RESEARCH

Breast cancer in patients under 40 years: an 11-year retrospective cohort analysis

Franziska Ganster $^1 \cdot$ Simone Schrodi $^2 \cdot$ Michael Braun $^3 \cdot$ Christina Seifert $^1 \cdot$ Sven Mahner $^1 \cdot$ Thomas Kolben $^1 \cdot$ Rachel Wuerstlein $^1 \cdot$ Nadia Harbeck $^1 \cdot$ Maximiliane Burgmann 1

Received: 2 March 2025 / Accepted: 7 April 2025 / Published online: 15 May 2025 © The Author(s) 2025

Abstract

Introduction The number of young breast cancer (BC) patients is increasing in both high- and low-income countries. It is known that this population is at risk for more aggressive tumor phenotypes, larger tumor size at diagnosis and poorer prognosis. It is the aim of this population-based analysis to identify trends of therapy, tumor biology and prognosis during a period of 11 years in young patients under the age of 40.

Methods In this analysis, data of young BC patients (<40 years) from two breast centers were collected and analysed. The focus was a summary of data regarding tumor phenotypes, treatment, and survival in young BC patients.

Results Out of 11,954 patients with invasive BC who were eligible to the analysis, 781 (6.5%) were younger than 40 years at diagnosis and met the inclusion criteria. The predominant biological subtypes were Luminal B-like (HER2-) and Luminal-A-like, 62.3% were diagnosed with pN0. Noticeably low rates for endocrine therapy and higher rates for chemotherapy could be observed. 10-year overall survival was 87% for the whole cohort. Luminal-B-like (HER2-) and Triple negative tumors had worse outcomes as opposed to the other subtypes.

Conclusion As a conclusion, this 11-year analysis provides valuable insights into the clinical characteristics and treatment outcomes of young breast cancer patients under 40 years of age. The analysis highlights clear outcome differences according to the tumor subtype. These findings underscore the need for personalized treatment approaches and continued follow-up to optimize outcomes for young BC patients.

Keywords Premenopausal patients · Breast cancer · Tumorbiology · Survival · Time trend

Maximiliane Burgmann maximiliane.burgmann@med.uni-muenchen.de

Franziska Ganster franziska.ganster@med.uni-muenchen.de

Simone Schrodi @lgl.bayern.de

Michael Braun michael.braun@swmbrk.de

Christina Seifert christina.seifert@med.uni-muenchen.de

Sven Mahner sven.mahner@med.uni-muenchen.de

Thomas Kolben thomas.kolben@med.uni-muenchen.de

Rachel Wuerstlein rachel.wuerstlein@med.uni-muenchen.de

Nadia Harbeck nadia.harbeck@med.uni-muenchen.de

- Department of Gynecology and Obstetrics and Comprehensive Cancer Center Munich LMU, BZKF Breast Center, LMU University Hospital, Marchioninistr. 15, 81377 Munich, Germany
- Bavarian Cancer Registry, Bavarian Food and Health Authority (LGL), Munich, Germany
- Department of Gynecology, Breast Center, Red Cross Hospital, Munich, Germany

What does this study add to the clinical work

In young BC patients under 40 years the predominant biological subtypes were Luminal B-like (HER2-) and Luminal-A-like. They underwent low rates for endocrine therapy and higher rates for chemotherapy while the 10-year overall survival was 87% for the whole cohort and subtypes.

Introduction

Breast cancer (BC) is a common health problem affecting women worldwide, with the impact on younger people being increasingly recognised [1]. The International Consensus Conference for Breast Cancer in Young Women (BCY1) in 2012 and the European Society of Breast Cancer Specialists (EUSOMA) in 2013 have collectively defined"young patients"as those diagnosed with breast cancer under an age of 40 [2, 3]. By following this definition, we focus the unique challenges and considerations associated with breast cancer in this demographic stratum.

Despite their representing a smaller proportion of breast cancer cases as compared with older women, young patients comprise a significant portion of breast cancer diagnoses, with approximately 5–10% in high-income countries and 55% in low- and middle-income countries [4]. Moreover, there has been a notable increase in breast cancer incidence both among Caucasian women and young black women in the United States [5–7].

The age at diagnosis is not the only factor which contributes to the distinctive characteristics of breast cancer in young women. Premenopausal women are known show more aggressive tumor phenotypes, often characterized by larger tumor sizes and higher grade tumors, leading to poorer prognosis compared with older counterparts [8–10]. This outcome disparity results from various factors, including differences in tumor biology, suboptimal endocrine treatment, and decreased adherence to adjuvant endocrine therapy [9]. As a result, young breast cancer patients often require more intensive treatment regimens with the aim of maximizing therapeutic benefits while minimizing long-term toxicities [10].

