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Sarcopenia and body composition metrics are strongly associated with patient outcomes. In this 
study, we developed and validated a flexible, open-access pipeline integrating available deep 
learning-based segmentation models with pre- and postprocessing steps to extract body composition 
measures from routine computed tomography (CT) scans. In 337 surgical oncology patients, total 
skeletal muscle tissue (SMtotal), psoas muscle tissue (SMpsoas), visceral adipose tissue (VAT), and 
subcutaneous adipose tissue (SAT) were quantified both manually and using the pipeline. Automated 
and manual measurements showed strong correlations (SMpsoas: r = 0.776, VAT: r = 0.993, SAT: r = 0.984; 
all P < 0.001). Measurement discrepancies primarily resulted from segmentation errors, anatomical 
anomalies or image irregularities. SMpsoas measurements showed substantial variability depending on 
slice selection, whereas SMtotal, averaged across all L3 levels, provided greater measurement stability. 
Overall, SMtotal performed comparably to SMpsoas in predicting overall survival (OS). In summary, body 
composition measures derived from the pipeline strongly correlated with manual measurements and 
were prognostic for OS. The increased stability of SMtotal across vertebral levels suggests it may serve 
as a more reliable alternative to psoas-based assessments. Future studies should address the identified 
areas of improvement to enhance the accuracy of automated segmentation models.
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Sarcopenia, characterized by the loss of skeletal muscle mass, has gained significant relevance in both oncology 
and oncological surgery1–4. Affecting approximately 35% of oncology patients5, it is associated with poorer 
overall survival (OS), reduced disease-free survival, and diminished response to cancer therapies2,6,7. In surgical 
contexts, it is consistently linked to higher risk of postoperative complications8–10. For instance, in pancreatic 
cancer, sarcopenia is associated with higher perioperative mortality and shorter OS11. Early recognition of 
sarcopenia is therefore critical, as it allows targeted prehabilitation strategies—such as structured exercise 
programs and nutritional optimization—that may improve both short- and long-term outcomes11,12. Identifying 
sarcopenic patients before surgery provides an opportunity for timely intervention, potentially mitigating the 
clinical impact of muscle loss and improving patient prognosis.

Sarcopenia or its surrogate parameters can be determined using various methods, such as dual-energy X-ray 
absorptiometry, bioelectrical impedance analysis, hand grip tests, clinical scores, or the analysis of imaging 
studies4. The evaluation of computed tomography (CT) scans is particularly well established due to its widespread 
availability and the standardized, reproducible nature of measurements4,13. However, manual measurements are 
labor-intensive, limiting their practicality in clinical routine.

Given the advances in deep learning-based semantic segmentation techniques, applying such methods to 
determine body composition parameters is promising. Several studies have demonstrated the feasibility of using 
deep learning models to segment muscle and adipose tissue areas, showing strong correlations with manual 
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measurements and clinical outcomes14–19. However, widespread adoption of these models is hampered by 
limited accessibility15,20,21.

In response, we developed a flexible pipeline that integrates existing segmentation models with pre- and 
postprocessing steps to assess sarcopenia and body composition measures. This study aimed to validate this 
automated pipeline against manual measurements in a real-world cohort of surgical oncology patients, with 
particular emphasis on identifying sources of discrepancy and assessing measurement reliability across different 
skeletal muscle metrics.

Materials and methods
Study design
This study is a non-interventional, retrospective analysis of 382 patients who underwent surgery for hepatic or 
pancreatic disease between 2003 and 2016 (Fig. 1a). We included patients with underlying oncological disease 
and available CT scans of adequate quality and coverage performed up to two months prior to surgery (see 
Online Resource 1, Image Quality Criteria). Manual measurements were derived from earlier, unpublished 
analyses. Five patients were secondarily excluded from deep learning-based measurements due to missing 
imaging data (n = 2), metadata errors (n = 2) preventing accurate image orientation, or incomplete imaging data 
(n = 1) caused by series reconstruction issues (see Online Resource 2, Secondary Exclusions). These exclusions 
were unrelated to segmentation accuracy but based on data availability only.

