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Validation of body composition
parameters extracted via deep
learning-based segmentation from
routine computed tomographies
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Sarcopenia and body composition metrics are strongly associated with patient outcomes. In this
study, we developed and validated a flexible, open-access pipeline integrating available deep
learning-based segmentation models with pre- and postprocessing steps to extract body composition
measures from routine computed tomography (CT) scans. In 337 surgical oncology patients, total
skeletal muscle tissue (SM, , . ), psoas muscle tissue (SMpsoaS), visceral adipose tissue (VAT), and
subcutaneous adipose tissue (SAT) were quantified both manually and using the pipeline. Automated
and manual measurements showed strong correlations (SMpsoas: r=0.776, VAT: r=0.993, SAT: r=0.984%;
all P<0.001). Measurement discrepancies primarily resulted from segmentation errors, anatomical
anomalies or image irregularities. SM,,,, measurements showed substantial variability depending on
slice selection, whereas SM, .., averaged across all L3 levels, provided greater measurement stability.
Overall, SM, , , performed comparably to SM____in predicting overall survival (OS). In summary, body
composition measures derived from the pipeﬁne strongly correlated with manual measurements and
were prognostic for 0S. The increased stability of SM, , , across vertebral levels suggests it may serve
as a more reliable alternative to psoas-based assessments. Future studies should address the identified
areas of improvement to enhance the accuracy of automated segmentation models.
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Sarcopenia, characterized by the loss of skeletal muscle mass, has gained significant relevance in both oncology
and oncological surgery!™. Affecting approximately 35% of oncology patients’, it is associated with poorer
overall survival (OS), reduced disease-free survival, and diminished response to cancer therapies*®”. In surgical
contexts, it is consistently linked to higher risk of postoperative complications®°. For instance, in pancreatic
cancer, sarcopenia is associated with higher perioperative mortality and shorter OS!!. Early recognition of
sarcopenia is therefore critical, as it allows targeted prehabilitation strategies—such as structured exercise
programs and nutritional optimization—that may improve both short- and long-term outcomes! 2. Identifying
sarcopenic patients before surgery provides an opportunity for timely intervention, potentially mitigating the
clinical impact of muscle loss and improving patient prognosis.

Sarcopenia or its surrogate parameters can be determined using various methods, such as dual-energy X-ray
absorptiometry, bioelectrical impedance analysis, hand grip tests, clinical scores, or the analysis of imaging
studies?. The evaluation of computed tomography (CT) scans is particularly well established due to its widespread
availability and the standardized, reproducible nature of measurements®!>. However, manual measurements are
labor-intensive, limiting their practicality in clinical routine.

Given the advances in deep learning-based semantic segmentation techniques, applying such methods to
determine body composition parameters is promising. Several studies have demonstrated the feasibility of using
deep learning models to segment muscle and adipose tissue areas, showing strong correlations with manual
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measurements and clinical outcomes!'*'. However, widespread adoption of these models is hampered by
limited accessibility!>2*2!,

In response, we developed a flexible pipeline that integrates existing segmentation models with pre- and
postprocessing steps to assess sarcopenia and body composition measures. This study aimed to validate this
automated pipeline against manual measurements in a real-world cohort of surgical oncology patients, with
particular emphasis on identifying sources of discrepancy and assessing measurement reliability across different
skeletal muscle metrics.

Materials and methods

Study design

This study is a non-interventional, retrospective analysis of 382 patients who underwent surgery for hepatic or
pancreatic disease between 2003 and 2016 (Fig. 1a). We included patients with underlying oncological disease
and available CT scans of adequate quality and coverage performed up to two months prior to surgery (see
Online Resource 1, Image Quality Criteria). Manual measurements were derived from earlier, unpublished
analyses. Five patients were secondarily excluded from deep learning-based measurements due to missing
imaging data (n=2), metadata errors (n=2) preventing accurate image orientation, or incomplete imaging data
(n=1) caused by series reconstruction issues (see Online Resource 2, Secondary Exclusions). These exclusions
were unrelated to segmentation accuracy but based on data availability only.