In awareness of the multifaceted requirements of young breast cancer patients, the International Consensus Conference for Breast Cancer in Young Women 2020 (BCY5) stressed a comprehensive care provided by specialized breast centers [11]. The centers not only offer surgical and systemic treatments, but also provide essential

psychosocial support, genetic counselling, and fertility preservation services which are of high importance to young BC patients [12–15]. Furthermore, young women are encouraged to undergo consultations addressing lifestyle factors such as body mass index, alcohol consumption, physical activity, and smoking habits [12, 16–20].

In the light of the increasing number of young women diagnosed with breast cancer, there is a pressing need to evaluate trends in tumor biology, therapy modalities, and survival in premenopausal breast cancer patients. By examining these evolving patterns, we aim to gain insights into the current landscape of breast cancer care for young women and identify areas for further improvement and intervention. This analysis will provide valuable evidence and enhance the management and outcomes of breast cancer in this vulnerable population. Through a comprehensive analysis of tumor characteristics, treatment approaches, and survival, we aim to inform about strategies that optimize care and support for young women confronted with a breast cancer diagnosis.

Methods

Data collection

Data were provided and analysed by the former Munich Cancer Registry (MCR) of the Munich Tumor Center (TZM). The MCR was a population-based clinical cancer registry of Bavaria/Southern Germany with a total catchment of about 5 million inhabitants. In this catchment area, all pathology reports were required to be submitted to the cancer registry. In parallel, patient demographics, treatment, and follow-up information were reported from clinicians. Additionally, the life status was maintained systematically through death certificates. All data were documented according to the guidelines of the International Agency for Research in Cancer. Due to law changes, since 2018, data are reported to and documented by the Bavarian Cancer registry, which is part of the Bavarian Health and Food Safety Authority (LGL).

Cohort selection

From the 11,954 invasive breast cancer patients with diagnosis between 2004 and 2015 in either the LMU Breast Center or the Breast Center of Red Cross Hospital, 781 young patients (< 40 years) were included. Excluded were male patients, histology of lymphoma or sarcoma or non-invasive histology, and patients with primary metastasis (M1). In the survival analysis, patients with evidence of another previous

or synchronous malignant tumor were additionally excluded to eliminate any overlapping effects (Fig. 1).

Definition of variables

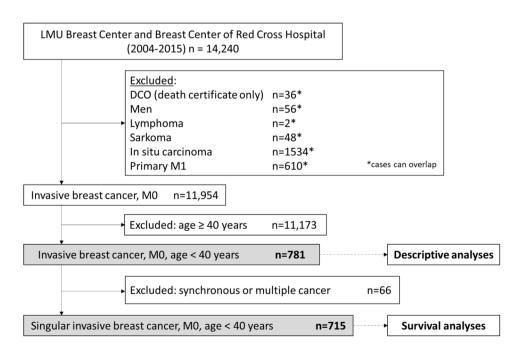
Tumors were classified according to the TNM classification of malignant tumors (8 Edition) [21]. Since molecular subtypes are not available in the cancer registry, subtypes were coded due to an alternative classification using estrogen receptor (ER), progesterone receptor (PR), HER2 expression, Ki-67, and Grade. Accordingly, five subgroups were distinguished: "Luminal A-like" (HER2-, ER and/or PR+, Ki-67<10 or Grade 1/2); "Luminal B-like (HER2-)" (HER2-, ER and/or PR+, Ki-67≥10 or Grade 3); "Luminal B-like (HER2+)" (HER2+, ER and/or PR+); "HER2-like non-luminal" (HER2+, ER-, PR-); and "Triple negative" (HER2-, ER-, PR-). ER and PR were regarded as positive, if at least 1.0% of the cells were positive. HER2 expression was evaluated based on IHC and in situ hybridization (FISH/ chromogenic in situ hybridization) according to the ASCO/ CAP guideline [22].

Statistical analysis

The MCR organized data in an Oracle database. Statistical analyses were conducted using SAS (version 9.4; SAS Institute, Cary, NC). The prognostic factors and therapies were analysed using descriptive statistics. The percentages of the presented subcategories were related to the sum of available data of each variable, while missing data were not taken into account.

In the survival analysis, overall survival (OS) and relative survival (RS) was computed using the Kaplan–Meier Method. RS was computed by calculating the ratio of the observed survival rate to the expected survival rate. The expected survival time of age-matched individuals was calculated using life tables for the German population using the Ederer II method [23]. RS can be interpreted as survival from cancer after correcting for other causes of death, therefore RS was used to estimate cancer-specific survival. Additionally, time to local recurrence (TTLR) and time to metastasis (TTM) were used as endpoints in this analysis because they are surrogate parameters for survival.

Results


Prognostic factors and therapies

In the period from 2004 to 2015, 11,954 patients had been diagnosed and treated with invasive BC at LMU Breast Center and of Munich Red Cross Hospital and were eligible to the analysis. Out of these, 781 (6.5%) patients were under the age of 40 years and met the inclusion criteria.

Among young BC patients, the majority (n = 272, 60.6%) was diagnosed with BC stage pT1, followed by 162 patients with pT2 (36.1%), 14 patients with pT3 (3.1%) and one patient with pT4 (0.2%).