The study received ethical approval from the institutional review board (IRB)  of the medical faculty of 
the LMU Munich (23-0891) and was registered at the Clinical Study Center of the LMU University Hospital 
(102402). Data screening was performed by authors who were obligated to confidentiality. CT scans, OS and 
body height of the included patients were irreversibly anonymized, and all analyses were conducted thereafter. 
The IRB determined that informed consent was not necessary, as all data utilized in the study were initially 
collected for clinical purposes, the study design was entirely retrospective, and all analyses were performed only 
in the irreversibly anonymized dataset.

Imaging
CT scans were performed either at LMU University Hospital or at referring institutions, using a variety of 
CT scanners from four manufacturers. A weight-adapted dose of iodinated contrast agent was administered 
intravenously in all cases, and portal venous phase scans were preferred for analysis. Image data were 
reconstructed using a standard soft tissue kernel with a maximum slice thickness of 8 mm.

Fig. 1.  Study design (a) and segmentation pipeline (b): Manual and deep learning-based segmentations and 
postprocessing steps to measure cross sectional areas (CSA) of muscle tissue (SMpsoas, SMtotal), visceral adipose 
tissue (VAT), and subcutaneous adipose tissue (SAT).
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Definitions
In this study, we distinguished between compartments and tissue (Table 1). Compartments are defined by 
anatomical boundaries such as skin, fascia, bone, vessels, and organs. Tissue refers to the actual tissue composition 
within each compartment and was assigned based on Hounsfield Units (HU) using established thresholds3,4,7,17. 
We determined the cross-sectional area (CSA) of total skeletal muscle tissue (SMtotal), psoas muscle tissue 
(SMpsoas), visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT).

Previous studies have demonstrated that the CSA of total muscle at the third lumbar vertebra (L3) correlates 
well with overall muscle mass4,13. Some authors have used psoas muscle CSA as a simplified surrogate for total 
muscle mass22–24, although this approach remains under debate22,25,26. Therefore, the pipeline was constructed 
to determine deep learning-based measurements for both SMtotal and SMpsoas.

Manual measurement
Manual measurements were obtained from earlier, unpublished analyses. They were performed using the 
SliceOmatic software (version 5.0; Tomovision, Magog, Quebec, Canada) by three readers (2 medical students 
under supervision of CH) under the guidance of a board-certified radiologist  (ABG). First, the first lumbar 
vertebra (L1) was identified as the most cranial lumbar vertebra without rib attachments. The readers then 
counted downward to locate L3. The axial slice at L3 where both transverse processes were clearly visible was 
selected for analysis. In this slice, standard HU thresholds were applied to measure the respective tissue CSA. 
Segmentation was performed using either manually marking the relevant areas (“Paint method”) or selecting a 
single pixel and automatically including all connected pixels (“Grow 2D method”).

Automated measurement
Automated measurements were performed by mirroring the manual measurement workflow (Fig.  1b). The 
developed pipeline integrates TotalSegmentator27, with specific pre- and postprocessing steps (Fig.  1b). The 
pipeline’s source code and detailed documentation are available at ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​f​o​h​o​f​​m​a​n​n​/​​B​o​d​y​C​o​​m​p​
o​s​i​t​​i​o​n​/​r​e​​l​e​a​s​e​s​/​t​a​g​/​v​0​.​1.

CT scans of the included patients were exported with standardized image formatting of 512 × 512 voxels, and 
the DICOM files were converted to NIfTI format. First, segmentations of the spine (vertebrae T1 to L5, S1 and 
os sacrum) and compartments (muscle, visceral, and subcutaneous) were performed using TotalSegmentator. 
Segmentations of the body trunk, psoas muscle, and vertebral bodies (excluding the spinous and transverse 
processes) were created separately. Using the latter, labels of the spine were reduced to include only the vertebral 
bodies, excluding the vertebral arch and spinous processes. The center of each vertebral body was then determined 
by calculating the center of mass of the assigned voxels. Compartment labels were confined to the body trunk, 
excluding extremities, head and neck. Subsequently, the tissue composition of the specific compartments was 
determined using established thresholds (Table 1). For each CT slice and tissue type, the CSA was calculated.

