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Abstract
The immune checkpoint CD47 is highly upregulated in several cancers as an innate immune escape mechanism. CD47 
delivers a “don’t eat me” signal to its co-receptor signal regulatory protein α (SIRPα), thereby inhibiting phagocytosis. 
Blocking the CD47–SIRPα axis is a promising immunotherapeutic strategy against cancer. However, early trial data has 
demonstrated on-target off-leukemia toxicity. In addition, the ubiquitous expression pattern of CD47 might contribute to 
an antigen sink. In this study, we combined low-affinity CD47 checkpoint blockade and specific tumor targeting in a mul-
tivalent and multifunctional antibody construct to prevent CD47-related toxicities. First, we established a local inhibitory 
checkpoint monoclonal antibody (LicMAb) by fusing two N-terminal extracellular domains of SIRPα to a full-length anti-
human mesothelin (MSLN)-IgG1 antibody, a well-described tumor-associated antigen in epithelial ovarian cancer (EOC) 
and pancreatic ductal adenocarcinoma (PDAC). Next, we evaluated the SIRPα-αMSLN LicMAb for mediating a tumor-
restricted immune response as observed by antibody-dependent cellular cytotoxicity (ADCC) and phagocytosis (ADCP). 
Our data validates CD47 and MSLN as highly upregulated targets expressed on various solid cancer entities, particularly 
EOC. We show tumor-specific binding and CD47 blocking by the SIRPα-αMSLN LicMAb even in the presence of healthy 
CD47-expressing cells. Furthermore, the LicMAb induces NK-cell-mediated cytotoxicity and improves phagocytosis of 
EOC and PDAC tumor cells. Moreover, cell death in EOC-derived organoids was specifically LicMAb-driven. Hence, the 
SIRPα-αMSLN LicMAb combines a tumor-restricted blockade of the CD47–SIRPα axis with a specific antitumor response 
while preventing on-target off-tumor toxicities. Our data supports the multifunctional SIRPα-αMSLN LicMAb as a promis-
ing approach to treating solid tumors.
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Graphical abstract

The local inhibitory checkpoint monoclonal antibody (LicMAb) binds mesothelin (MSLN) with high affinity and simulta-
neously blocks CD47 on MSLN-expressing tumor cells to inhibit the “don’t eat me” signal. CD47 is blocked by the fused 
extracellular SIRPα domain that intrinsically has a low affinity. Furthermore, the SIRPα-αMSLN LicMAb is based on a 
human IgG1 backbone to provide an Fc receptor (FcR)-activating stimulus to enable direct NK-cell-mediated killing by 
granzyme B (GrzB) and perforin secretion, and an additional pro-phagocytic signal to phagocytic cells, such as macrophages 
(MØ). This leads to tumor-restricted antibody-dependent cellular cytotoxicity (ADCC) and antibody-dependent cellular 
phagocytosis (ADCP) of cancer cells. This scheme was created with BioRender (BioRender.com/g77u465).

Keywords  CD47–SIRPα · Innate immune checkpoints · Mesothelin · Multifunctional antibodies · Solid tumors

Abbreviations
SIRPα	� Signal regulatory protein α
LicMAb	� Local inhibitory checkpoint monoclonal 

antibody
MSLN	� Mesothelin
EOC	� Epithelial ovarian cancer
PDAC	� Pancreatic ductal adenocarcinoma
ADCC	� Antibody-dependent cellular cytotoxicity
ADCP	� Antibody-dependent cellular phagocytosis
FcR	� Fc receptor
GrzB	� Granzyme B
MØ	� Macrophages
mAbs	� Monoclonal antibodies
ICIs	� Immune checkpoint inhibitors
RBCs	� Red blood cells
TAA​	� Tumor-associated antigen
VL	� Variable light chain
VH	� Variable heavy chain
(G4S)4	� Polyglycine-serine linker of 4 repeats

E	� T ratio: Effector: target ratio
PDOs	� Patient-derived organoids
MPFC	� Multiparametric flow cytometry
MFI	� Median fluorescence intensity
SPR	� Surface plasmon resonance
AUC​	� Area under curve
rhMSLN	� Recombinant human MSLN
BF	� Brightfield
CT	� Cell Trace™
EpCAM	� Epithelial cell adhesion molecule
bsAb	� Bispecific antibody
HER2	� Human epidermal growth factor receptor 2
EGFR	� Epidermal growth factor receptor
GPC3	� Glypican-3
PD-L1	� Programmed death ligand 1
ADC	� Antibody–drug conjugate
CART​	� Chimeric antigen receptor T cell
PARPi	� Poly ADP ribose polymerase inhibitors
STING	� Stimulator of interferon genes
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Introduction

Immunotherapy has revolutionized the therapeutic landscape 
of oncology for most tumor entities. In recent decades, mono-
clonal antibodies (mAbs) targeting immune checkpoints have 
reformed treatment algorithms for various cancer entities [1]. 
However, some solid cancer entities such as epithelial ovarian 
cancer (EOC) or pancreatic ductal adenocarcinoma (PDAC) 
show only limited response to the blockade of adaptive 
immune checkpoint inhibitors (ICIs). As the patient outcome 
remains poor in these disease entities, novel treatment options 
are highly sought after [2, 3].

The inhibitory innate checkpoint molecule CD47 is 
known as a “marker of self” and is expressed on almost 
every cell in the body. The interaction of CD47 with its 
co-receptor signal inhibitory regulatory protein α (SIRPα) 
on phagocytes sends a “don’t eat me” signal that is neces-
sary for healthy homeostasis, especially in the life cycle of 
red blood cells (RBCs) [4]. Interestingly, CD47 has been 
reported to be overexpressed in many different hematologi-
cal and solid tumors as an immune escape mechanism [5, 6].