Regarding the nodal state in young BC patients, more than 50% were diagnosed with pN0 (n = 466; 64.2%), followed by pN+ (n = 257; 35.4%) and only 3 patients with pNX (0.4%). The majority of young BC patients was

Fig. 1 Cohort selection

diagnosed with Grade 3 (n=362, 48.0%) followed by Grade 2 (n = 344, 45.6%) and G1 (n = 49, 6.5%).

Regarding the estrogen and progesterone receptor state, young BC patients seemed to have increased numbers of ER positive BC (n=529, 69.2% of young BC) and PR positive BC (n=506; 66.3% of young BC). HER2 state was predominantly negative in young BC (n=564; 74.4%).

Most of the young BC patients were diagnosed with biological subtype Luminal-B-like (HER2-) BC (ER positive, PR positive and HER 2 negative). Table 1 sums up the data collected between 2004 and 2015.

Regarding the treatment, 739 of young BC patients underwent surgery. The major part of this group (n = 483; 64.3%) got a breast conserving surgery. Summarized in Fig. 2 is the trend of breast conserving surgery over the period of the analysis. We can see stable rates from 2004 to 2012 and from 2013 onwards a decrease in numbers.

The numbers regarding axillary dissection, demonstrated in Fig. 3a and b, show that most of young BC patients got a sentinel lymph node biopsy (SLNB) only (n = 356, 45.6%), showing a significant increase over time, then stable at a high level at 50–60% from 2010 onwards, while the number of LADs fell abruptly from 2008 onwards.

In addition to the surgical therapy, for 48% of the patients with BCS, a radiation therapy was documented (n = 386; 47.7%).

Regarding an additional systemic treatment 43.2% (n = 337) of the young patients received both adjuvant chemotherapy (CT) and endocrine therapy (ET), 29.3% (n = 229) CT only and 18.6% (n = 145) ET only (see Table 1). Figures 4 and 5sum up the CT and ET trends. We can see stable rates regarding CT, regarding ET with HR + increase over time.

Survival analysis

The overall survival (OS) of the 673 young patients without primary metastasis (M0) is shown in Fig. 6. The 5-year OS was 90.9% and after 10 years, 79.3% were still alive. Due to the young age, the relative survival (RS) was comparable with 90.9% and 79.0%, respectively.

Local recurrence rate was 13.4% after 5 years, and 23.1% after 10 years. Figure 7 shows the data for time to local recurrence depending on the biological subtypes. The highest incidence for local recurrence in young BC patients was among those with triple negative BC. However, later local recurrence was higher in HER2 + non-luminal BC patients.

The cumulative incidence of the time to distant metastasis (TTM) for young M0 patients was 16.3 (95% CI 13.1–19.8) after 5 years and 26.1 (95% CI 21.1–31.4) after 10 years.

Figure 8 shows the TTM rates according to the biological subtype. Tumors of the subgroups HER2 + non luminal and

Triple negative showed earlier and more frequent diagnosis of distant metastases as compared to the other subgroups (see Fig. 9)

Discussion

Our analysis provides valuable insights into the clinicopathological characteristics, modalities and outcomes of breast cancer (BC) treatment in young women aged under 40 years. There is a substantial proportion of BC diagnoses occurring in young women, comprising 6.5% of the total BC cases over the period analysed. This underscores the importance of understanding and addressing BC in younger individuals

Previous studies have shown that younger women are more likely to have larger tumors and higher grade tumors, suggesting a more aggressive cancer biology [8–10, 24–26]. We were able to confirm that young BC patients develop tumors with higher grade (G3 in 48.0%), but not tumors with higher stage, since in our cohort the major part was diagnosed with stage 1 (60.6%). Most of the tumors in our cohort were Luminal-A-like or Luminal-B-like (HER2 negative) which is consistent to the data of Partridge et al. [24].

We were able to show a significant increase of SLNB over time then stable at a high level at 50–60% from 2010 onwards, which has also been shown by Schrodi et al. [27]. This is more likely due to the fact that SLNB was implemented as a standard procedure in the German guideline in 2008 [28], which was also the case in other countries such as the Netherlands [29, 30] and the USA [31].