The study received ethical approval from the institutional review board (IRB) of the medical faculty of
the LMU Munich (23-0891) and was registered at the Clinical Study Center of the LMU University Hospital
(102402). Data screening was performed by authors who were obligated to confidentiality. CT scans, OS and
body height of the included patients were irreversibly anonymized, and all analyses were conducted thereafter.
The IRB determined that informed consent was not necessary, as all data utilized in the study were initially
collected for clinical purposes, the study design was entirely retrospective, and all analyses were performed only
in the irreversibly anonymized dataset.

Imaging

CT scans were performed either at LMU University Hospital or at referring institutions, using a variety of
CT scanners from four manufacturers. A weight-adapted dose of iodinated contrast agent was administered
intravenously in all cases, and portal venous phase scans were preferred for analysis. Image data were
reconstructed using a standard soft tissue kernel with a maximum slice thickness of 8 mm.
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Fig. 1. Study design (a) and segmentation pipeline (b): Manual and deep learning-based segmentations and
postprocessing steps to measure cross sectional areas (CSA) of muscle tissue (SMpsoas, SM,,..)» visceral adipose
tissue (VAT), and subcutaneous adipose tissue (SAT).
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Definitions
In this study, we distinguished between compartments and tissue (Table 1). Compartments are defined by
anatomical boundaries such as skin, fascia, bone, vessels, and organs. Tissue refers to the actual tissue composition
within each compartment and was assigned based on Hounsfield Units (HU) using established thresholds®>*”17.
We determined the cross-sectional area (CSA) of total skeletal muscle tissue (SM, ), psoas muscle tissue
(SM__..)» visceral adipose tissue (VAT), and subcutaneous adipose tissue (SAT).

revious studies have demonstrated that the CSA of total muscle at the third lumbar vertebra (L3) correlates
well with overall muscle mass*!®. Some authors have used psoas muscle CSA as a simplified surrogate for total
muscle mass??24, although this approach remains under debate?>?>2°, Therefore, the pipeline was constructed
to determine deep learning-based measurements for both SM, ., and SMgas:
Manval measurement
Manual measurements were obtained from earlier, unpublished analyses. They were performed using the
SliceOmatic software (version 5.0; Tomovision, Magog, Quebec, Canada) by three readers (2 medical students
under supervision of CH) under the guidance of a board-certified radiologist (ABG). First, the first lumbar
vertebra (L1) was identified as the most cranial lumbar vertebra without rib attachments. The readers then
counted downward to locate L3. The axial slice at L3 where both transverse processes were clearly visible was
selected for analysis. In this slice, standard HU thresholds were applied to measure the respective tissue CSA.
Segmentation was performed using either manually marking the relevant areas (“Paint method”) or selecting a
single pixel and automatically including all connected pixels (“Grow 2D method”).

Automated measurement

Automated measurements were performed by mirroring the manual measurement workflow (Fig. 1b). The
developed pipeline integrates TotalSegmentator?’, with specific pre- and postprocessing steps (Fig. 1b). The
pipeline’s source code and detailed documentation are available at https://github.com/fohofmann/BodyComp
osition/releases/tag/v0.1.

CT scans of the included patients were exported with standardized image formatting of 512 x 512 voxels, and
the DICOM files were converted to NIfTT format. First, segmentations of the spine (vertebrae T1 to L5, S1 and
os sacrum) and compartments (muscle, visceral, and subcutaneous) were performed using TotalSegmentator.
Segmentations of the body trunk, psoas muscle, and vertebral bodies (excluding the spinous and transverse
processes) were created separately. Using the latter, labels of the spine were reduced to include only the vertebral
bodies, excluding the vertebral arch and spinous processes. The center of each vertebral body was then determined
by calculating the center of mass of the assigned voxels. Compartment labels were confined to the body trunk,
excluding extremities, head and neck. Subsequently, the tissue composition of the specific compartments was
determined using established thresholds (Table 1). For each CT slice and tissue type, the CSA was calculated.

