median 80.0%, 65.0–90.0%) than in those with < 20
nodules (p < 0.001) or those with 20–50 nodules
(p= 0.025). Figure 3 illustrates independence testing of
nodule number per follow-up and matching rate, as well
as root causes for incorrect matching. Missed matching
was significantly overrepresented in follow-ups with more
than 50 nodules and significantly underrepresented in
follow-ups with less than 20 nodules. At the same time,
false-positive detection of non-nodule structures was
overrepresented in follow-ups with less than 20 and
underrepresented in those with more than 50 nodules.

Among the pulmonary nodules correctly identified as
such on baseline CT (n= 1,105), 549 (49.7%) were par-
enchymal, 346 (31.3%) peripheral, 165 (14.9%) juxtavas-
cular, and 45 (4.1%) juxtaphrenic nodules. The correct
matching rate of pulmonary nodules differed significantly
depending on the localization (p < 0.001). While par-
enchymal nodules were correctly matched in 91.8% (504/
549), the matching rate of peripheral and juxtavascular
nodules was 84.4% (292/346) and 82.4% (136/165),
respectively. Juxtaphrenic nodules showed the lowest
matching rate (71.1%, 32/45). Figure 4 shows inde-
pendency testing of the nodule localization and the
matching rate, as well as the root causes for incorrect
matching. While mis-matching was significantly under-
represented in parenchymal nodules, it was over-
represented in juxtavascular nodules. Incorrect
assignment of two non-identical nodules was significantly
overrepresented in juxtaphrenic nodules.

Discussion
This study evaluated the performance of the cloud-based
prototype AI-Rad Companion Research Chest CT Explore
(Siemens Healthineers) for automated matching of pul-
monary nodules in serial CT scans. The main findings are
as follows: first, this algorithm showed a high correct
matching rate; second, the correct matching rate was
significantly lower in examinations with more than 50
pulmonary nodules; third, the correct matching rate was
significantly higher in parenchymal, peripheral, and jux-
tavascular than in juxtaphrenic nodules with an over-
representation of missed matching in juxtavascular and
incorrect assignment in juxtaphrenic nodules.
Previous studies evaluated such automated nodule

matching in a limited number of patients (from 11 to 40)
[34–36], whereas this study investigated matching rates,
as well as detailed root causes of decreasing accuracy in a
larger cohort of 100 patients. With a median per case
matching rate of 90.0%, the algorithm evaluated in the
present study showed high performance regarding auto-
mated nodule matching in a heterogeneous cohort in
terms of localization and the number of pulmonary
nodules. Considering only lesions in which the algorithm
registered nodules on both CT scans, the nodule match-
ing rate was 97.8%.
This high matching accuracy has important clinical

implications. Reliable tracking of nodule changes over
time supports treatment decisions by ensuring con-
sistency in monitoring growth or stability and facilitates
adherence to standardized protocols such as RECIST and
Lung-RADS. Additionally, automated matching reduces
the risk of false positives and false negatives, helping to
minimize unnecessary interventions and improve diag-
nostic confidence.

Table 2 Patient and pulmonary lesion characteristics

Clinical characteristics Total

(n= 100)

Age in years, median

(IQR)

62.0

(57.0–69.0)

Sex, n (%) Female 46 (46.0)

Male 54 (54.0)

Underlying malignant

disease, n (%)

Colorectal cancer

Thyroid cancer

Sarcoma

Malignant melanoma

Hepatocellular/cholangiocarcinoma

Pancreatic cancer

Urologic cancer

Breast cancer

Pharyngeal cancer

Hemangioendothelioma

Gynecological cancer

Upper gastrointestinal cancer

Cancer of unknown primary

Parotid cancer

Prostate cancer

24 (24.0)

17 (17.0)

12 (12.0)

11 (11.0)

6 (6.0)

6 (6.0)

6 (6.0)

5 (5.0)

3 (3.0)

3 (3.0)

2 (2.0)

2 (2.0)

1 (1.0)

1 (1.0)

1 (1.0)

Pulmonary lesions Total

(n= 1,141)

False-positives 36 (3.2)

Pulmonary nodules 1,105

(96.8)

Parenchymal 549 (49.7)

Peripheral 346 (31.3)

Juxtavascular 165 (14.9)

Juxtaphrenic 45 (4.1)

