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Abstract
Background  To investigate a non-invasive radiomics-based machine learning algorithm to differentiate upper 
urinary tract urothelial carcinoma (UTUC) from renal cell carcinoma (RCC) prior to surgical intervention.

Methods  Preoperative computed tomography venous-phase datasets from patients that underwent procedures 
for histopathologically confirmed UTUC or RCC were retrospectively analyzed. Tumor segmentation was performed 
manually, and radiomic features were extracted according to the International Image Biomarker Standardization 
Initiative. Features were normalized using z-scores, and a predictive model was developed using the least absolute 
shrinkage and selection operator (LASSO). The dataset was split into a training cohort (70%) and a test cohort (30%).

Results  A total of 236 patients [30.5% female, median age 70.5 years (IQR: 59.5–77), median tumor size 5.8 cm 
(range: 4.1–8.2 cm)] were included. For differentiating UTUC from RCC, the model achieved a sensitivity of 88.4% 
and specificity of 81% (AUC: 0.93, radiomics score cutoff: 0.467) in the training cohort. In the validation cohort, the 
sensitivity was 80.6% and specificity 80% (AUC: 0.87, radiomics score cutoff: 0.601). Subgroup analysis of the validation 
cohort demonstrated robust performance, particularly in distinguishing clear cell RCC from high-grade UTUC 
(sensitivity: 84%, specificity: 73.1%, AUC: 0.84) and high-grade from low-grade UTUC (sensitivity: 57.7%, specificity: 
88.9%, AUC: 0.68). Limitations include the need for independent validation in future randomized controlled trials 
(RCTs).

Conclusions  Machine learning-based radiomics models can reliably differentiate between RCC and UTUC in 
preoperative CT imaging. With a suggested performance benefit compared to conventional imaging, this technology 
might be added to the current preoperative diagnostic workflow.
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Introduction
Upper urinary tract urothelial carcinomas (UTUCs) are 
tumors that arise in the ureter and pyelocaliceal cavities 
[1]. Accounting for only 5 to 10% of all urothelial carci-
nomas, UTUCs are rare tumors, with an estimated inci-
dence in the Western population of two cases per 100,000 
individuals per year [2, 3]. Contrast-enhanced computed 
tomography (CT), particularly with a urographic phase, 
is the imaging reference standard for preoperative stag-
ing of UTUC and a widely used modality for differentiat-
ing renal masses [4, 5].

Differentiating UTUC from renal cell carcinoma (RCC) 
using imaging can be challenging, particularly in cases of 
locally advanced disease. Accurate preoperative diagnosis 
is critical, as surgical approaches differ for both entities. 
Localized RCC is typically managed with partial or radi-
cal nephrectomy, whereas high-grade or locally advanced 
UTUC is treated with open radical nephroureterectomy, 
including bladder cuff excision [1, 5]. Preoperative his-
tological evaluation through endourological biopsy has 
limitations. Despite advancements, such as Fluorescence 
in situ Hybridization (FISH) [6], the accuracy of histo-
pathological results can be limited by tumor heterogene-
ity [7]. Additionally, the risk of tumor seeding in UTUC 
during these procedures remains a subject to debate 
[8]. Consequently, there is a significant clinical need for 
non-invasive methods to differentiate UTUC from RCC 
preoperatively.

Radiomics is an innovative technique that trans-
forms medical images into high-dimensional datasets 
by extracting quantitative features, such as shape, tex-
ture, size/volume and intensity through specialized 
algorithms. These features have the potential to capture 
image characteristics beyond what is visually perceptible, 
including tumor grade, receptor status and markers pre-
dictive of therapy response [9, 10].

The aim of this proof-of-concept study was to explore 
the potential of radiomics for the preoperative differen-
tiation of UTUC and RCC, validated by histopathology. 
We hypothesized that a machine learning-based model, 
leveraging a panel of 59 standardized radiomic features, 
could enable non-invasive differentiation between UTUC 
and RCC using preoperative CT datasets.