Qualitative and statistical analysis

The relationship between manual and automated measurements of tissue CSA was assessed using Bland-Altman
analysis and correlation metrics. Since manual segmentations were not systematically stored in a format enabling
voxel-wise comparison, calculation of the Dice similarity coefficient was not feasible. In a subset of patients who
underwent pancreatic surgery, measurement inconsistencies and outliers (defined as deviations beyond the 95%
confidence interval) were qualitatively explored, categorized, and described. The colorectal cancer cohort was not
included in the discrepancy analysis, as manual measurements lacked documentation regarding the specific slice
selection. Exemplary visualizations were created using 3D slicer, integrating labels obtained through manual HU
thresholding with those derived from the pipeline?®. To assess measurement variability across vertebral levels,
cases with segmentation errors in L2, L3 or L4 were excluded, and CSA values (per slice and per vertebra) at L2
and L4 were compared to their respective reference at L3. A linear mixed effects model was developed, including
the vertebral level as a fixed effect and a random intercept for each patient. The median overall survival (OS)
of patients with pancreatic or colorectal cancer was assessed using Kaplan-Meier analysis. The skeletal muscle
index (SMI=CSA muscle/(body height [m])?) was calculated?. For each entity, the association of SMI with OS
was analyzed using Harrell's C-index and receiver operating characteristic (ROC) analysis to identify patients
with above-median OS, as well as Kaplan-Meier survival analyses. Hazard ratios (HR) with 95% confidence
intervals were calculated using Cox proportional hazards regression. All statistical analyses were performed
using R version 4.4.0. The significance level was set at 0.05, and all tests were conducted two-sided.

Compartment Thresholds | Tissue
Label Definition HU Label
Regions predominantly including muscles, without separating individual muscles. Includes Total skeletal muscle
Muscle . . I —-29to 150 .
smaller vessels and inter- and intramuscular connective tissues tissue (SM,_ )
Tliopsoas Muscle | Subset of muscle compartment, including only iliopsoas muscle -29to 150 Ezgz: ?lgletletal r)nuscle
psoas:
. Regions beneath the thoracic cage and muscles of the abdominal wall. Includes pelvis and Visceral adipose
Visceral . 3 -190to-30 | .
retroperitoneum. Excludes solid organs and larger vessels tissue (VAT)
Subcutaneous Regions beneath the skin, overlaying fascias or periosteum. Excludes foreign material (e.g., | _ 190 to — 30 Subcutaqeous
implants) adipose tissue (SAT)

Table 1. Definitions of compartments and tissue.
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Results
Patient characteristics
This study included 337 patients who underwent oncological surgery. Among these patients, 174/337 (51.6%)
had metastatic colorectal cancer, 150/337 (44.5%) had pancreatic ductal adenocarcinoma, 7/337 (2.1%) had
carcinoma of the papilla of vater, and 6/337 (1.8%) had extrahepatic cholangiocarcinoma. Of the included
patients, 140/337 (41.5%) were female. The age of the patients ranged between 21 and 85 years, with a mean age
of 64.5 years (standard deviation, 10.8 years).

CT scans were performed a median of 15 days prior to surgery (interquartile range [IQR], 5 to 29 days).
Slice thickness ranged from 0.5 to 8 mm, with a median slice thickness of 5 mm (IQR, 3 to 5 mm). The median
number of slices per CT scan was 129 (IQR, 90 to 195).

Deep learning-based vs. manual measurements

At the level of L3, Bland-Altman analysis indicated that the CSA of SM coas and VAT was lower when measured
using the pipeline compared to manual measurements (Fig. 2a,d). In contrast, no relevant systematic difference
was observed between manual and automated measurements for the CSA of SAT (Fig. 2g). All measurements
correlated strongly or very strongly (SM__ r=0.776, 95% CI 0.730 to 0.815; P<0.001; VAT r=0.993, 95% CI
0.991 to 0.994; P<0.001; SAT r=0.984, 95% CI 0.981 to 0.987; P<0.001) (Fig. 2b,e,h). Exemplary segmentations

are shown in Fig. 2¢,f,i.