Targeting CD47 with mAbs has been shown to block the 
CD47–SIRPα signaling axis and thus, leads to enhanced phago-
cytosis of tumor cells. The first-in-class IgG4 CD47-targeting 
mAb magrolimab, followed by others, demonstrated robust anti-
cancer activity in patients with hematologic and solid cancers [7, 
8]. Nevertheless, as CD47 is ubiquitously expressed on healthy 
cells, its targeting leads to CD47-induced toxicities, such as 
anemia and thrombocytopenia [9]. Additionally, high doses of 
CD47-targeting mAbs are required due to a large antigen sink 
[8]. Clinical trials with magrolimab in hematologic and solid 
malignancies were discontinued due to on-target off-tumor tox-
icity rendering further investigation futile (e.g. NCT05079230, 
NCT06046482). To reduce CD47 targeting on healthy cells, 
other strategies to block the CD47–SIRPα axis were developed 
such as αCD47 mAbs with reduced RBC targeting [10–12] or 
SIRPα fusion proteins [13, 14]. The overall concept of the CD47 
blockade has been proven more effective when combined with 
a pro-phagocytic stimulus, such as rituximab, an αCD20 IgG1 
mAb [15].

One strategy to combine the benefits of a tumor-restricted 
CD47 blockade with a pro-phagocytic stimulus in a single 
molecule is to fuse SIRPα with a tumor-associated antigen 
(TAA)-specific IgG1 antibody. This approach has been vali-
dated preclinically in hematologic malignancies [16, 17].

The TAA mesothelin (MSLN) is highly expressed in several 
solid cancer types, particularly in EOC, PDAC, and mesothe-
lioma [18]. Hence, to improve the treatment options for these 
disease entities, we fused the endogenous SIRPα immunoglobu-
lin V-like domain to the N-terminus of the light chain of an anti-
human MSLN IgG1 mAb generating a SIRPα–αMSLN local 
inhibitory checkpoint monoclonal antibody (LicMAb).

Our in vitro studies demonstrated successful clearance of 
MSLN-expressing cancer cells by IgG1-mediated activation 
of innate immune cells inducing cytotoxicity and phago-
cytosis. Moreover, we confirmed the preclinical efficacy 
of SIRPα-αMSLN LicMAb in primary EOC samples and 
patient-derived organoids.

Methods

RNAseq and genomic alteration analysis

Transcriptomic data and corresponding clinical data from 
the Cancer Genome Atlas PanCancer Studies data collection 
(TCGA-PanCancer Atlas) were downloaded from cBioportal 
(https://​www.​cbiop​ortal.​org). Samples were filtered based on the 
availability of mRNA expression data (n = 10,071 samples, 91% 
of TCGA-PanCancer Atlas cohort). mRNA expression z-scores 
relative to all samples (log RNAseq V2 RSEM) were used to 
assess the expression of MSLN and CD47 across cancer types. 
The cancer types and relative sample numbers are described 
in Supplementary Table S1. The package ggplot2 tool in R 
was used for data visualization. To assess the genomic changes 
across cancer types, MSLN and CD47 were manually selected. 
Within the cBioportal visualization tool, “Mutation count” and 
“Genes with the highest frequency in any group” were selected. 
The mutation count for each cancer type was plotted on a box-
plot and the 10 most frequently mutated genes for each cancer 
type were plotted on a bar graph.

Generation of local inhibitory checkpoint 
monoclonal antibody (LicMAb)

Human MSLN antibodies were generated by immuniz-
ing mice and rats with the extracellular domain of MSLN 
(amino acids 296–606). A detailed description of the SIRPα-
αMSLN LicMAb generation is provided in the supplemen-
tary methods. In brief, RNA was isolated from hybridoma 
cells, variable light (VL) and variable heavy (VH) chains 
were amplified, and genes were synthesized and cloned into 
expression vectors containing the constant human IgG1 
framework. The N-terminal Ig V-like domain of SIRPα 
was linked to the αMSLN light chain by a flexible polyg-
lycine–serine four-repeat linker (G4S)4 to clone a SIRPα-
αMSLN LicMAb. All proteins were produced in Expi293F 
cells and purified. The αCD33 mAb and SIRPα-αCD33 
LicMAb, as well as high-affinity αCD47 IgG4 and αCD47 
IgG1 mAb (h5F9-G4 and h5F9-G1, respectively), served 
as controls.

https://www.cbioportal.org
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Antibody‑dependent cellular cytotoxicity (ADCC)

For the impedance-based readout, target cells were 
seeded in a sterile 96-well real-time cell analysis (RTCA) 
E-plate (Agilent) and cultured in the xCELLigence (Agi-
lent) for 24 h. NK cells were isolated from fresh periph-
eral blood mononuclear cells (PBMCs) using the human 
NK Cell Isolation Kit (Miltenyi Biotec). NK cells were 
co-cultured with target cells and antibodies for 24  h. 
Cytotoxicity was calculated after 4  h of co-culture as 
overall lysis [%] = {1 − (normalized cell index of condition)∕

(normalized cell index of condition w∕o Ab)} × 100 . For the 
multiparametric flow cytometry (MPFC)-based readout, 
isolated NK cells were co-cultured with CellTrace CFSE-
labeled target cells and antibodies for 4  h. Cells were 
stained with LIVE/DEAD Near-IR Dead Cell Staining Kit 
(Invitrogen) and lysis was calculated as percentage of dead 
cells or overall lysis [%] = {1 − (cell count of condition)∕

(cell count of condition w∕o Ab)} × 100 . NK-cell activation 
was evaluated by CD69 and CD107a expression.

Antibody‑dependent cellular phagocytosis (ADCP)

Monocytes were isolated using the Classical Monocyte 
Isolation Kit (Miltenyi Biotec) and differentiated into mac-
rophages in the presence of M-CSF (100 ng/ml; Biolegend) 
for 7 days.

CellTrace Calcein Red–Orange- or Far-Red-labeled mac-
rophages were incubated with CellTrace CFSE-labelled tar-
get cells at an effector:target (E:T) ratio of 1:1 and a serial 
dilution of the antibodies (0.01–10 nM) for 4 h. Analysis was 
performed using either the Amnis® Imagestream® MKII 
(Cytek Biosciences) or the Cytoflex LX (Beckman Coulter) 
flow cytometer. After doublet exclusion, the double-positive 
population represented the phagocytosed population.

ADCC with primary EOC patient‑derived organoids

As previously described [19], patient-derived organoids 
(PDOs) were derived from fresh tumor tissue by enzymatic 
digestion and isolation of progenitors, followed by differen-
tial seeding in Cultrex RGF Basement Membrane Extract, 
Type 2 (Bio-Techne), and growth media matrix to identify 
optimal patient-specific growth conditions.