Materials and methods
Study approval
This retrospective study was conducted with the approval 
of the institutional review board (Local clinical eth-
ics committee of the Ludwig-Maximilians-University of 
Munich approval no. 20–179). Our research was carried 

out in accordance with the Declaration of Helsinki of the 
World Medical Association, and informed consent to 
participate in the study was obtained from all patients.

Patients
Data from patients treated for renal masses at our cross-
regional tertiary care academic center between 2005 and 
2021 were queried for pretreatment CT imaging. Only 
patients with pretreatment CT imaging in the venous 
phase were included to ensure comparability between 
scans. Patients were eligible if they had a histopathologi-
cally confirmed UTUC or RCC, diagnosed via biopsy or 
resection (exemplary histopathology slides are displayed 
in Fig. 1C/D). Patients with UTUC were included in case 
of a urothelial carcinoma upon histopathological analysis 
and if a tumor location in the renal pelvis was identified. 
UTUCs with ureteral location were excluded. There were 
no size criteria applied for inclusion of RCC or UTUC 
tumors. Patients were excluded from the analysis if no 
pretreatment venous phase CT scan was available and in 
case of prior treatment of a kidney tumor (surgery, abla-
tive treatment or systemic therapy), tumor recurrence as 
well as congenital kidney malformations, such as horse-
shoe kidney or pelvic kidney. Clinical parameters such as 
age, date of surgery, and histopathological parameters of 
renal masses (tumor type, tumor subtype, TNM-stage, 
grading) were collected retrospectively from patient 
records. The study of this study adhered to the STROBE 
statement for cohort studies (Suppl. Document 1).

CT imaging
CT data from our institution and external facilities (sec-
ondary care centers, primary care centers, and private 
practices) were included. All patients received intrave-
nous iodine-based contrast medium. To ensure con-
sistency, only venous-phase scans were analyzed, as 
this phase is standard in renal tumor CT protocols and 
provides high lesion-to-parenchyma contrast, even for 
hypovascular tumors [11]. Soft kernel-reconstructed 
slice thickness was 3–5  mm, respectively. In addition, 
although multiphase imaging is considered the refer-
ence standard for renal mass characterization, imaging 
protocols vary substantially across institutions, and cor-
ticomedullary or urographic phases are not consistently 
performed.

Tumor segmentation and extraction of radiomic features
Tumors were assessed in multiple sectional planes and 
contrast phases to determine their extent. Manual seg-
mentation of the tumor was performed in the axial plane 
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using commercially available software (mint Lesion™, 
Mint Medical GmbH, Heidelberg, Germany). Segmen-
tation followed the standards of the International Image 
Biomarker Standardization Initiative [12].

Radiomic first-order features included standard devia-
tion which reflects the variability of voxel intensities 
within a lesion and may serve as a proxy for internal 

heterogeneity, which is often associated with tumor 
aggressiveness or necrosis. Entropy, as another first-order 
feature, quantifies the complexity or unpredictability of 
the intensity distribution and has been linked to tissue 
disorganization, which may correlate with high-grade or 
biologically aggressive tumors.

Fig. 1  Segmentation of renal tumors on axial series of abdominal CT scans. A and B Manual tumor segmentation was performed on CT scans in the ve-
nous phase using commercially available software. After detailed examination of the tumor in the various sectional planes, segmentation was performed 
in the axial plane, starting in the central area of the tumor. In the case of large tumors, each layer was not segmented individually, but the algorithm in-
terpolated individual intermediate layers independently. This was then corrected manually. Tumor segmentations were performed by a trained doctorate 
student and a board-certified radiologist with more than 10 years of experience in abdominal imaging. C and D: Histopathology slides in hematoxylin 
and eosin staining of ccRCC (C) and UTUC (D) Abbreviations: RCC: renal cell carcinoma, UTUC: upper tract urothelial carcinoma
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The process began at the tumor center and extended 
cranially and caudally, ensuring accurate delineation. At 
the end of the segmentation process, the whole tumor 
was reviewed and the delineation was corrected, if neces-
sary, until the tumor was accurately segmented. In case 
of doubt, structures that could not be clearly assigned to 
the tumor were not included in the volume-of-interest to 
prevent the extraction of information from extratumoral 
tissue such as perirenal fat (see Fig. 1A/B).