Causes of measurement discrepancies

In a subset of patients who underwent pancreatic surgery, the levels identified as the center of L3 by the manual
reader and the pipeline were compared. In 150/163 (92.0%) patients, the same or directly neighboring slices
were identified. In 4 cases (2.4%), the level differed by two or three slices but was still within the L3 vertebral
level. In 8 cases (4.9%) the deep learning-based segmentations included errors, with some errors associated
with vertebral anomalies (e.g., sacralization of lumbar vertebrae or lumbarization of sacral vertebrae, Fig. 3a),
and others occurring independently of any anomalies (Fig. 3b) (see Online Resource 3, Causes of Measurement
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Fig. 2. Comparison of manual and automated measurements: Bland-Altman plots (a, d, g) showing the
differences between cross-sectional area (CSA) measurements for the psoas muscle tissue (a, b, ¢), visceral
adipose tissue (d, e, f), and subcutaneous adipose tissue (g, h, i), with outliers marked in red; Scatter plots (b, e,
h) illustrating the respective correlations; Example images of the respective segmentations (c, f, i) with manual
segmentations (red), deep learning-based segmentations (blue), and intersections (purple).
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Fig. 3. Examples of deep learning-based segmentation errors: segmentation errors of the vertebral bodies
(a, b), caused by vertebral anomalies (a, lumbarization of S1) or by factors not associated with anomalies
(b); Segmentation errors of tissue (d-f), including inaccurate segmentation of specific muscle groups (c, d),
included extremities (e, corrected), and noisy CT scans (f); skeletal muscle tissue delineated in red, visceral
adipose tissue in green, subcutaneous adipose tissue in yellow, and intermuscular adipose tissue in pink.

The CSA of VAT measured using the pipeline was lower compared to manual measurements. This discrepancy
was primarily due to the overestimation that occurred when voxels within the abdominal cavity were selected
as VAT based solely on HU thresholds, leading to the misclassification of structures such as bowel contents
(Fig. 2f). SM psoay Measurements showed greater variability between manual and automated measurements,
whereas SAT and VAT demonstrated more consistent correlations (Fig. 2). In the analysis of all outliers, causes
of deviations included mislabeling of the quadratus lumborum muscle (Fig. 3¢), the abdominal wall (Fig. 3c) or
the psoas muscle (Fig. 3d), inclusion of extremities in the analyzed slice (Fig. 3e), or noisy CT scans (Fig. 3f).

Influence of the imaging plane on measurements

To assess the impact of the selected slice, the automatically determined CSA per slice was compared to reference
measurements obtained at the center of L3. CSA of SM_ - and SAT were larger in the lower lumbar spine
(Fig. 4a), whereas no similar trend was observed for SM, . ; and VAT. The extent of deviation for all measurements
progressively increased with the distance from the reference level at the center of L3. Measurements taken just
one slice above or below the reference level, but still within the L3 vertebra, exhibited deviations of up to 50% in
some cases. Notably, SM,  , showed greater stability across different measurement levels (Fig. 4a).

Reducing measurement variability

To address the variability of measurements across different slices, we computed the mean CSA per vertebral level
and compared the values at L2 and L4 relative to L3 (Fig. 4b). SM psoa . and SAT were consistently greater at lower
levels, whereas no systematic trend was observed for the SM, a1 and VAT. The influence of vertebral level on
measurement variability was explored using a linear mixed- effects model. For SM , the fixed effect estimates
showed a significantly lower CSA at L2, and a significantly higher CSA at L4 compared to L3. A similar, but less
pronounced trend was observed for SAT. For SM, ., the CSA was lower at both L2 and L4 compared to L3, with
smaller relative differences (Table 2).

total”

