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Abstract

Background To investigate a non-invasive radiomics-based machine learning algorithm to differentiate upper
urinary tract urothelial carcinoma (UTUC) from renal cell carcinoma (RCC) prior to surgical intervention.

Methods Preoperative computed tomography venous-phase datasets from patients that underwent procedures
for histopathologically confirmed UTUC or RCC were retrospectively analyzed. Tumor segmentation was performed
manually, and radiomic features were extracted according to the International Image Biomarker Standardization
Initiative. Features were normalized using z-scores, and a predictive model was developed using the least absolute
shrinkage and selection operator (LASSO). The dataset was split into a training cohort (70%) and a test cohort (30%).

Results A total of 236 patients [30.5% female, median age 70.5 years (IQR: 59.5-77), median tumor size 5.8 cm

(range: 4.1-8.2 cm)] were included. For differentiating UTUC from RCC, the model achieved a sensitivity of 88.4%

and specificity of 81% (AUC: 0.93, radiomics score cutoff: 0.467) in the training cohort. In the validation cohort, the
sensitivity was 80.6% and specificity 80% (AUC: 0.87, radiomics score cutoff: 0.601). Subgroup analysis of the validation
cohort demonstrated robust performance, particularly in distinguishing clear cell RCC from high-grade UTUC
(sensitivity: 84%, specificity: 73.1%, AUC: 0.84) and high-grade from low-grade UTUC (sensitivity: 57.7%, specificity:
88.9%, AUC: 0.68). Limitations include the need for independent validation in future randomized controlled trials
(RCTs).

Conclusions Machine learning-based radiomics models can reliably differentiate between RCC and UTUC in
preoperative CT imaging. With a suggested performance benefit compared to conventional imaging, this technology
might be added to the current preoperative diagnostic workflow.
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Introduction

Upper urinary tract urothelial carcinomas (UTUCs) are
tumors that arise in the ureter and pyelocaliceal cavities
[1]. Accounting for only 5 to 10% of all urothelial carci-
nomas, UTUCs are rare tumors, with an estimated inci-
dence in the Western population of two cases per 100,000
individuals per year [2, 3]. Contrast-enhanced computed
tomography (CT), particularly with a urographic phase,
is the imaging reference standard for preoperative stag-
ing of UTUC and a widely used modality for differentiat-
ing renal masses [4, 5].

Differentiating UTUC from renal cell carcinoma (RCC)
using imaging can be challenging, particularly in cases of
locally advanced disease. Accurate preoperative diagnosis
is critical, as surgical approaches differ for both entities.
Localized RCC is typically managed with partial or radi-
cal nephrectomy, whereas high-grade or locally advanced
UTUC is treated with open radical nephroureterectomy,
including bladder cuff excision [1, 5]. Preoperative his-
tological evaluation through endourological biopsy has
limitations. Despite advancements, such as Fluorescence
in situ Hybridization (FISH) [6], the accuracy of histo-
pathological results can be limited by tumor heterogene-
ity [7]. Additionally, the risk of tumor seeding in UTUC
during these procedures remains a subject to debate
[8]. Consequently, there is a significant clinical need for
non-invasive methods to differentiate UTUC from RCC
preoperatively.

Radiomics is an innovative technique that trans-
forms medical images into high-dimensional datasets
by extracting quantitative features, such as shape, tex-
ture, size/volume and intensity through specialized
algorithms. These features have the potential to capture
image characteristics beyond what is visually perceptible,
including tumor grade, receptor status and markers pre-
dictive of therapy response [9, 10].

The aim of this proof-of-concept study was to explore
the potential of radiomics for the preoperative differen-
tiation of UTUC and RCC, validated by histopathology.
We hypothesized that a machine learning-based model,
leveraging a panel of 59 standardized radiomic features,
could enable non-invasive differentiation between UTUC
and RCC using preoperative CT datasets.

Materials and methods

Study approval

This retrospective study was conducted with the approval
of the institutional review board (Local clinical eth-
ics committee of the Ludwig-Maximilians-University of
Munich approval no. 20-179). Our research was carried

out in accordance with the Declaration of Helsinki of the
World Medical Association, and informed consent to
participate in the study was obtained from all patients.