A primary segmentation was performed by a trained 
specialist and reviewed by a board-certified radiologist 
with over ten years of experience in abdominal imaging. 
To assess interreader variability (IRV) and to account for 
a reliable and reproducible range of radiomic feature val-
ues, 30% of datasets were randomly selected for indepen-
dent review by a second board-certified radiologist with 
six years of experience. Adjustments were made at the 
second radiologist’s discretions, and these segmentations 
were saved separately. Intraclass correlation coefficients 
(ICC) were calculated to assess interreader agreement.

A total of 59 radiomic features were extracted from 
the entire delineated tumor volume using the software 
algorithm. Included features were first order statistics 

which represent intensities on the voxel level and sec-
ond order features relating to the spatial distribution of 
voxels in the grayscale matrix. Gray level co-occurrence 
matrix (GLCM) features were used as second order tex-
ture descriptors to quantify patterns of voxel intensity 
variations in the ROI by analyzing how frequently pairs 
of voxel intensities occur at a specific spatial relation-
ship (see Supplementary Table 1). Features achieving an 
ICC ≥ 0.8 (≥ 80% agreement) were retained for analysis. 
Additionally, tumor size, represented by long and short 
tumor axis (measured in mm), was included in the model.

Machine learning model building and statistical analysis
The cohort was randomly divided into training (70%) 
and test sets (30%). Radiomic features were normalized 
using z-scores, to a mean of 0 and a standard deviation of 
1. A cross-validated logistic regression model with least 
absolute shrinkage and selection operator (LASSO) was 
developed using the glmnet engine in R applied for elas-
tic net regression models, to classify samples into RCC or 
UTUC using radiomics features as predictive variables. 
The same was done for the classification of a subgroup 
into ccRCC and high grade UTUC samples, a second 
subcohort of diagnostically more challenging non-clear 
cell RCCs (nccRCCs) and UTUCs as well as a third sub-
group of high- and low-grade UTUC, based on the differ-
ent operative management of high-grade disease. Model 
parameters were tuned for maximum accuracy with 
10-fold cross-validation on a grid of penalty values (λ) 
and the elastic net mixing parameters for lasso regression 
(α = 1) respectively. The model was trained for λ giving 
the minimum mean cross-validated error (λ > 0, “lambda.
min”). The resulting model was assessed on the remain-
ing testing data; the main evaluation metric was ROC 
AUC. Model coefficients were inspected to identify pre-
dictive features. Non-parametric hypothesis testing was 
performed to compare baseline characteristics of patients 
with UTUC and RCC, with a pre-rejection alpha of 0.05. 
All statistical analyses were performed using R version 
4.1.0 (R Core Team 2021).

Results
A total of 236 patients were included in the study, with 
117 (49.6%) diagnosed with UTUC and 119 (50.4%) with 
RCC. All patients were treated at our university hospital 
between 2005 and 2021. The demographic and tumor 
characteristics of the cohort are summarized in Table 1. 
Female patients comprised 30.5% of the cohort, while 
69.5% were male. The median age was 70.5 years (IQR: 
59.5–77). The median tumor size for all masses was 
5.8 cm (4.1 ± 8.2). The median size of UTUC tumors was 
4.2 (2.9 ± 5.8) cm, while RCC tumors were larger, with a 
median size of 8.1 cm (5.8 ± 9.9).

Table 1  Baseline characteristics of the patient cohort
UTUC
(n = 117)

RCC
(n = 119)

p-value

Age
  Mean [years] 72,1 64,3 < 0.001
  SD [years] ± 10.8 ± 11.5
Gender
  Male 79 85 0.515
  Female 38 34
Tumor volume
  Mean [cm³] 37,7 270,6 < 0.001
  SD [cm³] 62.8 361.0
T-Stage
  Tx 20 1 -
  Ta 25 -
  Tis 1 -
  T1 9 27
  T2 6 9
  T3 50 75
  T4 6 7
Side of the tumor
  Left 59 67 0.366
  Right 58 52
Histology -
  Clear cell RCC - 87
  Papillary RCC - 20
  Chromophobe RCC - 5
  Sarcomatoid RCC - 3
  High-grade UTUC 85 -
  Low-grade UTUC 32 -
  Other RCC subtypes - 4
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Interreader agreement ≥ 80% was achieved for 28 
radiomic features (Supplementary Table 2). These fea-
tures were included for further analysis. The LASSO 
regression model identified 10 radiomic features 

contributing to the radiomic score (see Table  2). Using 
the score, a differentiation between UTUC and RCC 
with a sensitivity of 88.4% and a specificity of 81% was 
observed for the training cohort (AUC: 0.93, Radiomics 