Association with overall survival

We compared the prognostic relevance of the SMI derived from manual psoas muscle measurements SM___
at the L3 center and automated total skeletal muscle measurements SM, _, averaged across L3: In patients with
pancreatic cancer, the SM,  -based SMI demonstrated significantly hlgher prognostic accuracy than SM psoas”
based SMI (C-index 0.598 vs. 0.494; P<0.001). Additionally, the AUC in ROC analysis for predicting above-
median OS was higher for automated SM, , -based SMI compared to manual SM__-based SMI (Fig. 5a).
In patients with colorectal cancer, prognostic accuracy was comparable between the two methods, with no
significant difference in C-Index (0.579 vs. 0.626; P=0.111). The AUC for automated SMtotal—based SMI was
slightly lower than for manual SM__ _ -based SMI (Fig. 5b). Kaplan-Meier survival analyses further illustrated
the differences in OS between high- and low-SMI groups, with similar variations depending on the measurement
method and cancer type (Fig. 6).

Discussion

In this study, we developed a software pipeline that integrates pre- and postprocessing steps with open-access
segmentation models to automate the measurement of body composition parameters from routine CT scans.
In a cohort of 337 surgical-oncological patients, we assessed the concordance of automated measurements with
manual measurements originating from earlier, unpublished analyses, explored potential causes of discrepancies,
and investigated strategies to compensate for measurement errors.
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Fig. 4. Cross-sectional areas (CSA) per slice relative to the reference measurement obtained at the center of L3
(a) for the psoas muscle tissue, total skeletal muscle tissue, subcutaneous adipose tissue, and visceral adipose
tissue with negative and positive values indicating measurements taken below and above the center of L3,
respectively; mean CSA of the respective tissue type (b) across different vertebral levels (L2, L3, and L4) relative

to L3.
Tissue type | Fixed effect CSA estimate [cm?] | SE | p-value | CSA estimate relative to L3 [%]
L3 (Reference) 13.7 0.3 | p<0.001
SM, s L2 -6.6 0.1 |p<0.001 | 52.1%
L4 5.7 0.1 | p<0.001 | 141.8%
L3 (Reference) | 114.8 1.5 | p<0.001
M, L2 -123 0.4 | p<0.001 | 89.3%
L4 -3.2 0.4 | p<0.001 | 97.2%
L3 (Reference) | 136.4 4.9 | p<0.001
VAT L2 -53 1.6 | p<0.001 96.1%
L4 -7.0 1.6 | p<0.001 | 94.9%
L3 (Reference) | 162.3 4.9 | p<0.001
SAT L2 -31.0 1.5 | p<0.001 | 80.9%
L4 354 1.5 | p<0.001 | 121.8%

Table 2. Mixed effects model. Fixed effect estimates, standard errors, p-values, and relative values for the mean
cross-sectional area (CSA) of the psoas skeletal muscle tissue (SM__ ), total skeletal muscle tissue (SM, ),
visceral adipose tissue (VAT) and subcutaneous adipose tissue (SAT) at different vertebral levels, relative to L3.

We found a strong correlation between manual and automated measurements of subcutaneous and visceral
adipose tissue (SAT, VAT) at the level of L3, with no relevant systematic differences. However, the concordance
between manual and automated measurements of the psoas muscle tissue (SMPsoaS) was less consistent. Errors
related to vertebral anomalies, such as lumbarization of S1 or sacralization of L5, occasionally resulted in
incorrect selection of L3 by the pipeline?’, or muscle tissue was not correctly segmented. Additionally, noisy
CT scans and the proximity of tissue to structures with similar HU values complicated threshold-based sub-
segmentations®!.

We observed that the CSA of SM__and SAT varied significantly depending on the slice selected for tissue
segmentation. In contrast, SM, ., remained more stable across vertebral levels, making it a more robust and
reproducible marker for skeletal muscle mass. By averaging SM,_, across the entire L3 vertebra, segmentation
inconsistencies are mitigated, and measurement reliability is improved. In this study, the mean SM,  across
the entire L3 vertebra, as determined by the pipeline, showed comparable predictive value for above-median OS

compared to manually determined SM____at the center of L3.
psoas
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Fig. 5. ROC analysis of skeletal muscle index (SMI) predicting above-median overall survival (OS) for (a)
patients with pancreatic cancer (>19.9 months [95% CI, 16.0 to 23.0 months]), and (b) patients with metastatic
colorectal cancer (>47.9 months [95% CI, 40.7 to 61.0 months]). The red line represents SMI derived from