Contrary to our analysis, other studies show that mastectomy rates have been increasing since the year of 2000 mainly in the US [32, 33]. In terms of treatment modalities, in our analysis young BC patients were more likely to undergo breast-conserving surgery (BCS), at least until 2012 with decreasing numbers in 2013 which then rise again slightly. The decreasing of BCS in our cohort is more likely due to the "Angelina-Jolie-Effect" in 2013 [34]. Generally, BCS reflects efforts to preserve breast aesthetics and function in the younger population, which may also be possible by the use of neoadjuvant chemotherapy. Body image concerns may be less for BCS patients, with or without reconstruction [35], which may explain findings of young women's preferences for BCS, except when having children [36]. Randomised trials show no significant difference in survival benefits comparing modified radical mastectomy and BCS plus radiation [2, 3, 37, 38]. But it is also known that genetic predisposition and having children affect the preference for mastectomy [39, 40]. Additionally, as young age has been demonstrated as an independent risk factor for local recurrence after conservative treatment and more

Table 1 Tumor classification, tumor biology and treatment of breast cancer patients < 40 years (n = 781)

Tumor classification	
	(n = 449; 332 missing data)
	272 (60.6%)
	162 (36.1%)
	14 (3.1%)
	1 (0.2%)
	(n = 726; 55 missing data)
	466 (64.2%)
N +	257 (35.4%)
	3 (0.4%)
· ·	(n = 755; 26 missing data)
	49 (6.5%)
	344 (45.6%)
G3	362 (48.0%)
Tumor biology	
	(n = 764; 17 missing data)
	529 (69.2%)
ě	235 (30.8%)
	(n = 763; 18 missing data)
	506 (66.3%)
0	257 (33.7)
	(n = 764; 17 missing data)
	568 (74.4%)
· ·	196 (25.6%)
	(n = 758; 23 missing data)
	172 (22.7%)
ě	564 (74.4%)
` '	22 (2.9%)
· ·	(n = 733; 48 missing data)
	194 (26.5%)
* *	225 (30.7%)
	125 (17.1%)
	47 (6.4%)
	142 (19.4%)
Local therapy	
- ·	(n = 751; 30 missing data)
	12 (1.6%)
	483 (64.3%)
•	256 (34.1%)
, , ,	(n=781)
	26 (3.3%)
	204 (26.1%)
	166 (21.3%)
·	356 (45.6%)
	29 (3.7%)
	(n = 483; 298 missing data)
	386 (79.9%)
	97 (20.1%)
	(n = 256; 525 missing data)
Yes	122 (47.7%)

Table 1 (continued)

No	134 (52.3%)
Systemic therapy ^b	
Chemotherapy, endocrine therapy	(n = 781)
No systemic therapy	70 (9.0%)
Chemotherapy only	229 (29.3%)
Endocrine therapy only	145 (18.6%)
Chemotherapy and endocrine therapy	337 (43.2%)
Targeted therapy	(n=172; 609 missing data)
Yes	131 (76.2%)
No	41 (23.8%)

^aHER 2 positive: IHC Score = 3 or IHC Score = 2 and FISH-Test positive

HER 2 negative: IHC Score =1 or IHC Score =2 and FISH-Test negative

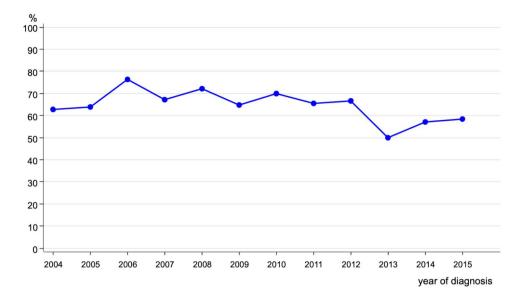
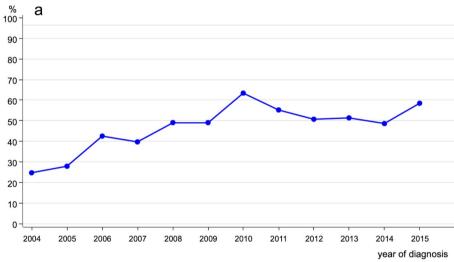
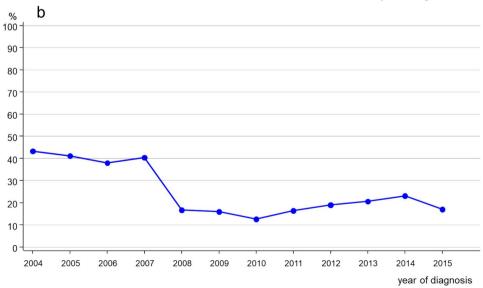
^bTherapy Yes: recommended, started, completed. Therapy No: contraindicated, rejected by the patient, not completed

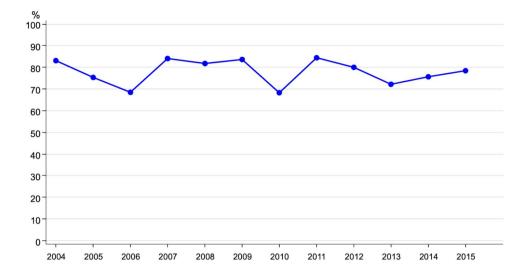
aggressive tumors in the younger age group, BCS is still under discussion [41–43]. However, the decision for breast conserving surgery versus mastectomy should be carefully weighed against each other, considering medical data such as tumor size, lymph node involvement, tumor biology, multifocality and patient preferences.