Qualitative and statistical analysis
The relationship between manual and automated measurements of tissue CSA was assessed using Bland–Altman 
analysis and correlation metrics. Since manual segmentations were not systematically stored in a format enabling 
voxel-wise comparison, calculation of the Dice similarity coefficient was not feasible. In a subset of patients who 
underwent pancreatic surgery, measurement inconsistencies and outliers (defined as deviations beyond the 95% 
confidence interval) were qualitatively explored, categorized, and described. The colorectal cancer cohort was not 
included in the discrepancy analysis, as manual measurements lacked documentation regarding the specific slice 
selection. Exemplary visualizations were created using 3D slicer, integrating labels obtained through manual HU 
thresholding with those derived from the pipeline28. To assess measurement variability across vertebral levels, 
cases with segmentation errors in L2, L3 or L4 were excluded, and CSA values (per slice and per vertebra) at L2 
and L4 were compared to their respective reference at L3. A linear mixed effects model was developed, including 
the vertebral level as a fixed effect and a random intercept for each patient. The median overall survival (OS) 
of patients with pancreatic or colorectal cancer was assessed using Kaplan–Meier analysis. The skeletal muscle 
index (SMI = CSA muscle/(body height [m])2) was calculated2. For each entity, the association of SMI with OS 
was analyzed using Harrell’s C-index and receiver operating characteristic (ROC) analysis to identify patients 
with above-median OS, as well as Kaplan–Meier survival analyses. Hazard ratios (HR) with 95% confidence 
intervals were calculated using Cox proportional hazards regression. All statistical analyses were performed 
using R version 4.4.0. The significance level was set at 0.05, and all tests were conducted two-sided.

Compartment Thresholds Tissue

Label Definition HU Label

Muscle Regions predominantly including muscles, without separating individual muscles. Includes 
smaller vessels and inter- and intramuscular connective tissues − 29 to 150 Total skeletal muscle 

tissue (SMtotal)

Iliopsoas Muscle Subset of muscle compartment, including only iliopsoas muscle − 29 to 150 Psoas skeletal muscle 
tissue (SMpsoas)

Visceral Regions beneath the thoracic cage and muscles of the abdominal wall. Includes pelvis and 
retroperitoneum. Excludes solid organs and larger vessels − 190 to − 30 Visceral adipose 

tissue (VAT)

Subcutaneous Regions beneath the skin, overlaying fascias or periosteum. Excludes foreign material (e.g., 
implants) − 190 to − 30 Subcutaneous 

adipose tissue (SAT)

Table 1.  Definitions of compartments and tissue.
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Results
Patient characteristics
This study included 337 patients who underwent oncological surgery. Among these patients, 174/337 (51.6%) 
had metastatic colorectal cancer, 150/337 (44.5%) had pancreatic ductal adenocarcinoma, 7/337 (2.1%) had 
carcinoma of the papilla of vater, and 6/337 (1.8%) had extrahepatic cholangiocarcinoma. Of the included 
patients, 140/337 (41.5%) were female. The age of the patients ranged between 21 and 85 years, with a mean age 
of 64.5 years (standard deviation, 10.8 years).

CT scans were performed a median of 15 days prior to surgery (interquartile range [IQR], 5 to 29 days). 
Slice thickness ranged from 0.5 to 8 mm, with a median slice thickness of 5 mm (IQR, 3 to 5 mm). The median 
number of slices per CT scan was 129 (IQR, 90 to 195).

Deep learning-based vs. manual measurements
At the level of L3, Bland–Altman analysis indicated that the CSA of SMpsoas and VAT was lower when measured 
using the pipeline compared to manual measurements (Fig. 2a,d). In contrast, no relevant systematic difference 
was observed between manual and automated measurements for the CSA of SAT (Fig. 2g). All measurements 
correlated strongly or very strongly (SMpsoas r = 0.776, 95% CI 0.730 to 0.815; P < 0.001; VAT r = 0.993, 95% CI 
0.991 to 0.994; P < 0.001; SAT r = 0.984, 95% CI 0.981 to 0.987; P < 0.001) (Fig. 2b,e,h). Exemplary segmentations 
are shown in Fig. 2c,f,i.

Causes of measurement discrepancies
In a subset of patients who underwent pancreatic surgery, the levels identified as the center of L3 by the manual 
reader and the pipeline were compared. In 150/163 (92.0%) patients, the same or directly neighboring slices 
were identified. In 4 cases (2.4%), the level differed by two or three slices but was still within the L3 vertebral 
level. In 8 cases (4.9%) the deep learning-based segmentations included errors, with some errors associated 
with vertebral anomalies (e.g., sacralization of lumbar vertebrae or lumbarization of sacral vertebrae, Fig. 3a), 
and others occurring independently of any anomalies (Fig. 3b) (see Online Resource 3, Causes of Measurement 
Differences).