The assay was performed on a co-culture of freshly iso-
lated NK cells (5:1 E:T ratio) and PDOs with the antibodies 
(50 nM) and IL-2 (10 nM) for 48 h. PDOs were retrieved 
from the 3D extracellular matrix by washing with ice-cold 
ADF F12 medium, supplemented with HEPES and Glu-
tamax, and resuspended in growth medium. Technical repli-
cates were digested with TrypLE to determine the number of 
single cells per PDO as approximately 2 × 104 cells per well. 
Phase contrast images were taken after 24 and 48 h. Cell 

viability was quantified by luminescence-based CellTiter-
Glo 3D Assay (Promega), in independent quintuplicates per 
condition. Fluorescence images were obtained using a fully 
motorized Keyence BZ X-810 microscope, equipped with a 
Tokai stage-top incubator. Phenotypic characterization of the 
PDOs has been performed by immunofluorescence staining 
[19] (Supplementary Table S3).

Results

EOC shows enriched MSLN expression 
and the highest CD47 mRNA expression across 30 
cancer entities

MSLN and CD47 are promising targets for immunotherapy 
[5, 18]. This was confirmed by a pan-cancer analysis of the 
TCGA cohort to evaluate the MSLN and CD47 mRNA 
expression levels across 30 cancer entities. MSLN mRNA 
was highly enriched in EOC and PDAC (Fig. 1a) in contrast to 
healthy ovarian tissue (Supplementary Figure S1a, b). MSLN 
protein expression was validated on primary EOC cells iso-
lated from tumor tissue and ascites by MPFC (median MFI 
ratios 2.2 and 4.0, respectively; Fig. 1b, Supplementary Fig-
ure S1c, d). As expected, CD47 mRNA was highly abundant 
in all cancer entities evaluated and, interestingly, displayed 
the highest expression in EOC (Fig. 1c, Supplementary Fig-
ure S1a, b). Robust CD47 protein expression was validated in 
EOC cells by MPFC and is particularly prominent on tissue-
derived cancer cells (median MFI ratio 41.8; Fig. 1d, Supple-
mentary Figure S1c, d). Moreover, 73–75% of EOC patients 
express CD47 and MSLN (Supplementary Figure  S1e). 
Analysis of the genomic alteration frequencies demonstrated 
the highest proportion of MSLN amplification in breast can-
cer and EOC (4%, and 2%, respectively; Supplementary Fig-
ure S1f). Moreover, EOC displayed the highest CD47 ampli-
fication frequency at 6% (Supplementary Figure S1g). These 
data further support MSLN and CD47 as promising targets 
for novel immunotherapeutic approaches in EOC.

Generation and characterization of SIRPα‑αMSLN 
LicMAb demonstrating MSLN‑specificity 
and CD47‑blocking capacity

We generated anti-human MSLN mAbs using the hybrid-
oma technique to identify two clones (4D8 and M4F5). The 
SIRPα-αMSLN4D8 and SIRPα-αMSLNM4F5 LicMAbs were 
generated by fusing two N-terminal SIRPα immunoglobulin 
V-like domains to the VL chain of the antibody via a flexible 
(G4S)4 linker (Fig. 2a). First, we investigated the impact of the 
N-terminal SIRPα fusion on the binding to MSLN by determin-
ing the KD value using surface plasmon resonance (SPR). The 
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KD values were in the low nanomolar range for all constructs, 
indicating the affinity for MSLN was unaffected by the fusion 
of the SIRPα domain (Supplementary Figure S3a). Binding to 
CD47 occurred with lower affinity (KD = 1 µM), consistent with 
previously measured affinities of SIRPα for CD47 [20].

We also analyzed binding to the MSLN-expressing EOC cell 
line OVCAR-3 and the MSLN-transduced PDAC cell line SUIT-
2-MSLN by MPFC (Fig. 2b, c). The SIRPα–αMSLN4D8 Lic-
MAb and the αCD47 mAb (h5F9-G4) mAb bound to OVCAR-3 
cells similarly, with MFI ratios of 117.2 and 119.5, respectively. 

By contrast, the αMSLN4D8 mAb showed a lower MFI ratio 
of 10.2, which can be explained by a 2.7-fold higher CD47 
antigen density on the OVCAR-3 cell surface (Supplemen-
tary Figure S2). As expected, the SIRPα–αMSLN4D8 LicMAb 
bound the SUIT-2-MSLN cells similarly to the αMSLN4D8 and 
αCD47 mAb (h5F9-G4) mAb with MFI ratios of 27.5, 21.6, 
and 31.2, respectively (Fig. 2b, c). Furthermore, primary EOC 
cells derived from ascites (Fig. 2d) and tumor tissue (Supple-
mentary Figure S3b) were bound by the SIRPα–αMSLN4D8 
LicMAb (MFI ratios 2.1 and 3.3, respectively), αMSLN4D8 

Fig. 1   EOC features high MSLN and CD47 mRNA and protein lev-
els. The mRNA expression of MSLN (a) and CD47 (c) was evalu-
ated across 30 cancer entities using the TCGA-derived pan-cancer 
cohort (10,953 patients; 10,967 samples). The protein expression lev-
els of MSLN (b) and CD47 (d) on primary EOC cells derived from 

EOC tissue (n = 51) and ascites (n = 34) are depicted as median fluo-
rescence intensity (MFI) ratio in violin plots with median (gray line) 
and quartiles (dashed gray line). The black dashed line represents the 
threshold MFI ratio of 1.5. Statistical analysis was performed using 
an unpaired t-test, ***p ≤ 0.001
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mAb (MFI ratios 2.2 and 3.3, respectively), and αCD47 mAb 
h5F9-G4 (MFI ratios 4.2 and 6.0, respectively). Importantly, the 

SIRPα–αMSLN4D8 LicMAb did not bind to MSLNneg patient-
derived EOC cells (Supplementary Figure S3c).