IQR Interquartile range
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Those matching rates are comparable to or even higher
than those reported in previous studies, which were 92.7%
[36], 86.3% [34], and 66.7% [35]. Tao et al [36] already
attributed their relatively high matching rate compared
with other studies to differences in the study population:
While their population was based on a lung cancer
screening cohort, the other two studies included cancer
patients in whom the lung parenchyma may be more
damaged due to pre-existing conditions and previous

treatments and thus more difficult to assess than in
screening patients, most of whom are likely to be rela-
tively healthy. However, in the present study, the correct
matching rate did not significantly differ between patients
with or without lung parenchymal changes, such as scars
and atelectasis. Only a small subset of our study cohort
had such conditions, and in cases where they were pre-
sent, the extent was relatively low. For example, lung
fibrosis was not detected in any of the patients. Compared

Fig. 2 Flowchart illustrating nodule categorization

Fig. 3 Matching depending on the number of nodules: a distribution of the matching (correct versus incorrect) per number of pulmonary nodules
illustrated as a balloon plot. b Cohen-friendly association plot for the relation between nodule number per follow-up and matching rate (1= correct;
2= incorrect), as well as root causes for incorrect matching (2a=missed matching; 2b= incorrect assignment; 2c= false-positive detection) illustrating
the deviation from the statistically expected contingency table (over-/underrepresentation in red/blue; independency testing using χ2 analysis)
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to the results presented in the present study, Lee et al [35]
obtained a lower matching rate of 66.7% and only suc-
ceeded in raising this to a comparable value of 82.4%
when considering only patients with unchanged findings.
The matching rate in the present study was dependent

on the number of pulmonary nodules, with a significantly
lower matching rate in follow-up examinations with more
than 50 nodules. Lee et al [35] already demonstrated
decreasing accuracy in automated nodule matching with
an increasing number of nodules, mainly caused by
unmatched (“missed matching”) rather than incorrectly
assigned nodules most likely due to the occupancy of lung
parenchyma by a large number of nodules that complicate
nodule registration by covering anatomic landmarks. We
support this finding with a significant overrepresentation
of missed matching in follow-ups with more than 50
nodules, due to the increased complexity associated with a
larger number of nodules, possibly resulting in a more
challenging anatomical registration during image pro-
cessing. At the same time, follow-up examinations with
less than 20 nodules showed an overrepresentation of
false-positives, primarily based on the inclusion of the ten
largest lesions at baseline: examinations with a low
number of nodules are more likely to contain false-
positives among these ten lesions.
Our matching rate was highly associated with the

nodule’s localization, with the highest rate of 91.8% in
parenchymal nodules, mainly surrounded by low-
attenuating lung parenchyma, which provides a strong
contrast for both initial detection and subsequent
matching. Conversely, juxtavascular nodules exhibited a
lower matching rate (due to their proximity to blood
vessels), as previously reported in CAD system perfor-
mance studies [37, 38]. The difficulty in detection may

compromise the subsequent registration process. Jux-
taphrenic nodules presented the lowest matching rate,
primarily due to the effects of diaphragm motion during
breathing, explaining the overrepresentation of incorrect
assignment. Image-based registration might show super-
ior results in this case, but is not suitable for the cloud-
based data-minimalistic approach of the AI-Rad Compa-
nion, as the full three-dimensional data set of the baseline
exam is not available in the cloud at the time of analysis of
the follow-up exam. In contrast to the present study,
Beyer et al [34] did not observe differences in matching
rates depending on nodule localization. However, they
only investigated nodule localization in terms of lung side
(right or left lung) and area (upper, middle, or lower third;
central or peripheral), not their relation to adjacent
structures.
Beyond the high matching accuracy demonstrated in

this study, the AI system holds potential for substantial
time savings in clinical workflows. Prior research
demonstrated that delegating nodule comparison tasks to
technologists reduced radiologists’ time by up to 87% [39].
Fully automated AI solutions could achieve similar or
greater efficiencies, particularly in high-nodule-count
scenarios [25]. Future research should aim to directly
quantify these time savings and assess their impact on
clinical workflow.
Overall, this automated matching algorithm has the

potential to support clinical assessment of incidental and
metastatic pulmonary nodules on follow-up examina-
tions. Despite a slight decrease in the correct matching
rate in cases with high nodule count or juxtaphrenic
nodules, this algorithm works reliably and accurately in
most cases. In addition, we included data from multiple
CT scanners and imaging protocols, reflecting the