Fig. 2.  Comparison of manual and automated measurements: Bland–Altman plots (a, d, g) showing the 
differences between cross-sectional area (CSA) measurements for the psoas muscle tissue (a, b, c), visceral 
adipose tissue (d, e, f), and subcutaneous adipose tissue (g, h, i), with outliers marked in red; Scatter plots (b, e, 
h) illustrating the respective correlations; Example images of the respective segmentations (c, f, i) with manual 
segmentations (red), deep learning-based segmentations (blue), and intersections (purple).
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The CSA of VAT measured using the pipeline was lower compared to manual measurements. This discrepancy 
was primarily due to the overestimation that occurred when voxels within the abdominal cavity were selected 
as VAT based solely on HU thresholds, leading to the misclassification of structures such as bowel contents 
(Fig.  2f). SMpsoas measurements showed greater variability between manual and automated measurements, 
whereas SAT and VAT demonstrated more consistent correlations (Fig. 2). In the analysis of all outliers, causes 
of deviations included mislabeling of the quadratus lumborum muscle (Fig. 3c), the abdominal wall (Fig. 3c) or 
the psoas muscle (Fig. 3d), inclusion of extremities in the analyzed slice (Fig. 3e), or noisy CT scans (Fig. 3f).

Influence of the imaging plane on measurements
To assess the impact of the selected slice, the automatically determined CSA per slice was compared to reference 
measurements obtained at the center of L3. CSA of SMpsoas and SAT were larger in the lower lumbar spine 
(Fig. 4a), whereas no similar trend was observed for SMtotal and VAT. The extent of deviation for all measurements 
progressively increased with the distance from the reference level at the center of L3. Measurements taken just 
one slice above or below the reference level, but still within the L3 vertebra, exhibited deviations of up to 50% in 
some cases. Notably, SMtotal showed greater stability across different measurement levels (Fig. 4a).

Reducing measurement variability
To address the variability of measurements across different slices, we computed the mean CSA per vertebral level 
and compared the values at L2 and L4 relative to L3 (Fig. 4b). SMpsoas and SAT were consistently greater at lower 
levels, whereas no systematic trend was observed for the SMtotal and VAT. The influence of vertebral level on 
measurement variability was explored using a linear mixed-effects model. For SMpsoas, the fixed effect estimates 
showed a significantly lower CSA at L2, and a significantly higher CSA at L4 compared to L3. A similar, but less 
pronounced trend was observed for SAT. For SMtotal, the CSA was lower at both L2 and L4 compared to L3, with 
smaller relative differences (Table 2).

Association with overall survival
We compared the prognostic relevance of the SMI derived from manual psoas muscle measurements SMpsoas 
at the L3 center and automated total skeletal muscle measurements SMtotal averaged across L3: In patients with 
pancreatic cancer, the SMtotal-based SMI demonstrated significantly higher prognostic accuracy than SMpsoas-
based SMI (C-index 0.598 vs. 0.494; P < 0.001). Additionally, the AUC in ROC analysis for predicting above-
median OS was higher for automated SMtotal-based SMI compared to manual SMpsoas-based SMI (Fig.  5a). 
In patients with colorectal cancer, prognostic accuracy was comparable between the two methods, with no 
significant difference in C-Index (0.579 vs. 0.626; P = 0.111). The AUC for automated SMtotal-based SMI was 
slightly lower than for manual SMpsoas-based SMI (Fig. 5b). Kaplan–Meier survival analyses further illustrated 
the differences in OS between high- and low-SMI groups, with similar variations depending on the measurement 
method and cancer type (Fig. 6).

Discussion
In this study, we developed a software pipeline that integrates pre- and postprocessing steps with open-access 
segmentation models to automate the measurement of body composition parameters from routine CT scans. 
In a cohort of 337 surgical-oncological patients, we assessed the concordance of automated measurements with 
manual measurements originating from earlier, unpublished analyses, explored potential causes of discrepancies, 
and investigated strategies to compensate for measurement errors.