Fig. 2   The engineered SIRPα-αMSLN LicMAb is characterized 
by MSLN-specific targeting and CD47-blocking capacities. (a) A 
scheme of the SIRPα-αMSLN LicMAb targeting MSLN and simul-
taneously blocking CD47 on the cancer cells to switch on an “eat 
me” signal to the phagocytosing effector cells. The extracellular 
SIRPα domain that intrinsically has low affinity is fused to the IgG1 
antibody light chains (VL) via a flexible (G4S)4 linker. This scheme 
was created with BioRender (BioRender.com/g77u465). (b) A rep-
resentative example of binding to OVCAR-3 (left) and SUIT-2-
MSLN (right) cells by the indicated antibodies was evaluated by flow 

cytometry. (c) The binding to OVCAR-3 (left) and SUIT-2-MSLN 
cells (right) in a serial dilution of the indicated antibodies (0.0001–
100  nM) was evaluated by flow cytometry (n = 3–4). (d) The bind-
ing of the indicated antibodies to primary EOC cells derived from 
ascites was evaluated using flow cytometry (n = 3). (e) The frequency 
of accessible CD47 on SUIT-2-MSLN cells was evaluated by flow 
cytometry using an APC-conjugated CD47-targeting antibody after 
incubation with the indicated antibodies (100  nM, n = 4). Data rep-
resents the mean ± SEM. Statistical analysis was performed using an 
ordinary one-way ANOVA, *p ≤ 0.05, **p ≤ 0.01, and ****p ≤ 0.0001
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One reason to generate LicMAbs is to retain the therapeu-
tic benefit of blocking the CD47–SIRPα interaction, specifi-
cally on tumor cells. To evaluate the CD47-blocking capacity, 
we analyzed the accessible CD47 on SUIT-2-MSLN cells by 
MPFC (Fig. 2e). In contrast to the high-affinity αCD47 mAbs 
h5F9-G4 and CC2C6, which blocked the majority of CD47 
sites (6.2% and 2.3% accessible CD47, respectively), the 
SIRPα–αMSLN4D8 LicMAb was less efficacious in blocking 
CD47 (59.5% accessible CD47). To determine the specificity of 
MSLN targeting, we also evaluated the binding (Supplementary 
Figure S3d) and blocking capacity (Supplementary Figure S3e) 
of the SIRPα–αMSLN4D8 LicMAb to the MSLNneg/CD33pos 
AML cell line MOLM-13. The SIRPα–αMSLN4D8 LicMAb 
neither binds to MOLM-13 cells nor blocks CD47. By contrast, 
the isotype control SIRPα–αCD33 LicMAb bound to CD33pos/
CD47pos MOLM-13 cells and blocked CD47 (47% accessible 
CD47). These data show that the SIRPα–αMSLN LicMAb 
binds to the MSLN-expressing EOC and PDAC cells while 
simultaneously blocking CD47.

The SIRPα‑αMSLN LicMAb avoids on‑target 
off‑tumor binding

We postulated that the SIRPα-αMSLN LicMAb specifically 
blocks CD47 on MSLNpos cancer cells. Consequently, the risk 
for potential adverse events by on-target off-tumor binding, such 
as anemia, neutropenia, and thrombocytopenia [9], is reduced. 
To this end, we examined the SIRPα-αMSLN LicMAb bind-
ing to hematologic MSLNneg/CD47pos cells. In contrast to the 
high-affinity αCD47 (h5F9-G4) mAb, the SIRPα-αMSLN 
LicMAb did not bind to RBCs (Fig. 3a, Supplementary Fig-
ure S4b) or neutrophils (Fig. 3b). Furthermore, unlike control 
molecules targeting CD47, the SIRPα-αMSLN LicMAb did not 
elicit platelet aggregation (Supplementary Figure S4c). Inter-
estingly, lymphocytes, which express CD47 at higher levels 
than RBCs and neutrophils (Supplementary Figure S4a), were 
bound by the SIRPα-αMSLN LicMAb. However, compared to 
the high-affinity αCD47 (h5F9-G4) mAb with an EC50 value of 
0.26 nM, a fourfold lower MFI ratio was detected with a 40-fold 
higher EC50 value of 12.0 nM. Unexpectedly, we found that 
the αMSLN mAb binds to lymphocytes at a high concentra-
tion of 100 nM. This result might explain the affinity of SIRPα-
αMSLN LicMAb as an avidity effect of binding at MSLN and 
CD47. Further experiments are needed to precisely understand 
the mode of binding.

Next, we hypothesized that the SIRPα-αMSLN4D8 Lic-
MAb specifically binds to tumor cells in the presence of 
RBCs or lymphocytes. Even with a 20-fold excess of RBCs 
or tenfold excess of lymphocytes, the SIRPα-αMSLN4D8 
LicMAb was specifically bound to tumor cells. By contrast, 
the αCD47 mAb bound significantly more RBCs than tumor 
cells (Fig. 3d) and did not discriminate between tumor cells 
and lymphocytes (Fig. 3e).

These data show that the SIRPα-αMSLN LicMAb binds 
specifically to MSLN-expressing tumor cells, a profile for 
potentially minimizing CD47-related on-target off-tumor 
toxicity.

The SIRPα‑αMSLN LicMAb mediates ADCC 
against tumor cells

Next, we investigated the potency of LicMAbs to induce 
NK-cell-mediated ADCC by noninvasive, real-time cel-
lular impedance measurements (xCELLigence). Repro-
ducible ADCC against OVCAR-3 cells was monitored as 
decreased impedance values (normalized cell index) over 
time (Fig. 4a). For comparability reasons, the area under 
curve (AUC) was calculated per condition and showed an 
E: T-dependent decrease, particularly pronounced for the 
SIRPα-αMSLN4D8 LicMAb. A high-affinity αCD47 IgG1 
mAb (h5F9-G1) served as a positive control and gave the 
lowest and E: T-independent AUC (Fig. 4b). After 4 h in 
co-culture with NK cells, the OVCAR-3 cells had lysed 
in a dose-dependent manner. The SIRPα-αMSLN4D8 
and SIRPα-αMSLNM4F5 LicMAbs achieved 92% lysis 
(EC50 = 0.003  nM) and 100% lysis (EC50 = 0.003  nM), 
respectively, which was comparable to the αCD47 (h5F9-
G1) mAb (96.4%). The αMSLN4D8 and αMSLNM4F5 showed 
lower maximum overall lysis (79.5% and 81.1%, respec-
tively) and up to 70-fold higher EC50 values, underlining 
the greater cytotoxic potency of the LicMAbs (0.216 and 
0.019 nM, respectively; Fig. 4c).