Table 2  Predictor values of included radiomic features in the machine learning model
Radiomics feature (raw output) Feature description [12] Normal-

ized model 
coefficient

Entire cohort (n = 236): UTUC vs. RCC
Firstorder.histogram.Entropy First order feature: Entropy as parameter of randomness in image values -0.146725622
Firstorder.histogram.Mean First order feature: Mean gray level intensity in ROI -0.093077333
Firstorder.histogram.Median.abs.deviation First order feature: Mean absolute deviation of intensity values from the median 

value of the image array
-0.108286287

Firstorder.intensity.Robust.mean.abs.deviation First order feature: Mean absolute deviation of intensity values from the mean 
value of 10–90% of the image array

-0.384201940

Glcm.Difference.average Gray level co-occurrence matrix feature: Relationship between pairs of similar 
and pairs of dissimilar gray level values and

-0.136673047

Glcm.Difference.variance Gray level co-occurrence matrix feature: Weights means of dissimilar intensity 
level pairs that differ more from the mean higher

-0.313556241

Glcm.Dissimilarity Gray level co-occurrence matrix feature: Relationship between pairs of similar 
and pairs of dissimilar gray level values and

-0.003591719

Glcm.Joint.entropy Gray level co-occurrence matrix feature: Describes the randomness between 
neighboring intensity values

0.114638300

Glcm.Std Gray level co-occurrence matrix feature: Standard deviation of GLCM features -0.053630813
Tumor.short.axis Second-largest axis length of the ellipsoid enclosed by the ROI upon segmenta-

tion in the CT series
-1.888042670

Subcohort (n = 172): high grade UTUC vs. ccRCC
Firstorder.histogram.Median.abs.deviation First order feature: Mean absolute deviation of intensity values from the median 

value of the image array
-0.2014530418

Firstorder.histogram.Std First order feature: Standard deviation of the distribution of intensity values of 
the image array (Histogram)

-0.0125926496

Firstorder.Robust.mean.abs.deviation First order feature: Mean absolute deviation of intensity values from the mean 
value of 10–90% of the image array

-0.1378609126

Firstorder.intensity.Std First order feature: Standard deviation of intensity values -0.0000503306
Glcm.Difference.variance Gray level co-occurrence matrix feature: Weights means of dissimilar intensity 

level pairs that differ more from the mean higher
-0.1467854801

Glcm.Std Gray level co-occurrence matrix feature: Standard deviation of GLCM features -0.3490017115
Tumor.short.axis Second-largest axis length of the ellipsoid enclosed by the ROI upon segmenta-

tion in the CT series
-1.2137183749

Subcohort (n = 117): high-grade vs. low-grade 
UTUC
Glcm.Difference.variance Gray level co-occurrence matrix feature: Weights means of dissimilar intensity 

level pairs that differ more from the mean higher
-0.2453007

Glcm.Joint.average Gray level co-occurrence matrix feature: Mean gray level intensity of the ana-
lyzed matrix

-0.1000878

Glcm.Std Gray level co-occurrence matrix feature: Standard deviation of GLCM features 0.0481093
Glcm.Sum.of.averages Gray level co-occurrence matrix feature: Relationship between pairs of lower 

intensity and higher intensity values
0.4578403

Subcohort (n = 144): UTUC vs. nccRCC
Firstorder.histogram.Entropy First order feature: Entropy as parameter of randomness in image values -0.005620842
Firstorder.intensity.Max First order feature: Maximum gray level intensity in ROI -0.209872612
Firstorder.intensity.Root.mean.square First order feature: Represents the square root of the mean of all squared inten-

sity values and serves as a measure of the overall magnitude of image intensities
0.216805958