Fig. 3.  Examples of deep learning-based segmentation errors: segmentation errors of the vertebral bodies 
(a, b), caused by vertebral anomalies (a, lumbarization of S1) or by factors not associated with anomalies 
(b); Segmentation errors of tissue (d–f), including inaccurate segmentation of specific muscle groups (c, d), 
included extremities (e, corrected), and noisy CT scans (f); skeletal muscle tissue delineated in red, visceral 
adipose tissue in green, subcutaneous adipose tissue in yellow, and intermuscular adipose tissue in pink.
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We found a strong correlation between manual and automated measurements of subcutaneous and visceral 
adipose tissue (SAT, VAT) at the level of L3, with no relevant systematic differences. However, the concordance 
between manual and automated measurements of the psoas muscle tissue (SMpsoas) was less consistent. Errors 
related to vertebral anomalies, such as lumbarization of S1 or sacralization of L5, occasionally resulted in 
incorrect selection of L3 by the pipeline29, or muscle tissue was not correctly segmented. Additionally, noisy 
CT scans and the proximity of tissue to structures with similar HU values complicated threshold-based sub-
segmentations21.

We observed that the CSA of SMpsoas and SAT varied significantly depending on the slice selected for tissue 
segmentation. In contrast, SMtotal remained more stable across vertebral levels, making it a more robust and 
reproducible marker for skeletal muscle mass. By averaging SMtotal across the entire L3 vertebra, segmentation 
inconsistencies are mitigated, and measurement reliability is improved. In this study, the mean SMtotal across 
the entire L3 vertebra, as determined by the pipeline, showed comparable predictive value for above-median OS 
compared to manually determined SMpsoas at the center of L3.

Tissue type Fixed effect CSA estimate [cm2] SE p-value CSA estimate relative to L3 [%]

SMpsoas

L3 (Reference) 13.7 0.3 p < 0.001

L2 − 6.6 0.1 p < 0.001 52.1%

L4 5.7 0.1 p < 0.001 141.8%

SMtotal

L3 (Reference) 114.8 1.5 p < 0.001

L2 − 12.3 0.4 p < 0.001 89.3%

L4 − 3.2 0.4 p < 0.001 97.2%

VAT

L3 (Reference) 136.4 4.9 p < 0.001

L2 − 5.3 1.6 p < 0.001 96.1%

L4 − 7.0 1.6 p < 0.001 94.9%

SAT

L3 (Reference) 162.3 4.9 p < 0.001

L2 − 31.0 1.5 p < 0.001 80.9%

L4 35.4 1.5 p < 0.001 121.8%

Table 2.  Mixed effects model. Fixed effect estimates, standard errors, p-values, and relative values for the mean 
cross-sectional area (CSA) of the psoas skeletal muscle tissue (SMpsoas), total skeletal muscle tissue (SMtotal), 
visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) at different vertebral levels, relative to L3.

 

Fig. 4.  Cross-sectional areas (CSA) per slice relative to the reference measurement obtained at the center of L3 
(a) for the psoas muscle tissue, total skeletal muscle tissue, subcutaneous adipose tissue, and visceral adipose 
tissue with negative and positive values indicating measurements taken below and above the center of L3, 
respectively; mean CSA of the respective tissue type (b) across different vertebral levels (L2, L3, and L4) relative 
to L3.
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Other groups have reported on individual deep learning-based tissue segmentation tools, but common issues 
include small datasets, unavailable training labels, restricted model weights, and a lack of clinical validation14,15,18. 
A recent study claimed that their model outperformed TotalSegmentator in tissue segmentation; however, labels 
or model weights were not provided21. Blankemeier et al. developed a pipeline that includes tissue segmentation, 
but the model is based on a 2D nnU-Net and was not evaluated clinically16. The Body and Organ Analysis 
(BOA) tool offers a comprehensive pipeline, including model weights30 and the underlying training labels31, and 
the association of its measurements with OS has been documented32. However, BOA uses the vertebral levels 

Fig. 6.  Kaplan–Meier survival curves illustrating overall survival (OS) in patients with pancreatic cancer (a, 
b) and metastatic colorectal cancer (c, d), stratified by skeletal muscle index (SMI) derived from manual psoas 
muscle measurements (SMpsoas) at the center of L3 (a, c) or based on pipeline-derived total skeletal muscle 
tissue (SMtotal) averaged across L3 (b, d). Patients were grouped based on the median SMI within each cohort 
and measurement method. Hazard ratios (HR) and p-values were determined using Cox proportional hazard 
regression analysis.