In parallel, we confirmed NK-cell-mediated lysis by 
MPFC (Supplementary Figure S5). SIRPα-αMSLN Lic-
MAbs induced comparable dose-dependent killing of 
OVCAR-3 and SUIT-2-MSLN cells. Due to high CD47 
expression on OVCAR-3 cells, h5F9-G1 exhibited robust 
cytotoxicity of OVCAR-3 cells at lower concentrations. 
However, the SIRPα-αMSLN LicMAb achieved compa-
rable maximum lysis (Supplementary Figure S5a). In con-
trast, h5F9-G1 mediated decreased dose-dependent lysis 
of SUIT-2-MSLN cells based on a lower CD47 expression 
(Supplementary Figure S5b). As expected, magrolimab 
did not induce cytotoxicity of SUIT-2-MSLN cells as the 
IgG4 scaffold minimizes Fc-dependent effector functions 
[21]. Nevertheless, CD47high OVCAR-3 cells are lysed by 
magrolimab similarly to αMSLN mAbs (Supplementary Fig-
ure S5a). In that regard, high levels of CD47 seem to support 
ADCC by targeting IgG4 molecules [22]. The cytotoxic-
ity data is further supported by a dose-dependent activation 
and degranulation of NK cells in co-culture with OVCAR-3 
and SUIT-2-MSLN cells (Fig. 4d,e; Supplementary Fig-
ure S5c,d). Notably, the αMSLN4D8 and αMSLNM4F5 mAbs 
showed improved cytotoxicity as well as NK-cell activation 
and degranulation in comparison to the αMSLN IgG1 mAb 
amatuximab (Fig. 4, Supplementary Figure S5). These data 
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demonstrate the robust capacity of the SIRPα-αMSLN Lic-
MAb to kill solid tumor cell lines.

The SIRPα‑αMSLN LicMAb is effective 
in the presence of soluble MSLN

MSLN is anchored to the plasma membrane by a glyco-
syl-phosphatidylinositol linkage. However, shed MSLN 
can be found in sera from EOC and mesothelioma 
patients and, thus, represents a potential antigen sink 
to MSLN-targeting therapies [23]. First, we measured 
the MSLN concentrations in the serum and ascites of 
EOC patient samples and in the supernatant of cultured 
ascites and patient-derived organoids (Supplementary 
Figure S6a). We detected a median of 26.3 ng/ml sol-
uble MSLN in the serum of EOC patients. Unexpect-
edly, reduced soluble MSLN was detected in fresh and 
cultured ascites of EOC patients and patient-derived 

organoids (median 5.4 ng/ml, 5.0 ng/ml, and 260 pg/
ml, respectively). Next, we aimed to mimic shed MSLN 
using recombinant human MSLN (rhMSLN) and evaluate 
the functional capacity of the SIRPα-αMSLN LicMAb in 
its presence. To induce competition in vitro, we titrated 
rhMSLN to detect the saturated concentration, which 
inhibited MSLN binding. A concentration of 2.5 µM 
rhMSLN, at least 2000-fold higher than published data, 
completely abolished the binding of αMLSNM4F5 mAb 
to SUIT-2-MSLN cells, whereas binding of the SIRPα-
αMSLNM4F5 LicMAb was detected, albeit 40% reduced 
and with a 20-fold lower EC50 value (Supplementary 
Figure S6b, c). Subsequently, we analyzed the impact of 
rhMSLN in functional assays. Most strikingly, and con-
sistent with the LicMAb concept, the SIRPα-αMSLNM4F5 
LicMAb was still effective in NK-cell-mediated killing of 
SUIT-2-MSLN cells in the presence of rhMSLN, albeit 
at higher concentrations (Supplementary Figure S6d). 

Fig. 3   The SIRPα-αMSLN LicMAb avoids on-target off-tumor bind-
ing. The binding to red blood cells (RBCs, a), neutrophils (b), or 
lymphocytes (c) in a serial dilution (0.001–100 nM) of the indicated 
antibodies was evaluated by flow cytometry (n = 3–6). In competi-
tive binding assays, a 20-fold excess of CD47pos RBCs (d, gray bar) 
or tenfold excess of lymphocytes (e, gray bar) was co-cultured with 

OVCAR-3 (left) or SUIT-2-MSLN (right) target cells (black bars). 
Binding was evaluated by flow cytometry in the presence of antibod-
ies (100 nM; n = 5). Data represent the mean ± SEM. Statistical analy-
sis was performed using a 2way ANOVA and Šídák's multiple com-
parisons test. ns = not significant; ****p ≤ 0.0001
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The maximum lysis was reduced from 57.5% to 45.0% 
with rhMSLN, and the EC50 values were increased from 
0.007 to 0.239 nM. Importantly, rhMSLN almost com-
pletely abolished the cytotoxicity of the conventional 
αMLSNM4F5 mAb. Taken together, our data support the 
hypothesis that soluble MSLN entirely affects the effi-
cacy of standard αMLSN mAbs but not the multifunc-
tional SIRPα-αMSLN LicMAb.

The SIRPα‑αMSLN LicMAb mediates 
dose‑dependent ADCP of tumor cells

Next, we hypothesized that LicMAbs increase the phago-
cytic activity of macrophages due to the combination of 
CD47–SIRPα blockade and an IgG1 pro-phagocytic stimu-
lus. Figure 5a shows the visualization of SIRPα-αMSLN4D8-
induced phagocytosis of OVCAR-3 cells by imaging 
flow cytometry. Single cells were validated as brightfield 
(BF) images and successful phagocytosis as double-pos-
itive macrophages. Approximately one-third (31.8%) of 
OVCAR-3 cells were phagocytosed in the presence of the 