Patients

Data from patients treated for renal masses at our cross-
regional tertiary care academic center between 2005 and
2021 were queried for pretreatment CT imaging. Only
patients with pretreatment CT imaging in the venous
phase were included to ensure comparability between
scans. Patients were eligible if they had a histopathologi-
cally confirmed UTUC or RCC, diagnosed via biopsy or
resection (exemplary histopathology slides are displayed
in Fig. 1C/D). Patients with UTUC were included in case
of a urothelial carcinoma upon histopathological analysis
and if a tumor location in the renal pelvis was identified.
UTUCs with ureteral location were excluded. There were
no size criteria applied for inclusion of RCC or UTUC
tumors. Patients were excluded from the analysis if no
pretreatment venous phase CT scan was available and in
case of prior treatment of a kidney tumor (surgery, abla-
tive treatment or systemic therapy), tumor recurrence as
well as congenital kidney malformations, such as horse-
shoe kidney or pelvic kidney. Clinical parameters such as
age, date of surgery, and histopathological parameters of
renal masses (tumor type, tumor subtype, TNM-stage,
grading) were collected retrospectively from patient
records. The study of this study adhered to the STROBE
statement for cohort studies (Suppl. Document 1).

CT imaging

CT data from our institution and external facilities (sec-
ondary care centers, primary care centers, and private
practices) were included. All patients received intrave-
nous iodine-based contrast medium. To ensure con-
sistency, only venous-phase scans were analyzed, as
this phase is standard in renal tumor CT protocols and
provides high lesion-to-parenchyma contrast, even for
hypovascular tumors [11]. Soft kernel-reconstructed
slice thickness was 3—-5 mm, respectively. In addition,
although multiphase imaging is considered the refer-
ence standard for renal mass characterization, imaging
protocols vary substantially across institutions, and cor-
ticomedullary or urographic phases are not consistently
performed.

Tumor segmentation and extraction of radiomic features

Tumors were assessed in multiple sectional planes and
contrast phases to determine their extent. Manual seg-
mentation of the tumor was performed in the axial plane
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Fig. 1 Segmentation of renal tumors on axial series of abdominal CT scans. A and B Manual tumor segmentation was performed on CT scans in the ve-
nous phase using commercially available software. After detailed examination of the tumor in the various sectional planes, segmentation was performed
in the axial plane, starting in the central area of the tumor. In the case of large tumors, each layer was not segmented individually, but the algorithm in-
terpolated individual intermediate layers independently. This was then corrected manually. Tumor segmentations were performed by a trained doctorate
student and a board-certified radiologist with more than 10 years of experience in abdominal imaging. C and D: Histopathology slides in hematoxylin
and eosin staining of ccRCC (C) and UTUC (D) Abbreviations: RCC: renal cell carcinoma, UTUC: upper tract urothelial carcinoma

using commercially available software (mint Lesion™,
Mint Medical GmbH, Heidelberg, Germany). Segmen-
tation followed the standards of the International Image
Biomarker Standardization Initiative [12].

Radiomic first-order features included standard devia-
tion which reflects the variability of voxel intensities
within a lesion and may serve as a proxy for internal

heterogeneity, which is often associated with tumor
aggressiveness or necrosis. Entropy, as another first-order
feature, quantifies the complexity or unpredictability of
the intensity distribution and has been linked to tissue
disorganization, which may correlate with high-grade or
biologically aggressive tumors.
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The process began at the tumor center and extended
cranially and caudally, ensuring accurate delineation. At
the end of the segmentation process, the whole tumor
was reviewed and the delineation was corrected, if neces-
sary, until the tumor was accurately segmented. In case
of doubt, structures that could not be clearly assigned to
the tumor were not included in the volume-of-interest to
prevent the extraction of information from extratumoral
tissue such as perirenal fat (see Fig. 1A/B).