Glcm.Joint.entropy Gray level co-occurrence matrix feature: Describes the randomness between 
neighboring intensity values

0.063284407

Tumor.short.axis Second-largest axis length of the ellipsoid enclosed by the ROI upon segmenta-
tion in the CT series

-1.676368373
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score cutoff value: 0.467). For the test cohort, the dis-
tinction of the two tumor entities was possible with a 
sensitivity of 80.6% and a specificity of 8 0% (AUC: 0.87, 
Radiomics score cutoff value: 0.601) (see Fig. 2).

Testing was then focused on the differentiation 
between high grade UTUC and ccRCC which comprised 
172 cases of our cohort. The radiomic score calculated 
for this subgroup contained seven features not eliminated 
by the regression model. In this subgroup a sensitivity 
of 86.7% and a specificity of 81.7% was obtained for the 
training cohort regarding the distinction between ccRCC 
and high grade UTUC (AUC: 0.92, Radiomics score cut-
off value: 0.498). For the test cohort, the two variants 
could be distinguished with a sensitivity of 84% and a 
specificity of 73.1% (AUC: 0.84, Radiomics score cutoff 
value: 0.42) (see Fig. 3).

To further evaluate the model’s performance in more 
diagnostically challenging cases, a subgroup analy-
sis excluding clear cell RCC was performed, comparing 

non-clear cell RCC (nccRCC) and UTUC (n = 144). In 
the training cohort, the model achieved an AUC of 0.93, 
with a sensitivity of 69.8%, a specificity of 100%, and 
an optimal threshold of 0.909. In the independent test 
cohort, the model demonstrated an AUC of 0.82, with a 
sensitivity of 91.1%, a specificity of 77.8%, and a thresh-
old of 0.64. These results suggest that the model retains 
strong discriminative ability even when clear cell RCC, 
which typically exhibits distinct imaging characteristics, 
is excluded.

Next, testing was carried out in the 117 patients 
with high-grade and low-grade UTUC to differentiate 
between both tumor entities. After performing the penal-
ized regression model, a total of four features remained in 
the radiomic score. A sensitivity of 61% and a specificity 
of 91.3% was calculated for the differentiation between 
high-grade and low-grade UTUC for the training cohort 
(AUC: 0.78, Radiomics score cutoff value: 0.725). For 
the test cohort, a sensitivity of 57.7% and a specificity of 

Fig. 3  A Lasso regularization plot showing the log-transformed values of the regularization parameter, lambda (λ), on the X axis, which controls the pen-
alty applied to the coefficients. The y axis shows the cross-validated error or deviance. The optimal lambda is chosen where the cross-validation error for 
the outcome differentiation between ccRCC and high grade UTUC is minimized; B and C ROC plots illustrating specificity and sensitivity of the radiomics 
score established upon Lasso analysis for the distinction between ccRCC and high grade UTUC

 

Fig. 2  A Lasso regularization plot showing the log-transformed values of the regularization parameter, lambda (λ), on the X axis, which controls the 
penalty applied to the coefficients. The y axis shows the cross-validated error or deviance. The optimal lambda is chosen where the cross-validation error 
is minimized; B and C ROC plots illustrating specificity and sensitivity of the radiomics score established upon Lasso analysis for the distinction between 
RCC and UTUC
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88.9% was computed (AUC 0.68, Radiomics score cutoff 
value: 0.729, see Fig. 4).

Discussion
This study demonstrates that radiomics-based image 
analysis enables non-invasive differentiation of UTUC 
and RCC in preoperative venous-phase CT datasets with 
high diagnostic accuracy validated by histopathology.