Fig. 4   The SIRPα-αMSLN LicMAb mediates dose-dependent 
and E:T ratio-dependent ADCC of tumor cells. (a) A representa-
tive example of NK-cell-mediated ADCC against OVCAR-3 cells in 
a 2:1 E:T ratio in the presence of the indicated antibodies (10 nM). 
ADCC was evaluated over time using the xCELLigence system. The 
cell indices were normalized to the timepoint of antibody and NK-
cell addition. (b) The area under the curve (AUC) of the co-culture 
of OVCAR-3 cells and NK cells is shown for each antibody (10 nM) 
and the indicated E:T ratios. (c) The overall lysis after 4 h co-culture 

with serial dilutions of the indicated antibodies (0.1 pM–10 nM) was 
calculated based on the background NK-cell-mediated cytotoxicity 
of OVCAR–3 cells (5:1 E:T ratio; n = 4–5). The expression of CD69 
(d) and CD107a (e) on the surface of NK cells after 4 h co-culture 
with OVCAR-3 cells (5:1 E:T ratio) is evaluated by flow cytometry 
(n = 8 and n = 6, respectively). Data represent the mean ± SEM. Sta-
tistical analysis was performed using an ordinary one-way ANOVA; 
***p ≤ 0.001, ****p ≤ 0.0001
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SIRPα-αMSLN4D8 LicMAb, which is enhanced versus the 
αCD47 (25.4%) and αMSLN4D8 (15.7%) mAbs (Fig. 5b). 
The h5F9-G4 served as the positive control to address the 
maximum phagocytosis mediated by the CD47-SIRPα 
blockade. In parallel, traditional flow cytometry was used for 
high-throughput multi-parameter analysis of LicMAb-asso-
ciated phagocytosis as a double-positive macrophage popu-
lation (Fig. 5c). OVCAR-3 and SUIT-2-MSLN cells treated 
with SIRPα-αMSLN LicMAbs underwent comparable 

dose-dependent phagocytosis (Fig. 5d, e; left). The SIRPα-
αMSLN4D8-induced ADCP of MSLNlowCD47high OVCAR-3 
cells was significantly greater (92.5%) compared to the 
action of αCD47 mAb (72.7%) and particularly αMSLN4D8 
mAb (26.1%; Fig.  5d, right). By contrast, the SIRPα-
αMSLNM4F5 and αMSLNM4F5 induced similar phagocy-
tosis of MSLN-transduced SUIT-2-MSLN cells. Notably, 
magrolimab mediated only 27.1% ADCP (Fig. 5e, right). 

Fig. 5   The SIRPα-αMSLN LicMAb mediates dose-dependent ADCP 
of tumor cells. (a) Representative images of SIRPα-αMSLN4D8-
mediated phagocytosis of CFSEpos OVCAR-3 cells by Cell Trace 
(CT) FarRedpos macrophages evaluated by imaging flow cytom-
etry. Each row shows one representative example per donor. BF: 
brightfield. (b) The phagocytosed CFSEpos/CT FarRedpos OVCAR-3 
population was quantified by imaging flow cytometry in the pres-
ence of the indicated antibodies (10  nM; n = 3). (c) Representative 
FACS plots depict ADCP in the presence of the indicated antibodies 
(10 nM). The phagocytosed population is discriminated as CFSEpos/

Calcein Red-Orangepos population (red rectangle). (d) The frequency 
of phagocytosed OVCAR-3 cells with serial dilutions of the indicated 
antibodies (left; 0.1  pM–10  nM) and the normalized ADCP in the 
presence of antibodies (right; 10 nM) was evaluated by flow cytom-
etry after 4 h co-culture (n = 7). (e) The frequency of phagocytosed 
SUIT-2-MSLN cells with serial dilutions of the indicated antibodies 
(left; 0.1 pM–10 nM) and the normalized ADCP in the presence of 
antibodies (right; 10 nM) was evaluated by flow cytometry after 4 h 
co-culture (n = 4). Data represent the mean ± SEM. Statistical analysis 
was performed using a one-way ANOVA; ****p ≤ 0.0001
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These data underline the enhanced phagocytic capacity of 
the SIRPα-αMSLN LicMAbs by blocking CD47.

The SIRPα‑αMSLN LicMAb is superior 
to a CD47xMSLN bispecific antibody

Further, we compared the SIRPα-αMSLN LicMAb with a 
CD47xMSLN bispecific antibody (bsAb) similar to the pub-
lished κλ body from Hatterer et al. [24]. First, we analyzed 
binding to SUIT-2-MSLN cells by MPFC (Supplemen-
tary Figure S7a). The CD47xMSLN bsAb reached similar 
MFI ratios as the SIRPα–αMSLNM4F5 LicMAb (16.1 and 
19.3, respectively), however, with an 18-fold higher EC50 
value, due to monovalent versus bivalent MLSN binding 
sites, respectively. Particularly, saturating concentrations 
of soluble MSLN as an alias for MSLN shedding reduced 
the binding of the CD47xMSLN bsAb by 87% in contrast 
to the SIRPα–αMSLNM4F5 LicMAb showing 53% reduced 
binding (MFI ratio 2.2 and 9.1, respectively). Next, we com-
pared the NK-cell-mediated lysis of OVCAR-3 and SUIT-2-
MSLN in a dose-dependent manner by MPFC (Supplemen-
tary Figure S7b). In contrast to the CD47xMSLN bsAb, the 
SIRPα-αMSLN4D8 LicMAb exhibited robust cytotoxicity of 
OVCAR-3 and SUIT-2-MSLN cells at low concentrations 
with a clear benefit in efficacy for the LicMAb as shown by 
an up to 900-fold reduced EC50 value. The CD47xMSLN 
bsAb and SIRPα-αMSLN4D8 LicMAb achieved similar max-
imum lysis of OVCAR-3 cells (39.6% and 38.1%, respec-
tively) and SUIT-2-MSLN cells (33.7% and 46.9%, respec-
tively). Moreover, we evaluated the phagocytic capacity of 
the antibody constructs (Supplementary Figure S7c, d). The 
CD47xMSLN bsAb induced lower dose-dependent phagocy-
tosis of OVCAR-3 and SUIT-2-MSLN cells than the SIRPα-
αMSLN LicMAbs. While the CD47xMSLN bsAb induced 
51.0% and 59.3% ADCP of OVCAR-3 cells and SUIT-2-
MSLN cells, respectively, the LicMAbs phagocytosed 85.2% 
and 92.0%, respectively. These data underline the superiority 
of the SIRPα-αMSLN LicMAbs to a CD47xMSLN bsAb.