A primary segmentation was performed by a trained
specialist and reviewed by a board-certified radiologist
with over ten years of experience in abdominal imaging.
To assess interreader variability (IRV) and to account for
a reliable and reproducible range of radiomic feature val-
ues, 30% of datasets were randomly selected for indepen-
dent review by a second board-certified radiologist with
six years of experience. Adjustments were made at the
second radiologist’s discretions, and these segmentations
were saved separately. Intraclass correlation coefficients
(ICC) were calculated to assess interreader agreement.

A total of 59 radiomic features were extracted from
the entire delineated tumor volume using the software
algorithm. Included features were first order statistics

Table 1 Baseline characteristics of the patient cohort

UTUC RCC p-value
(n=117) (n=119)
Age
Mean [years] 72,1 64,3 <0.001
SD [years] +10.8 +115
Gender
Male 79 85 0515
Female 38 34
Tumor volume
Mean [cm’] 37,7 2706 <0.001
SD [cm] 62.8 361.0
T-Stage
Tx 20 1 -
Ta 25 -
Tis 1 -
T 9 27
T2 6 9
T3 50 75
T4 6 7
Side of the tumor
Left 59 67 0.366
Right 58 52
Histology -
Clear cell RCC - 87
Papillary RCC - 20
Chromophobe RCC - 5
Sarcomatoid RCC - 3
High-grade UTUC 85 -
Low-grade UTUC 32 -

Other RCC subtypes - 4
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which represent intensities on the voxel level and sec-
ond order features relating to the spatial distribution of
voxels in the grayscale matrix. Gray level co-occurrence
matrix (GLCM) features were used as second order tex-
ture descriptors to quantify patterns of voxel intensity
variations in the ROI by analyzing how frequently pairs
of voxel intensities occur at a specific spatial relation-
ship (see Supplementary Table 1). Features achieving an
ICC=>0.8 (>80% agreement) were retained for analysis.
Additionally, tumor size, represented by long and short
tumor axis (measured in mm), was included in the model.

Machine learning model building and statistical analysis
The cohort was randomly divided into training (70%)
and test sets (30%). Radiomic features were normalized
using z-scores, to a mean of 0 and a standard deviation of
1. A cross-validated logistic regression model with least
absolute shrinkage and selection operator (LASSO) was
developed using the glmnet engine in R applied for elas-
tic net regression models, to classify samples into RCC or
UTUC using radiomics features as predictive variables.
The same was done for the classification of a subgroup
into ccRCC and high grade UTUC samples, a second
subcohort of diagnostically more challenging non-clear
cell RCCs (nccRCCs) and UTUCs as well as a third sub-
group of high- and low-grade UTUC, based on the differ-
ent operative management of high-grade disease. Model
parameters were tuned for maximum accuracy with
10-fold cross-validation on a grid of penalty values (M)
and the elastic net mixing parameters for lasso regression
(ac=1) respectively. The model was trained for A giving
the minimum mean cross-validated error (A >0, “lambda.
min”). The resulting model was assessed on the remain-
ing testing data; the main evaluation metric was ROC
AUC. Model coefficients were inspected to identify pre-
dictive features. Non-parametric hypothesis testing was
performed to compare baseline characteristics of patients
with UTUC and RCC, with a pre-rejection alpha of 0.05.
All statistical analyses were performed using R version
4.1.0 (R Core Team 2021).

Results

A total of 236 patients were included in the study, with
117 (49.6%) diagnosed with UTUC and 119 (50.4%) with
RCC. All patients were treated at our university hospital
between 2005 and 2021. The demographic and tumor
characteristics of the cohort are summarized in Table 1.
Female patients comprised 30.5% of the cohort, while
69.5% were male. The median age was 70.5 years (IQR:
59.5-77). The median tumor size for all masses was
5.8 cm (4.1 +8.2). The median size of UTUC tumors was
4.2 (2.9+5.8) cm, while RCC tumors were larger, with a
median size of 8.1 cm (5.8 +9.9).
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Interreader agreement>80% was achieved for 28
radiomic features (Supplementary Table 2). These fea-
tures were included for further analysis. The LASSO
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contributing to the radiomic score (see Table 2). Using
the score, a differentiation between UTUC and RCC
with a sensitivity of 88.4% and a specificity of 81% was

regression model identified 10

radiomic

features

Table 2 Predictor values of included radiomic features in the machine learning model

observed for the training cohort (AUC: 0.93, Radiomics

Radiomics feature (raw output) Feature description [12] Normal-
ized model
coefficient