Additionally, our analysis highlighted that young BC patients receive aggressive treatment regimens: 43.2% received both chemotherapy and endocrine therapy, which is consistent to the literature [24]. Other studies could also show that the highest rate of chemotherapy can be found in patients younger than 40 years [24, 44, 45]. This underscores the challenges of managing BC in younger women, who may require intensified treatment strategies to achieve optimal outcomes as well as specifically addressed guidelines for treatment [46].

Notably, our survival analysis revealed favorable overall survival rates in young BC patients, particularly among those with Luminal A-like and Luminal-B-like tumors. The 5-year relative survival (RS) in our cohort was 90.9%, which is comparable to the literature [47]. But studies could show, that in luminal breast cancer, younger age (≤ 40 years) seems to be an independent prognostic factor [26, 48], but not in the more aggressive tumor phenotypes such as HER2-positive/non-luminal or triple-negative breast cancer compared with women 51–60 years of age [24]. This may reflect inadequate therapy, including lower treatment efficacy and less therapeutic adherence and persistence, as well as residual differences in tumor biology [24]. Tailored therapy in young patients seems to be an

Fig. 2 Trend of breast conserving surgery in breast cancer patients < 40 years (n = 483)


Fig. 3 a Trend of sentinel lymph node biopsy alone (SLNB) in breast cancer patients < 40 years (n = 356). b Locally axillary dissection (LAD) in breast cancer patients < 40 years (n = 204)

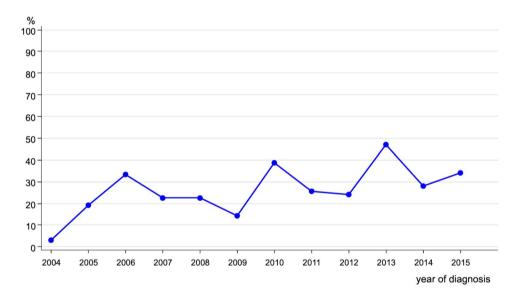
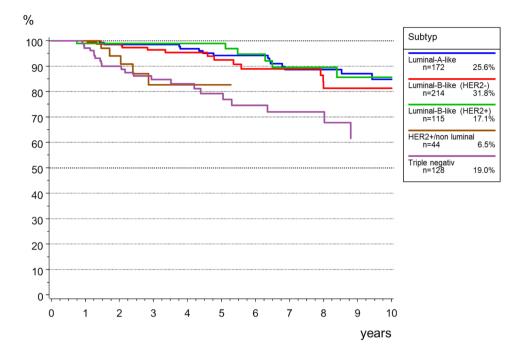


Fig. 4 Trend of chemotherapy in young breast cancer patients (n = 566)

Fig. 5 Trend of endocrine therapy for patients < 40 years (HR +, n= 568)


important step to reduce age-related disparities in breast cancer [24, 49].

We can confirm that regarding local recurrence in our cohort, Luminal-A-like and Luminal-B-like (HER2 negative) tumors were at a low risk, while HER2-positve/non-luminal and triple-negative breast cancer were at increased risk [50] of local recurrence as also a higher cumulative incidence of time to distant metastasis [46]. The poorer outcomes observed for triple-negative and HER2-positve/non luminal breast cancer remains consistent with other studies [50, 51] and highlight the need for effective systemic therapy in this important age group.

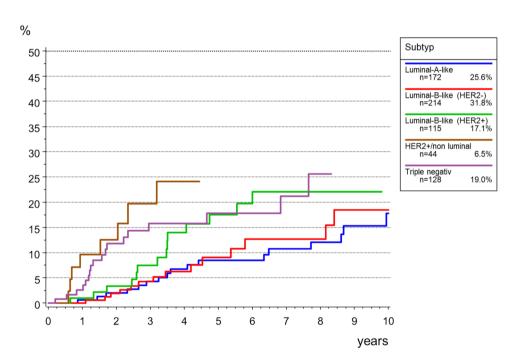
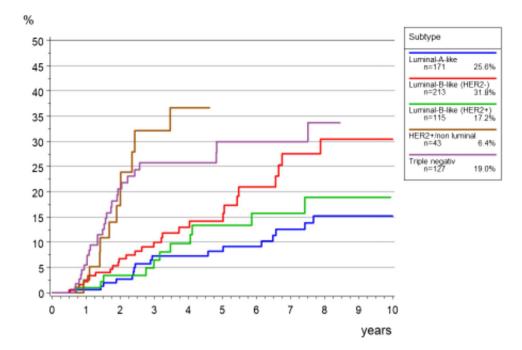

A limitation of this analysis is the possible underestimation of radiation therapy, endocrine therapy, and chemotherapy as a result of the inherent underreporting of therapies (particularly therapies not conducted, as well as those conducted but not reported) in the cancer registry. However, with the stepwise implementation of certified breast centers in Germany since 2006, data quality has increasingly improved. Furthermore, we have no information about menopausal state or personal data of the patient such as marital status, children, family planning, employment status. In addition, the law in Germany does not permit the collection and evaluation of data on genetic tests, which would have been interesting. Unfortunately, we cannot say from the available data who received which therapy and why, e.g. it cannot be determined retrospectively how many patients received SLNB+LAD, but not in how many patients with positive SLNB no LAD was performed.