The SIRPα‑αMSLN LicMAb induces NK‑cell‑mediated 
cytotoxicity of EOC organoids

To evaluate the SIRPα-αMSLN LicMAb in a model closer 
to the clinical context, we assessed its cytotoxic efficacy in 
primary EOC PDOs. The expression of MSLN (red) and 
epithelial cell adhesion molecule (EpCAM; green) was con-
firmed by immunofluorescence staining and flow cytometry 
(Fig. 6a, Supplementary Figure S8). Histochemistry revealed 
a more variable MSLN staining in the native tissue com-
pared to an overall high MSLN expression in the respective 
organoid (Supplementary Figure S8). Assessment of viabil-
ity in a co-culture of PDOs and NK cells in a multi-well 

format ensured the technical robustness of the experimen-
tal setting. It demonstrated the high potential of SIRPα-
αMSLNM4F5 to induce NK-cell-mediated organoid cell death 
(Fig. 6b, c). A visual inspection of the interaction between 
NK cells and PDOs at 24 h revealed a characteristic pattern 
of cellular debris and decomposed fragments in SIRPα-
αMSLNM4F5-containing conditions (Fig. 6b). The ability of 
the SIRPα-αMSLNM4F5 LicMAb to activate NK cells and 
initiate organoid disintegration and cytotoxicity was also 
visualized by live-cell imaging (Supplemental video). Fur-
thermore, after 48 h of SIRPα-αMSLNM4F5 LicMAb treat-
ment, the total luminescence intensity was consistently lower 
than with magrolimab or αMSLNM4F5, confirming the larg-
est decrease in living cells (Fig. 6c). These data validate the 
cytotoxic capacity of the SIRPα-αMSLN LicMAb in a more 
clinically relevant model.

Discussion

In this study, we prepared two preclinical LicMAb constructs 
(4D8 and M4F5) that induced an innate immune response 
restricted to MSLN-expressing solid cancers. Moreover, by 
cancer-directed CD47 blockade, we abolished CD47-related 
on-target off-tumor toxicities.

CD47 was first reported as a promising target antigen 
in the context of hematologic malignancies. In this con-
text, antibodies blocking CD47 indicated phagocytosis as a 
primary mode of action and showed robust antitumor effi-
cacy [7, 8]. However, based on recent phase III trial data on 
magrolimab in the context of AML, further development 
was deemed futile and terminated. Although we await full 
reports, the first preliminary data of the multi-center inter-
national trial revealed increased toxicity due to on-target 
off-leukemia effects [25]. Furthermore, the combination 
with a hypomethylating agent to provide the pro-phagocytic 
signal [25], necessary to enable high phagocytosis rates [26], 
might not be the optimal approach. Other combinatorial 
approaches using mAbs as additional pro-phagocytic stimuli 
showed synergistic antitumor efficacy in hematologic [15] 
and solid cancers [27, 28]. Subsequently, bsAbs targeting 
a TAA and blocking the CD47–SIRPα axis to dampen on-
target off-tumor toxicities in solid tumors, were developed. 
Targeted TAAs include human epidermal growth factor 
receptor 2 (HER2) [29], epidermal growth factor receptor 
(EGFR) [30], and programmed death ligand 1 (PD-L1) [31]. 
CD47xMSLN bsAbs have been generated as κλ bodies with 
an αMSLN λ-light chain and an αCD47 κ-light chain [32, 
33], which are currently being investigated in a phase I clini-
cal trial [24].

We translated the concept of multifunctionality from 
hematologic [16, 17, 34] to solid tumors by fusing the low-
affinity SIRPα domains to an antibody targeting MSLN 
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with high affinity. MSLN is a promising TAA as its expres-
sion levels are high on solid tumors, such as EOC and 
PDAC but limited on healthy cells. Furthermore, target-
ing MSLN prevents its interaction with cancer antigen 
CA-125, which has been implicated in supporting metas-
tases [18]. Hence, several MSLN-targeting strategies, such 
as mAbs [35], antibody–drug conjugates (ADCs) [36], or 
chimeric antigen receptor T cell (CAR T) cells, [37] have 
been evaluated in clinical trials. Although amatuximab 

was well tolerated in MSLNpos tumor patients [35], only 
its combination with chemotherapy gave beneficial results 
in mesothelioma patients [38].

Notably, MSLN shedding is a mechanism by which 
high concentrations of MSLN accumulate in the serum of 
EOC and mesothelioma [23]. Indeed, we detected solu-
ble MSLN in the EOC patients’ serum, in line with the 
literature [23, 39], and fivefold less in the ascites. Inter-
estingly, Okła et al. detected nearly tenfold greater levels 

Fig. 6   The SIRPα-αMSLN LicMAb enables NK-cell-mediated 
cytotoxic effects of EOC patient-derived organoids. (a) Representa-
tive immunofluorescence images of EOC patient-derived organoids 
(PDOs; biobank reference HGSO_6) expressing MSLN (red, left) 
and epithelial cell adhesion molecule (EpCAM, green, middle) and 
a merged image with DNA (blue, right). Scale bar: 50 µm. (b) Rep-
resentative phase-contrast images of EOC PDOs (biobank reference 
HGSOC_35) after 24 h co-culture with NK cells (E:T ratio 5:1) and 
indicated antibodies (50  nM). Red arrows indicate cellular debris 