Entire cohort (n=236): UTUC vs. RCC

Firstorder.histogram.Entropy First order feature: Entropy as parameter of randomness in image values -0.146725622

Firstorder.histogram.Mean First order feature: Mean gray level intensity in ROI -0.093077333

Firstorder.histogram.Median.abs.deviation First order feature: Mean absolute deviation of intensity values from the median ~ -0.108286287

value of the image array

Firstorderintensity.Robust. mean.abs.deviation First order feature: Mean absolute deviation of intensity values from the mean -0.384201940

value of 10-90% of the image array

Glcm.Difference.average Gray level co-occurrence matrix feature: Relationship between pairs of similar -0.136673047

and pairs of dissimilar gray level values and

Glem . Difference.variance Gray level co-occurrence matrix feature: Weights means of dissimilar intensity -0.313556241

level pairs that differ more from the mean higher

Glem.Dissimilarity Gray level co-occurrence matrix feature: Relationship between pairs of similar -0.003591719

and pairs of dissimilar gray level values and

Glecm Joint.entropy Gray level co-occurrence matrix feature: Describes the randomness between 0.114638300

neighboring intensity values

Glem.Std Gray level co-occurrence matrix feature: Standard deviation of GLCM features -0.053630813

Tumor.short.axis

Subcohort (n=172): high grade UTUC vs. ccRCC
Firstorder.histogram.Median.abs.deviation

Firstorder.histogram.Std
FirstorderRobust.mean.abs.deviation

Firstorderintensity.Std
Glem.Difference.variance

Glem.Std
Tumor.short.axis

Subcohort (n=117): high-grade vs. low-grade
utuc
Glcm.Difference.variance

Glcm Joint.average

Glem.Std
Glecm.Sum.of.averages

Subcohort (n=144): UTUC vs. nccRCC
Firstorder.histogram.Entropy
Firstorderintensity.Max
Firstorder.intensity.Root.mean.square

Glem Joint.entropy

Tumor.short.axis

Second-largest axis length of the ellipsoid enclosed by the ROl upon segmenta-
tion in the CT series

First order feature: Mean absolute deviation of intensity values from the median
value of the image array

-1.888042670

-0.2014530418

First order feature: Standard deviation of the distribution of intensity values of -0.0125926496
the image array (Histogram)

First order feature: Mean absolute deviation of intensity values from the mean -0.1378609126
value of 10-90% of the image array

First order feature: Standard deviation of intensity values -0.0000503306

Gray level co-occurrence matrix feature: Weights means of dissimilar intensity
level pairs that differ more from the mean higher

-0.1467854801

Gray level co-occurrence matrix feature: Standard deviation of GLCM features -0.3490017115
Second-largest axis length of the ellipsoid enclosed by the ROl upon segmenta- -1.2137183749
tion in the CT series

Gray level co-occurrence matrix feature: Weights means of dissimilar intensity -0.2453007
level pairs that differ more from the mean higher

Gray level co-occurrence matrix feature: Mean gray level intensity of the ana- -0.1000878
lyzed matrix

Gray level co-occurrence matrix feature: Standard deviation of GLCM features 0.0481093
Gray level co-occurrence matrix feature: Relationship between pairs of lower 04578403
intensity and higher intensity values

First order feature: Entropy as parameter of randomness in image values -0.005620842
First order feature: Maximum gray level intensity in ROI -0.209872612
First order feature: Represents the square root of the mean of all squared inten- 0.216805958
sity values and serves as a measure of the overall magnitude of image intensities

Gray level co-occurrence matrix feature: Describes the randomness between 0.063284407

neighboring intensity values

Second-largest axis length of the ellipsoid enclosed by the ROl upon segmenta-
tion in the CT series