The findings underscore the feasibility of radiomic fea-
ture extraction and machine learning-based analysis as 
a novel, non-invasive tool in the preoperative diagnos-
tic workflow, even when applied to heterogeneous CT 
datasets from multiple institutions. The radiomic score 
achieved moderate sensitivity (81%) and specificity (80%) 
for differentiating UTUC from RCC, indicating that 
while its discriminative ability is not yet optimal, it may 
provide valuable diagnostic support when combined with 
established modalities such as endourological diagnos-
tics. Importantly, the high specificity (88.9%) observed 
in differentiating high-grade from low-grade UTUC sug-
gests that radiomics analysis could reliably exclude high-
grade carcinoma, guiding clinical decisions, especially 
for kidney-sparing procedures. This is clinically relevant 
given the distinct surgical management strategies for 
high-grade and low-grade tumors [1].

Furthermore, our study evaluated the differentiation 
between both clear cell RCC (ccRCC) and high-grade 
UTUC, as well as non-clear cell RCC (nccRCC) and 
UTUC. Clear cell RCC is the most common subtype 
and typically exhibits strong, characteristic contrast 
enhancement, which often facilitates diagnosis. Thus, 
distinguishing ccRCC from high-grade UTUC is clini-
cally relevant, particularly in cases where endoscopic or 
cytological confirmation is not immediately available. To 
address concerns regarding potential bias introduced by 
easier-to-diagnose tumors, we also performed a focused 

sub-analysis excluding ccRCC. Notably, the model main-
tained a good discriminative performance in differen-
tiating nccRCC from UTUC, supporting its potential 
applicability even in diagnostically more ambiguous 
cases.

The relatively low sensitivity in distinguishing high-
grade from low-grade UTUC could be attributed to the 
small number of low-grade UTUC cases included, likely 
due to the rarity of these tumors requiring imaging in 
our center. Low-grade UTUC cases are often less locally 
advanced and thus may not present diagnostic challenges 
comparable to the image-based discrimination between 
high-grade UTUC and RCC with renal pelvis infiltration.

Few studies have applied radiomic analysis to differen-
tiate UTUC from RCC. Zhai et al. investigated a random 
forest-based radiomics model, a clinical model, and a 
combination of both for the differentiation of RCC and 
pyelocaliceal UTUC in a smaller patient cohort. In line 
with our results, the authors found both the radiomics 
model and the combined radiomics/clinical model to 
be powerful tools for the differentiation of UTUC and 
RCC (testing cohort: AUC 0.90 for the radiomics model 
and AUC 0.90 for the combined model, respectively). 
Both this and the above-mentioned studies demon-
strate that differentiation of UTUC and RCC is feasible 
in both a Western European and an East Asian patient 
population. Notably, our study included three times more 
patients (236 vs. 80), potentially increasing the gener-
alizability of our results. Although integration of clini-
cal and imaging data often is of major importance, the 
only clinical feature proving independent in the study by 
Zhai et al. was painless hematuria, and combining the 
clinical model and the radiomics model did not improve 
AUC compared to radiomics alone. Consequently, the 
study by Zhai et al. confirms the limited value of clinical 
parameters in the differentiation of UTUC and RCC and 

Fig. 4  A Lasso regularization plot showing the log-transformed values of the regularization parameter, lambda (λ), on the X axis, which controls the 
penalty applied to the coefficients. The y axis shows the cross-validated error or deviance. The optimal lambda is chosen where the cross-validation error 
is minimized; B and C ROC plots illustrating specificity and sensitivity of the radiomics score established upon Lasso analysis for the distinction between 
high-grade and low-grade UTUC
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therefore underlines the clinical need for non-invasive 
imaging diagnostic biomarkers [13].

The aim of this study was to evaluate radiomics as an 
innovative, complementary approach to established diag-
nostic tools such as conventional imaging—particularly 
in cases with inconclusive or ambiguous findings, even 
on multiphase imaging. Figure 5 presents an example of 
a diagnostically ambiguous renal mass—outside of the 
study cohort—to illustrate the challenges that can persist 
even with multiphase CT imaging.

By providing a quantitative, reproducible framework 
for image analysis, radiomics has the potential to sup-
port more standardized diagnostic workflows and reduce 
interobserver variability in the assessment of UTUCs.