Fig. 6 Overall survival in breast cancer patients < 40 years (M0, n = 673)

Fig. 7 Cumulative incidence for time to local recurrence in in breast cancer patients < 40 years (M0, n = 673)


Conclusion

In conclusion, our analysis provides comprehensive insights into the clinicopathological characteristics, treatment patterns, and outcomes of BC in young women aged

under 40 years. By elucidating the unique challenges and considerations associated with BC in this population, our findings contribute to the ongoing efforts to improve care and outcomes for young BC patients. Further research is warranted to better understand the underlying biological

Fig. 8 Cumulative incidence of time to distant metastasis (TTM) according to subtype for young patients with breast cancer (M0, n = 709)

mechanisms driving BC in young women and to develop targeted therapeutic strategies tailored to their specific needs and preferences.

Acknowledgements The authors thank the Munich Cancer Registry (MRC) of the Munich Tumor Center (TZM) for their support in patient selection and provision of the data.

Author contributions F. Ganster conceived and designed the work that led to the submission and played an important role in interpreting the results. She drafted the manuscript and approved the final version. S. Schrodi conceived and designed the work that led to the submission, analyzed the data and played an important role in interpreting the results. She drafted and revised the manuscript and approved the final version. M. Braun conceived the work that led to the submission and played an important role in interpreting the results. He revised the manuscript and approved the final version. Ch. Seifert conceived the work that led to the submission and played an important role in interpreting the results. She revised the manuscript and approved the final version. S. Mahner conceived the work that led to the submission and played an important role in interpreting the results. He revised the manuscript and approved the final version. T. Kolben conceived the work that led to the submission and played an important role in interpreting the results. He revised the manuscript and approved the final version. R. Wuerstlein conceived and designed the work that led to the submission and played an important role in interpreting the results. She revised the manuscript and approved the final version. N. Harbeck conceived and designed the work that led to the submission and played an important role in interpreting the results. She revised the manuscript and approved the final version. M. Burgmann conceived and designed the work that led to the submission and played an important role in interpreting the results. She drafted and revised the manuscript and approved the final version. F.B., S.S., N.H., R.W. and M.B. conceived and designed the work. F.B. and M.B. drafted the manuscript text, S.S. prepared the statistical analysis. All authors played an important role in interpreting the results and reviewed the manuscript.

Funding Open Access funding enabled and organized by Projekt DEAL. The authors declare that no funds, grants, or other support were received during the preparation of this manuscript.

Data availability No datasets were generated or analysed during the current study.

Declarations

Conflict of interest The authors declare no competing interests.

Ethical approval As this is a retrospective and anonymized analysis, no ethics application was necessary.

Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if changes were made. The images or other third party material in this article are included in the article's Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article's Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by/4.0/.

References

 Coyne E, Borbasi S (2006) Holding it all together: breast cancer and its impact on life for younger women. Contemp Nurse 23(2):157–169