-1.676368373




Marcon et al. BMC Medical Imaging (2025) 25:196

Page 6 of 10

A 24 23 21 21 19 17 15 10 9 4 2 1 B Training cohort C Test cohort
o =}
< = -]
- .
® * [ o |
- o <}
.
8 « s
e N
s - @ ©
H 1 g £
° £ =
a] e ] 3
= - 5 <« 3 <
£ o ® s ] ® s
5 <2 4
£ T
o N Y
3 S S
@ 4 o o
o L > | > |
T T T T © T T T T T T ° T T T T T T
-8 -6 -4 -2 10 08 06 04 02 00 10 08 06 04 02 00
Specificity Specificity

log(Lambda)

Fig. 2 A Lasso regularization plot showing the log-transformed values of the regularization parameter, lambda (A), on the X axis, which controls the
penalty applied to the coefficients. The y axis shows the cross-validated error or deviance. The optimal lambda is chosen where the cross-validation error
is minimized; B and C ROC plots illustrating specificity and sensitivity of the radiomics score established upon Lasso analysis for the distinction between

RCCand UTUC
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Fig.3 A Lasso regularization plot showing the log-transformed values of the regularization parameter, lambda (A), on the X axis, which controls the pen-
alty applied to the coefficients. The y axis shows the cross-validated error or deviance. The optimal lambda is chosen where the cross-validation error for
the outcome differentiation between ccRCC and high grade UTUC is minimized; B and C ROC plots illustrating specificity and sensitivity of the radiomics
score established upon Lasso analysis for the distinction between ccRCC and high grade UTUC

score cutoff value: 0.467). For the test cohort, the dis-
tinction of the two tumor entities was possible with a
sensitivity of 80.6% and a specificity of 8 0% (AUC: 0.87,
Radiomics score cutoff value: 0.601) (see Fig. 2).

Testing was then focused on the differentiation
between high grade UTUC and ccRCC which comprised
172 cases of our cohort. The radiomic score calculated
for this subgroup contained seven features not eliminated
by the regression model. In this subgroup a sensitivity
of 86.7% and a specificity of 81.7% was obtained for the
training cohort regarding the distinction between ccRCC
and high grade UTUC (AUC: 0.92, Radiomics score cut-
off value: 0.498). For the test cohort, the two variants
could be distinguished with a sensitivity of 84% and a
specificity of 73.1% (AUC: 0.84, Radiomics score cutoff
value: 0.42) (see Fig. 3).

To further evaluate the model’s performance in more
diagnostically challenging cases, a subgroup analy-
sis excluding clear cell RCC was performed, comparing

non-clear cell RCC (nccRCC) and UTUC (rn=144). In
the training cohort, the model achieved an AUC of 0.93,
with a sensitivity of 69.8%, a specificity of 100%, and
an optimal threshold of 0.909. In the independent test
cohort, the model demonstrated an AUC of 0.82, with a
sensitivity of 91.1%, a specificity of 77.8%, and a thresh-
old of 0.64. These results suggest that the model retains
strong discriminative ability even when clear cell RCC,
which typically exhibits distinct imaging characteristics,
is excluded.

Next, testing was carried out in the 117 patients
with high-grade and low-grade UTUC to differentiate
between both tumor entities. After performing the penal-
ized regression model, a total of four features remained in
the radiomic score. A sensitivity of 61% and a specificity
of 91.3% was calculated for the differentiation between
high-grade and low-grade UTUC for the training cohort
(AUC: 0.78, Radiomics score cutoff value: 0.725). For
the test cohort, a sensitivity of 57.7% and a specificity of
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88.9% was computed (AUC 0.68, Radiomics score cutoff
value: 0.729, see Fig. 4).

Discussion

This study demonstrates that radiomics-based image
analysis enables non-invasive differentiation of UTUC
and RCC in preoperative venous-phase CT datasets with
high diagnostic accuracy validated by histopathology.