Radiomics may help overcome some of the limitations 
associated with traditional biopsy, such as sampling bias 
resulting from intratumoral heterogeneity, and may also 
be valuable in settings where cytology or endoscopic 
procedures are not readily available. For example, histo-
pathological examination of nephroureterectomy speci-
mens can reveal high-grade tumor components despite 
initial low-grade findings in limited biopsy samples [14]. 
Radiomics, as a “digital biopsy”, evaluates the entire 
tumor volume, offering a more comprehensive represen-
tation of tumor biology [15].

The time from diagnosis to surgical intervention is cru-
cial especially in UTUC [16]. The use of digital biopsies 
could streamline the diagnostic workflow for ambiguous 
renal lesions. By extracting diagnostic data from pre-
operative imaging, radiomics could reduce the need for 
invasive biopsies and the associated waiting times for his-
topathological analysis. toward which radiomic analysis 
might be a first step in the development of appropriate 
technologies. Patients might therefore be able to proceed 
directly to the appropriate intervention or treatment with 
potential incorporation of those imaging findings into 
surgical workflows [17]. This expedited process could 
enhance patient experience by reducing anxiety and dis-
tress while improving oncological outcomes through 

timely intervention [18]. Additionally, minimizing reli-
ance on invasive procedures could reduce healthcare 
costs, although the time and expense of radiomic image 
processing must be considered in compensation models 
for radiology services.

Several limitations of this study must be acknowledged. 
First, we performed a retrospective single-center analysis 
as proof-of-concept and therefore might have a reduced 
external validity of our results [19]. Prospective, multi-
center studies are necessary for robust validation. While 
the inclusion of imaging from different institutions dem-
onstrates algorithm robustness, variability in imaging 
protocols may have influenced the results.

Second, cases in which tumors were biopsied rather 
than fully resected may introduce bias due to the absence 
of whole-tumor histopathology.

Another limitation of this study is the absence of fea-
ture harmonization across imaging data, which may 
affect inter-institutional comparability; future studies 
will incorporate established harmonization techniques to 
address this issue.

While the primary aim of this study was to assess the 
ability of a radiomics model to differentiate between 
UTUC and RCC, we acknowledge the critical role of 
established clinical and radiological diagnostics. Future 
studies should therefore integrate preoperative clini-
cal or radiological assessments and evaluate the added 
value of radiomics in confirming or refining these initial 
diagnoses.

While this proof-of-concept study focused on quanti-
tative radiomic features, we acknowledge that tumor size 
may influence feature distributions and recognize the 
higher tumor volumes observed in the UTUC cohort. 
Future studies should account for tumor size more sys-
tematically to further validate and refine these findings.

Additionally, as noted above, the small number of low-
grade UTUC cases reflects the rarity of these tumors in 
our cohort, potentially affecting the analysis of this sub-
group. This may result in a limited utility of radiomics 

Fig. 5  Locally advanced renal mass as a diagnostic challenge. Preoperative CT (A coronary venous phase, B coronary corticomedullary phase, C axial 
corticomedullary phase, D coronary urographic phase) demonstrates a large necrotic renal mass. The corticomedullary phase demonstrates only subtle 
arterial enhancement of the inferior part of the tumor (B and C, arrows). In the urographic phase (D), the renal pelvis is displaced (D, dashed arrow) but 
it remains unclear if the renal calyces are infiltrated. The patient underwent nephrectomy and postoperative histopathology revealed a locally advanced 
chromophobe RCC (pT3a pN0)

 



Page 9 of 10Marcon et al. BMC Medical Imaging          (2025) 25:196 

for guiding conservative treatment planning in UTUCs. 
Furthermore, it remains unclear whether necrotic areas 
should be excluded from segmentation, as their inclusion 
might impact feature extraction and model performance.

Conclusion
This proof-of-concept study demonstrated that a 
radiomics-based approach utilizing machine learning for 
feature selection and classification can reliably differen-
tiate between RCC and UTUC. These findings highlight 
the potential of radiomics as a non-invasive diagnostic 
tool for upper urinary tract tumors, however, the differ-
entiation between low- and high-grade UTUCs proved 
more challenging. In order to fully establish this tech-
nique in clinical practice, validation through prospective 
multicenter trials and further optimization of the meth-
odology are essential.
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