from organoids, as killing leads to the breakage of cell junctions 
and loss of epithelial architecture. The experiment is representative 
of 10 independent experiments with three different donor PDO lines 
showing the same pattern of SIRPα-αMSLNM4F5 activity. Scale bars: 
500 µm (c) Quantification of viable cells by Cell Titer glow depicting 
the total luminescence intensity after incubation of EOC PDOs with 
NK cells at an E: T ratio of 5:1 and indicated antibodies (50 nM) after 
48  h (n = 3, biobank reference HGSOC_35, HGSO_20, HGSO_6). 
Data represent the mean ± SEM.
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of soluble MSLN in peritoneal fluid (622.8 pg/ml) ver-
sus plasma (81.6 pg/ml) of advanced EOC patients [40]. 
However, these plasma concentrations are 300-fold lower 
than our data. To address the risk of shed MSLN acting as 
an antigen sink, we evaluated the binding and cytotoxic-
ity of SIRPα-αMSLN LicMAb in the presence of solu-
ble rhMSLN. As the clinically relevant concentrations 
are rather low and vary between patients and samples, a 
saturating concentration of rhMSLN was used to ensure 
challenging assay conditions in vitro. Although the func-
tional capacity of an αMSLN mAb is highly reduced, the 
SIRPα-αMSLN LicMAb was still effective, albeit at higher 
concentrations. We suppose the avidity effects by binding 
MSLN and CD47 multivalently as the reason for main-
taining the binding of the LicMAbs to target cells. Thus, 
bifunctional approaches such as using LicMAbs might 
maintain the therapeutic window even in the presence of 
shed MSLN and support MSLN and CD47 as promising 
targets to treat EOC. Furthermore, the clinical evaluation 
of CD47xMSLN κλ bodies [24] highlights the combined 
targeting of MSLN and CD47 as an encouraging strat-
egy. Importantly, compared to the CD47xMSLN bsAb, 
SIRPα-αMSLN LicMAbs demonstrated enhanced binding, 
particularly in the presence of soluble MSLN, as well as 
increased cytotoxicity and phagocytosis.

The antitumor efficacy of the SIRPα-αMSLN LicMAb is 
based on IgG1-induced NK-cell activation to effect ADCC 
and the simultaneous stimulation of phagocytic cells, such 
as macrophages, to mediate ADCP. Indeed, we confirm 
consistent cytotoxic and phagocytic activity against EOC 
and PDAC cell lines. Furthermore, we demonstrate the 
effective induction of cell death in organoids derived from 
EOC patients in co-culture with NK cells. Importantly, the 
SIRPα-αMSLN LicMAb induced more cytotoxicity and 
phagocytosis than the controls amatuximab and magroli-
mab. Using two different tumor cell lines emphasizes the 
reliable potency of the LicMAbs, independent of the anti-
gen expression level. We hypothesize that these findings are 
transferrable to other MSLN-expressing solid tumor entities.

Notably, MSLN was more uniformly expressed in patient-
derived organoids than in respective native cancer tissue. 
As organoids are derived from the tumor’s progenitor popu-
lation, our data suggest that MSLN is associated with the 
stemness compartment driving tumor growth. Hence, the 
specific and enhanced killing activity against PDO cells 
of the LicMAb in comparison to magrolimab supports the 
interpretation that this multifunctional antibody may be 
advantageous to treat long-term tumor growth potential.

Elevated expression levels of CD47 on healthy cells, 
notably RBCs, thrombocytes, and PBMCs, pose a con-
cern for on-target off-tumor toxicity [4]. Thus, phagocytic 
anemia was one of the most adverse events in patients 
receiving CD47-targeting agents, and neutropenia and 

thrombocytopenia were also frequently observed [9]. Not 
surprisingly, highly CD47-expressing lymphocytes were tar-
geted at high concentrations of the SIRPα-αMSLN LicMAb 
but less prominent than the high-affinity αCD47 mAb. More-
over, based on the unspecific binding of the αMSLN mAb 
at high concentrations, the LicMAb binding might rely on 
avidity effects by binding sites to MSLN and CD47. How-
ever, the SIRPα-αMSLN LicMAb did not bind to RBCs, 
the most abundant cells in the blood, nor to neutrophils. 
Most importantly, in competition, tumor cells were specifi-
cally targeted while binding to RBCs and lymphocytes was 
absent. In addition, reduced platelet aggregation lowers the 
risk of thrombocytopenia. This is in sharp contrast to a high-
affinity αCD47 construct [41] and underlines the potential 
of the LicMAb to minimize toxicity. Furthermore, a poten-
tial antigen sink effect is avoided because the low-affinity 
binding characteristics of the fused SIRPα domain prevent 
unspecific CD47 binding. This further enhances the efficacy 
of the SIRPα-αMSLN LicMAb therapeutic approach.

CD47-targeting synergizes with the cytotoxicity of 
agents such as chemotherapies [42], stimulator of interferon 
genes (STING) agonists [43], and poly (ADP-ribose) poly-
merase inhibitors (PARPi) [44] that are known to induce 
immunogenic cell death and thereby lead to upregula-
tion of pro-phagocytic ligands [44]. Thus, combinatorial 
approaches might increase the response rates of EOC and 
PDAC patients. Moreover, as adaptive ICIs such as αPD-1/ 
αPD–L1 did not improve response rates in these patients 
[2, 3], the combination with innate CD47 blockade using 
LicMAbs might synergize analogously with other cancer 
entities [45, 46]. It is known that CD47-targeting leads to 
an adaptive immune reaction by T cells [47]. In that regard, 
the LicMAb might also induce cross-presentation to T cells 
by antigen-presenting cells, resulting in long-lasting anti-
tumor effects. Future studies are awaited to validate this 
mechanism, which might lead to long-term tumor control. 
Furthermore, an inflammatory microenvironment with high 
IL-2 levels can activate NK cells and induce SIRPα upregu-
lation as an inhibitory pathway [48]. This additional mode of 
action could be targeted by the LicMAbs, further highlight-
ing them as a promising concept.

A limitation of our study is the focus on ex vivo data. 
Immunotherapy is beset by the lack of suitable immuno-
competent animal models that allow human-specific bind-
ing domains to be tested. Hence, either humanized NSG 
mouse models injected with human cancer cell lines and 
effector cells serve as surrogates or murine antibody con-
structs would have been necessary. Each model system 
has limitations, and we opted for validation in the human 
organoid model, an advantageous research tool over mouse 
models regarding applicability and practicability, laboratory 
workload and costs, ethics, and high-throughput screening 
options [49]. Accordingly, the efficient cytotoxic effects of 
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primary EOC organoids validate the LicMAb in a more clin-
ically relevant 3D model. However, humanized NSG mouse 
models with orthotopic cancer inoculation remain important 
for future studies to expand the preclinical evaluation and 
toxicity assessments of LicMAbs.

In summary, our SIRPα-αMSLN LicMAb constructs 
show promising activity without on-target off-tumor toxicity 
in preclinical models. Hence, our data supports the further 
development of a SIRPα-αMSLN LicMAb for evaluation 
in early clinical trials on advanced ovarian and pancreatic 
cancer patients.
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