The findings underscore the feasibility of radiomic fea-
ture extraction and machine learning-based analysis as
a novel, non-invasive tool in the preoperative diagnos-
tic workflow, even when applied to heterogeneous CT
datasets from multiple institutions. The radiomic score
achieved moderate sensitivity (81%) and specificity (80%)
for differentiating UTUC from RCC, indicating that
while its discriminative ability is not yet optimal, it may
provide valuable diagnostic support when combined with
established modalities such as endourological diagnos-
tics. Importantly, the high specificity (88.9%) observed
in differentiating high-grade from low-grade UTUC sug-
gests that radiomics analysis could reliably exclude high-
grade carcinoma, guiding clinical decisions, especially
for kidney-sparing procedures. This is clinically relevant
given the distinct surgical management strategies for
high-grade and low-grade tumors [1].

Furthermore, our study evaluated the differentiation
between both clear cell RCC (ccRCC) and high-grade
UTUC, as well as non-clear cell RCC (nccRCC) and
UTUC. Clear cell RCC is the most common subtype
and typically exhibits strong, characteristic contrast
enhancement, which often facilitates diagnosis. Thus,
distinguishing ¢ccRCC from high-grade UTUC is clini-
cally relevant, particularly in cases where endoscopic or
cytological confirmation is not immediately available. To
address concerns regarding potential bias introduced by
easier-to-diagnose tumors, we also performed a focused

Training cohort
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sub-analysis excluding ccRCC. Notably, the model main-
tained a good discriminative performance in differen-
tiating nccRCC from UTUC, supporting its potential
applicability even in diagnostically more ambiguous
cases.

The relatively low sensitivity in distinguishing high-
grade from low-grade UTUC could be attributed to the
small number of low-grade UTUC cases included, likely
due to the rarity of these tumors requiring imaging in
our center. Low-grade UTUC cases are often less locally
advanced and thus may not present diagnostic challenges
comparable to the image-based discrimination between
high-grade UTUC and RCC with renal pelvis infiltration.

Few studies have applied radiomic analysis to differen-
tiate UTUC from RCC. Zhai et al. investigated a random
forest-based radiomics model, a clinical model, and a
combination of both for the differentiation of RCC and
pyelocaliceal UTUC in a smaller patient cohort. In line
with our results, the authors found both the radiomics
model and the combined radiomics/clinical model to
be powerful tools for the differentiation of UTUC and
RCC (testing cohort: AUC 0.90 for the radiomics model
and AUC 0.90 for the combined model, respectively).
Both this and the above-mentioned studies demon-
strate that differentiation of UTUC and RCC is feasible
in both a Western European and an East Asian patient
population. Notably, our study included three times more
patients (236 vs. 80), potentially increasing the gener-
alizability of our results. Although integration of clini-
cal and imaging data often is of major importance, the
only clinical feature proving independent in the study by
Zhai et al. was painless hematuria, and combining the
clinical model and the radiomics model did not improve
AUC compared to radiomics alone. Consequently, the
study by Zhai et al. confirms the limited value of clinical
parameters in the differentiation of UTUC and RCC and

c
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Fig. 4 A Lasso regularization plot showing the log-transformed values of the regularization parameter, lambda (\), on the X axis, which controls the
penalty applied to the coefficients. The y axis shows the cross-validated error or deviance. The optimal lambda is chosen where the cross-validation error
is minimized; B and C ROC plots illustrating specificity and sensitivity of the radiomics score established upon Lasso analysis for the distinction between

high-grade and low-grade UTUC
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Fig. 5 Locally advanced renal mass as a diagnostic challenge. Preoperative CT (A coronary venous phase, B coronary corticomedullary phase, C axial
corticomedullary phase, D coronary urographic phase) demonstrates a large necrotic renal mass. The corticomedullary phase demonstrates only subtle
arterial enhancement of the inferior part of the tumor (B and C, arrows). In the urographic phase (D), the renal pelvis is displaced (D, dashed arrow) but
it remains unclear if the renal calyces are infiltrated. The patient underwent nephrectomy and postoperative histopathology revealed a locally advanced

chromophobe RCC (pT3a pNO)

therefore underlines the clinical need for non-invasive
imaging diagnostic biomarkers [13].