- Partridge AH, Pagani O, Abulkhair O, Aebi S, Amant F, Azim HA
 Jr et al (2014) First international consensus guidelines for breast
 cancer in young women (BCY1). Breast 23(3):209–220
- Cardoso F, Loibl S, Pagani O, Graziottin A, Panizza P, Martincich L et al (2012) The European society of breast cancer specialists recommendations for the management of young women with breast cancer. Eur J Cancer 48(18):3355–3377
- Lukasiewicz S, Czeczelewski M, Forma A, Baj J, Sitarz R, Stanislawek A (2021) Breast cancer-epidemiology, risk factors, classification, prognostic markers, and current treatment strategies-an updated review. Cancers (Basel). 13(17):4287
- Pronzato P, Mustacchi G, De Matteis A, Di Costanzo F, Rulli E, Floriani I et al (2011) Biological characteristics and medical treatment of breast cancer in young women-a featured population: results from the NORA study. Int J Breast Cancer 2011:534256
- Leclere B, Molinie F, Tretarre B, Stracci F, Daubisse-Marliac L, Colonna M et al (2013) Trends in incidence of breast cancer among women under 40 in seven European countries: a GRELL cooperative study. Cancer Epidemiol 37(5):544–549
- Brinton LA, Sherman ME, Carreon JD, Anderson WF (2008) Recent trends in breast cancer among younger women in the United States. J Natl Cancer Inst 100(22):1643–1648
- Banz-Jansen C, Heinrichs A, Hedderich M, Waldmann A, Dittmer C, Wedel B et al (2012) Characteristics and therapy of premenopausal patients with early-onset breast cancer in Germany. Arch Gynecol Obstet 286(2):489–493
- Arora NK, Gustafson DH, Hawkins RP, McTavish F, Cella DF, Pingree S et al (2001) Impact of surgery and chemotherapy on the quality of life of younger women with breast carcinoma: a prospective study. Cancer 92(5):1288–1298
- Ganz PA, Greendale GA, Petersen L, Kahn B, Bower JE (2003) Breast cancer in younger women: reproductive and late health effects of treatment. J Clin Oncol 21(22):4184–4193
- Paluch-Shimon S, Cardoso F, Partridge AH, Abulkhair O, Azim HA, Bianchi-Micheli G et al (2022) ESO-ESMO fifth international consensus guidelines for breast cancer in young women (BCY5). Ann Oncol 33(11):1097–1118
- Partridge AH, Gelber S, Peppercorn J, Sampson E, Knudsen K, Laufer M et al (2004) Web-based survey of fertility issues in young women with breast cancer. J Clin Oncol 22(20):4174–4183
- Avis NE, Crawford S, Manuel J (2004) Psychosocial problems among younger women with breast cancer. Psychooncology 13(5):295–308
- Lawrenz B, Henes M, Neunhoeffer E, Kraemer B, Fehm T (2011)
 Fertility conservation in breast cancer patients. Womens Health (Lond) 7(2):203–212
- Burgmann M, Hermelink K, Farr A, van Meegen F, Heiduschk A, Engel J et al (2018) Evaluation of reproductive concerns and biographical impact of breast cancer in young patients. Breast Care (Basel) 13(2):126–130
- Nissen MJ, Swenson KK, Ritz LJ, Farrell JB, Sladek ML, Lally RM (2001) Quality of life after breast carcinoma surgery: a comparison of three surgical procedures. Cancer 91(7):1238–1246
- Wenzel LB, Fairclough DL, Brady MJ, Cella D, Garrett KM, Kluhsman BC et al (1999) Age-related differences in the quality of life of breast carcinoma patients after treatment. Cancer 86(9):1768–1774
- Avis NE, Smith KW, McGraw S, Smith RG, Petronis VM, Carver CS (2005) Assessing quality of life in adult cancer survivors (QLACS). Qual Life Res 14(4):1007–1023
- Fobair P, Stewart SL, Chang S, D'Onofrio C, Banks PJ, Bloom JR (2006) Body image and sexual problems in young women with breast cancer. Psychooncology 15(7):579–594
- Burwell SR, Case LD, Kaelin C, Avis NE (2006) Sexual problems in younger women after breast cancer surgery. J Clin Oncol 24(18):2815–2821

- O'Sullivan B, Brierley J, Byrd D, Bosman F, Kehoe S, Kossary C et al (2017) The TNM classification of malignant tumourstowards common understanding and reasonable expectations. Lancet Oncol 18(7):849–851
- Wolff AC, Hammond MEH, Allison KH, Harvey BE, Mangu PB, Bartlett JMS et al (2018) Human epidermal growth factor receptor 2 testing in breast cancer: American society of clinical oncology/college of American pathologists clinical practice guideline focused update. J Clin Oncol 36(20):2105–2122
- Mariotto AB, Noone AM, Howlader N, Cho H, Keel GE, Garshell J et al (2014) Cancer survival: an overview of measures, uses, and interpretation. J Natl Cancer Inst Monogr 2014(49):145–186
- Partridge AH, Hughes ME, Warner ET, Ottesen RA, Wong YN, Edge SB et al (2016) Subtype-dependent relationship between young age at diagnosis and breast cancer survival. J Clin Oncol 34(27):3308–3314
- Anders CK, Hsu DS, Broadwater G, Acharya CR, Foekens JA, Zhang Y et al (2008) Young age at diagnosis correlates with worse prognosis and defines a subset of breast cancers with shared patterns of gene expression. J Clin Oncol 26(20):3324–3330
- Ahn SH, Son BH, Kim SW, Kim SI, Jeong J, Ko SS et al (2007) Poor outcome of hormone receptor-positive breast cancer at very young age is due to tamoxifen resistance: nationwide survival data in Korea–a report from the Korean breast cancer society. J Clin Oncol 25(17):2360–2368
- Schrodi S, Niedostatek A, Werner C, Tillack A, Schubert-Fritschle G, Engel J (2015) Is primary surgery of breast cancer patients consistent with German guidelines? twelve-year trend of population-based clinical cancer registry data. Eur J Cancer Care (Engl) 24(2):242–252
- 2008 R K. Interdisziplinäre S3-Leitlinie für die Diagnostik, Therapie und Nachsorge des Mammakarzinoms, 1. Aktualisierung edn. Zuckschwerdt, Germering/München, Germany.
- Ho VK, van der Heiden-van der Loo M, Rutgers EJ, van Diest PJ, Hobbelink MG, Tjan-Heijnen VC et al (2008) Implementation of sentinel node biopsy in breast cancer patients in the Netherlands. Eur J Cancer 44(5):683–691
- Schaapveld M, de Vries EG, Otter R, de Vries J, Dolsma WV, Willemse PH (2005) Guideline adherence for early breast cancer before and after introduction of the sentinel node biopsy. Br J Cancer 93(5):520–528
- Chen AY, Halpern MT, Schrag NM, Stewart A, Leitch M, Ward E (2008) Disparities and trends in sentinel lymph node biopsy among early-stage breast cancer patients (1998–2005). J Natl Cancer Inst 100(7):462–474
- Lazow SP, Riba L, Alapati A, James TA (2019) Comparison of breast-conserving therapy vs mastectomy in women under age 40: national trends and potential survival implications. Breast J 25(4):578–584
- Kummerow KL, Du L, Penson DF, Shyr Y, Hooks MA (2015) Nationwide trends in mastectomy for early-stage breast cancer. JAMA Surg 150(1):9–16
- 34. Liede A, Cai M, Crouter TF, Niepel D, Callaghan F, Evans DG (2018) Risk-reducing mastectomy rates in the US: a closer examination of the Angelina Jolie effect. Breast Cancer Res Treat 171(2):435–442
- Rosenberg SM, Tamimi RM, Gelber S, Ruddy KJ, Kereakoglow S, Borges VF et al (2013) Body image in recently diagnosed young women with early breast cancer. Psychooncology 22(8):1849–1855
- Gumus M, Ustaalioglu BO, Garip M, Kiziltan E, Bilici A, Seker M et al (2010) Factors that affect patients' decision-making about mastectomy or breast conserving surgery, and the psychological effect of this choice on breast cancer patients. Breast Care (Basel) 5(3):164–168