 

Fig. 5.  ROC analysis of skeletal muscle index (SMI) predicting above-median overall survival (OS) for (a) 
patients with pancreatic cancer (> 19.9 months [95% CI, 16.0 to 23.0 months]), and (b) patients with metastatic 
colorectal cancer (> 47.9 months [95% CI, 40.7 to 61.0 months]). The red line represents SMI derived from 
manual psoas muscle measurements (SMpsoas) at the center of L3, while the blue line represents SMI based on 
total skeletal muscle tissue (SMtotal) averaged across all levels of L3 as determined by the pipeline.
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predicted by TotalSegmentator, and thus some limitations (and mitigation strategies) described in this study 
apply to BOA as well.

It is important to note that manual segmentation methods are not without errors. For instance, in the subset 
of patients who underwent pancreatic surgery, 2 of 13 discrepancies between manual and automated selection 
of the axial slice were caused by human errors. Moreover, a purely HU-based segmentation approach can lead 
to additional inaccuracies, particularly in noisy CT scans. Manual segmentation is prone to observer fatigue, 
particularly in repetitive tasks, whereas deep learning models offer scalability and can further improve by 
addressing identified weaknesses, for instance with refined training and postprocessing adjustments.

One limitation of this study is the absence of a pixel-by-pixel ground truth approximation. Since manual 
segmentations were not systematically stored in a format enabling voxel-wise comparisons, a Dice similarity 
coefficient could not be calculated. Although the Dice score is a widely used metric for segmentation accuracy, 
it does not necessarily correlate with clinical relevance15, and we therefore focused on evaluating whether body 
composition measures derived from the deep learning-based pipeline are comparable to manually obtained 
measures. While this study discusses issues arising from segmentation errors, it does not provide improved 
training labels or propose new models. Future work could build on openly available datasets to improve labels, 
particularly for the segmentation of vertebral bodies with anatomical anomalies. This could enhance the accuracy 
and reliability of automated segmentation tools, addressing some of the limitations we identified.

The prognostic value of the SMI was limited in this study, particularly in the ROC-analysis of patients with 
metastatic colorectal cancer. This limitation could stem from the multifactorial nature of oncological patient 
outcomes, which the SMI alone may not fully capture. Additionally, using above-median OS as an evaluation 
metric might not be ideal for patients with longer survival, as sarcopenia at the time of diagnosis could more 
significantly impact short-term outcomes33.

Although this study focused on pancreatic and metastasized colorectal malignancies due to data availability, 
the published pipeline itself is disease-agnostic and can be applied across oncological and non-oncological 
conditions. Future studies should explore the prognostic value of different measurement techniques across 
various patient groups and cancer types. A deeper understanding of body composition and its changes could be 
used to optimize the combination, timing, and intensity of multimodal therapy for individual cancer patients.

In summary, our open-access pipeline integrates established deep learning segmentation models with 
postprocessing steps to extract body composition measures from routine CT scans. Automated measurements 
showed strong correlation with manual measurements and were prognostic for overall survival. Averaging CSA 
across the entire L3 vertebra minimized measurement variability, reinforcing SMtotal as a robust and reliable 
marker for sarcopenia assessment. Our study highlights the clinical potential of automated segmentation tools 
while identifying key areas for future improvement and validation.

Data availability
The clinical data and CT scans analyzed this study cannot be shared due to data protection laws. The source code 
and a docker image of the pipeline are available under Apache 2.0 license at ​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​f​o​h​o​f​​m​a​n​n​/​​B​
o​d​y​C​o​​m​p​o​s​i​t​​i​o​n​/​r​e​​l​e​a​s​e​s​/​t​a​g​/​v​0​.​1. The segmentation tasks are performed using TotalSegmentator, available at 
https://github.com/wasserth/TotalSegmentator under Apache 2.0 license27. The weights for the segmentation 
models were available under free or non-commercial usage licenses from ​h​t​t​p​s​:​/​/​g​i​t​h​u​b​.​c​o​m​/​w​a​s​s​e​r​t​h​/​T​o​t​a​l​S​e​g​
m​e​n​t​a​t​o​r​​​​​. TotalSegmentator uses the nnU-Net framework34.
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