Fig. 4 Matching depending on the localization of nodules: a distribution of the matching (correct versus incorrect) per localization of the pulmonary
nodules illustrated as a balloon plot. b Cohen-friendly association plot for the relation between nodule localization and matching rate (1= correct;
2= incorrect), as well as root causes for incorrect matching (2a=missed matching; 2b= incorrect assignment) illustrating the deviation from the
statistically expected contingency table (over-/underrepresentation in red/blue; independency testing using χ2 analysis)
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variability encountered in routine clinical practice that
potentially influences nodule detection and characteriza-
tion [40, 41]. Despite these challenges, the algorithm
demonstrated robust matching performance, which
highlights its applicability in heterogeneous clinical
environments.
In a real-world scenario, using this algorithm may not

only reduce reporting time and improve reporting quality
but also provide a basis for standardized evaluations such
as Lung-RADS and RECIST-based reporting, in particular
in patients undergoing serial imaging for metastatic dis-
ease. This approach would reduce the time radiologists
spend visually comparing scans and ensure more stan-
dardized and reproducible assessments, and minimize
variability in follow-up recommendations, enhancing
decision-making and facilitating multidisciplinary
communication.
The current AI system presented here is designed as a

fully automated solution, but could also be adapted for
semi-automated workflows that integrate manual input,
such as RECIST-based identification of target lesions. By
providing a standardized and reliable matching process,
the algorithm may help track changes in nodule size more
consistently, supporting more accurate assessments of
disease progression or treatment response. Future studies
should explore how such AI systems can further
streamline follow-up evaluations, enhance decision-
making accuracy, and ultimately contribute to improved
patient outcomes.
This study has several limitations. First, only the ten

largest solid nodules per follow-up with a size between
5mm and 30mm were included to enable a systematic
and reproducible evaluation of the algorithm’s perfor-
mance. However, since some of the included patients have
more than several hundred pulmonary nodules, this may
not fully capture the algorithm’s ability to match all
detected nodules. Automated matching of very small, very
large, or ground-glass nodules may be more complicated
and should be assessed in future studies. Second, as this
study analyzed the correct matching of pulmonary
nodules between two successive CT scans, nodules that
disappeared in the follow-up scan were excluded from
further analysis. Additionally, while longitudinal tracking
across multiple follow-ups is clinically important, only a
small subset of our cohort allowed for such analysis,
which limited the statistical power for meaningful con-
clusions. Longitudinal evaluations also involve additional
complexities, such as managing new or disappearing
nodules and accounting for imaging variability, requiring
dedicated analytical frameworks. Third, we did not eval-
uate the impact of inspiration level or nodule size and
growth on the matching rate. The analyzed patient cohort
did not include cases with fibrosis, and such parenchymal

changes may impact the algorithm’s performance, which
should be investigated in future studies. In addition, the
distribution of malignancies in this study cohort does not
specifically reflect cancer prevalences in the general
population, which may affect algorithm performance.
Fourth, the validation of the algorithm’s results was
conducted by a single experienced radiologist, who
focused on cross-checking the AI results rather than
independent nodule identification and analysis. Fifth,
analyses were only retrospectively performed and based
on single-center data. Sixth, the impact of automated
nodule matching on clinical workflow and individual
patient management was not investigated and should be
part of further analyses. Seventh, this study is based on
different CT scanners from different CT vendors, as
variability between scans often reflects real-world sce-
narios due to factors such as scanner availability and
location. However, it should be emphasized that this study
attempts to address the generalizability of our algorithm
performance considering scanner variability. Eighth, some
patients had multiple follow-up scans; for example, 53
patients had three consecutive CT scans in our study,
which may introduce variance and bias in contrast to
patients scanned only once or twice, thus potentially
affecting the overall algorithm performance.
In conclusion, this study demonstrated that the accu-

racy of this algorithm (AI-Rad Companion Research
Chest CT Explore [Siemens Healthineers]) in automated
matching of pulmonary metastatic nodules is high, when
focusing on the ten largest nodules per case. However, the
algorithm’s performance depends on the localization and
number of nodules. Especially the decreasing matching
rate in CT scans with high nodule count has to be taken
into account when interpreting AI-based results. Overall,
the analyzed AI-based solution for automated matching of
pulmonary nodules on follow-up chest CT can provide
valuable support for standardized reporting in clinical
practice.
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