- Bleicher RJ, Abrahamse P, Hawley ST, Katz SJ, Morrow M (2008)
 The influence of age on the breast surgery decision-making process. Ann Surg Oncol 15(3):854

 –862
- Harbeck N, Thomssen C, GnantGallen MS (2013) Brief preliminary summary of the consensus discussion. Breast Care (Basel). 8(2):102–109
- King L, O'Neill SC, Spellman E, Peshkin BN, Valdimarsdottir H, Willey S et al (2013) Intentions for bilateral mastectomy among newly diagnosed breast cancer patients. J Surg Oncol 107(7):772–776
- Recio-Saucedo A, Gerty S, Foster C, Eccles D, Cutress RI (2016) Information requirements of young women with breast cancer treated with mastectomy or breast conserving surgery: a systematic review. Breast 25:1–13
- 41. Xiong Q, Valero V, Kau V, Kau SW, Taylor S, Smith TL et al (2001) Female patients with breast carcinoma age 30 years and younger have a poor prognosis: the MD Anderson cancer center experience. Cancer 92(10):2523–2528
- 42. Sidoni A, Cavaliere A, Bellezza G, Scheibel M, Bucciarelli E (2003) Breast cancer in young women: clinicopathological features and biological specificity. Breast 12(4):247–250
- 43. Cancello G, Maisonneuve P, Mazza M, Montagna E, Rotmensz N, Viale G et al (2013) Pathological features and survival outcomes of very young patients with early breast cancer: how much is "very young"? Breast 22(6):1046–1051
- 44. Kataoka A, Tokunaga E, Masuda N, Shien T, Kawabata K, Miyashita M (2014) Clinicopathological features of young patients (<35 years of age) with breast cancer in a Japanese breast cancer society supported study. Breast Cancer 21(6):643–650
- Kwong A, Cheung P, Chan S, Lau S (2008) Breast cancer in Chinese women younger than age 40: are they different from their older counterparts? World J Surg 32(12):2554–2561

- Adrada BE, Moseley TW, Kapoor MM, Scoggins ME, Patel MM, Perez F et al (2023) Triple-negative breast cancer: histopathologic features, genomics, and treatment. Radiographics 43(10):e230034
- American Cancer Society (2013) Breast cancer facts & figures 2013–2014. GA, American Cancer Society, Atlanta
- Sheridan W, Scott T, Caroline S, Yvonne Z, Vanessa B, David V et al (2014) Breast cancer in young women: have the prognostic implications of breast cancer subtypes changed over time? Breast Cancer Res Treat 147(3):617–629
- Warner ET, Tamimi RM, Hughes ME, Ottesen RA, Wong YN, Edge SB et al (2015) Racial and ethnic differences in breast cancer survival: mediating effect of tumor characteristics and sociodemographic and treatment factors. J Clin Oncol 33(20):2254–2261
- Alabdulkareem H, Pinchinat T, Khan S, Landers A, Christos P, Simmons R et al (2018) The impact of molecular subtype on breast cancer recurrence in young women treated with contemporary adjuvant therapy. Breast J 24(2):148–153
- Bauer KR, Brown M, Cress RD, Parise CA, Caggiano V (2007)
 Descriptive analysis of estrogen receptor (ER)-negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype: a population-based study from the California cancer registry. Cancer 109(9):1721–1728

Publisher's Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