The aim of this study was to evaluate radiomics as an
innovative, complementary approach to established diag-
nostic tools such as conventional imaging—particularly
in cases with inconclusive or ambiguous findings, even
on multiphase imaging. Figure 5 presents an example of
a diagnostically ambiguous renal mass—outside of the
study cohort—to illustrate the challenges that can persist
even with multiphase CT imaging.

By providing a quantitative, reproducible framework
for image analysis, radiomics has the potential to sup-
port more standardized diagnostic workflows and reduce
interobserver variability in the assessment of UTUCs.

Radiomics may help overcome some of the limitations
associated with traditional biopsy, such as sampling bias
resulting from intratumoral heterogeneity, and may also
be valuable in settings where cytology or endoscopic
procedures are not readily available. For example, histo-
pathological examination of nephroureterectomy speci-
mens can reveal high-grade tumor components despite
initial low-grade findings in limited biopsy samples [14].
Radiomics, as a “digital biopsy’, evaluates the entire
tumor volume, offering a more comprehensive represen-
tation of tumor biology [15].

The time from diagnosis to surgical intervention is cru-
cial especially in UTUC [16]. The use of digital biopsies
could streamline the diagnostic workflow for ambiguous
renal lesions. By extracting diagnostic data from pre-
operative imaging, radiomics could reduce the need for
invasive biopsies and the associated waiting times for his-
topathological analysis. toward which radiomic analysis
might be a first step in the development of appropriate
technologies. Patients might therefore be able to proceed
directly to the appropriate intervention or treatment with
potential incorporation of those imaging findings into
surgical workflows [17]. This expedited process could
enhance patient experience by reducing anxiety and dis-
tress while improving oncological outcomes through

timely intervention [18]. Additionally, minimizing reli-
ance on invasive procedures could reduce healthcare
costs, although the time and expense of radiomic image
processing must be considered in compensation models
for radiology services.

Several limitations of this study must be acknowledged.
First, we performed a retrospective single-center analysis
as proof-of-concept and therefore might have a reduced
external validity of our results [19]. Prospective, multi-
center studies are necessary for robust validation. While
the inclusion of imaging from different institutions dem-
onstrates algorithm robustness, variability in imaging
protocols may have influenced the results.

Second, cases in which tumors were biopsied rather
than fully resected may introduce bias due to the absence
of whole-tumor histopathology.

Another limitation of this study is the absence of fea-
ture harmonization across imaging data, which may
affect inter-institutional comparability; future studies
will incorporate established harmonization techniques to
address this issue.

While the primary aim of this study was to assess the
ability of a radiomics model to differentiate between
UTUC and RCC, we acknowledge the critical role of
established clinical and radiological diagnostics. Future
studies should therefore integrate preoperative clini-
cal or radiological assessments and evaluate the added
value of radiomics in confirming or refining these initial
diagnoses.

While this proof-of-concept study focused on quanti-
tative radiomic features, we acknowledge that tumor size
may influence feature distributions and recognize the
higher tumor volumes observed in the UTUC cohort.
Future studies should account for tumor size more sys-
tematically to further validate and refine these findings.

Additionally, as noted above, the small number of low-
grade UTUC cases reflects the rarity of these tumors in
our cohort, potentially affecting the analysis of this sub-
group. This may result in a limited utility of radiomics
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for guiding conservative treatment planning in UTUCs.
Furthermore, it remains unclear whether necrotic areas
should be excluded from segmentation, as their inclusion
might impact feature extraction and model performance.

Conclusion

This proof-of-concept study demonstrated that a
radiomics-based approach utilizing machine learning for
feature selection and classification can reliably differen-
tiate between RCC and UTUC. These findings highlight
the potential of radiomics as a non-invasive diagnostic
tool for upper urinary tract tumors, however, the differ-
entiation between low- and high-grade UTUCs proved
more challenging. In order to fully establish this tech-
nique in clinical practice, validation through prospective
multicenter trials and further optimization of the meth-
odology are essential.
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