manual psoas muscle measurements (SMPsoas

) at the center of L3, while the blue line represents SMI based on

total skeletal muscle tissue (SM, ) averaged across all levels of L3 as determined by the pipeline.
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Fig. 6. Kaplan—Meier survival curves illustrating overall survival (OS) in patients with pancreatic cancer (a,
b) and metastatic colorectal cancer (c, d), stratified by skeletal muscle index (SMI) derived from manual psoas
muscle measurements (SM, ) at the center of L3 (a, c) or based on pipeline-derived total skeletal muscle
tissue (SM, ) averaged across L3 (b, d). Patients were grouped based on the median SMI within each cohort
and measurement method. Hazard ratios (HR) and p-values were determined using Cox proportional hazard
regression analysis.
Other groups have reported on individual deep learning-based tissue segmentation tools, but common issues
include small datasets, unavailable training labels, restricted model weights, and a lack of clinical validation!41>18,
A recent study claimed that their model outperformed TotalSegmentator in tissue segmentation; however, labels
or model weights were not provided?!. Blankemeier et al. developed a pipeline that includes tissue segmentation,
but the model is based on a 2D nnU-Net and was not evaluated clinically'®. The Body and Organ Analysis
(BOA) tool offers a comprehensive pipeline, including model weights*® and the underlying training labels*!, and
the association of its measurements with OS has been documented®’. However, BOA uses the vertebral levels
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predicted by TotalSegmentator, and thus some limitations (and mitigation strategies) described in this study
apply to BOA as well.

It is important to note that manual segmentation methods are not without errors. For instance, in the subset
of patients who underwent pancreatic surgery, 2 of 13 discrepancies between manual and automated selection
of the axial slice were caused by human errors. Moreover, a purely HU-based segmentation approach can lead
to additional inaccuracies, particularly in noisy CT scans. Manual segmentation is prone to observer fatigue,
particularly in repetitive tasks, whereas deep learning models offer scalability and can further improve by
addressing identified weaknesses, for instance with refined training and postprocessing adjustments.

One limitation of this study is the absence of a pixel-by-pixel ground truth approximation. Since manual
segmentations were not systematically stored in a format enabling voxel-wise comparisons, a Dice similarity
coefficient could not be calculated. Although the Dice score is a widely used metric for segmentation accuracy,
it does not necessarily correlate with clinical relevance'®, and we therefore focused on evaluating whether body
composition measures derived from the deep learning-based pipeline are comparable to manually obtained
measures. While this study discusses issues arising from segmentation errors, it does not provide improved
training labels or propose new models. Future work could build on openly available datasets to improve labels,
particularly for the segmentation of vertebral bodies with anatomical anomalies. This could enhance the accuracy
and reliability of automated segmentation tools, addressing some of the limitations we identified.

The prognostic value of the SMI was limited in this study, particularly in the ROC-analysis of patients with
metastatic colorectal cancer. This limitation could stem from the multifactorial nature of oncological patient
outcomes, which the SMI alone may not fully capture. Additionally, using above-median OS as an evaluation
metric might not be ideal for patients with longer survival, as sarcopenia at the time of diagnosis could more
significantly impact short-term outcomes®.

Although this study focused on pancreatic and metastasized colorectal malignancies due to data availability,
the published pipeline itself is disease-agnostic and can be applied across oncological and non-oncological
conditions. Future studies should explore the prognostic value of different measurement techniques across
various patient groups and cancer types. A deeper understanding of body composition and its changes could be
used to optimize the combination, timing, and intensity of multimodal therapy for individual cancer patients.

In summary, our open-access pipeline integrates established deep learning segmentation models with
postprocessing steps to extract body composition measures from routine CT scans. Automated measurements
showed strong correlation with manual measurements and were prognostic for overall survival. Averaging CSA
across the entire L3 vertebra minimized measurement variability, reinforcing SM,_, as a robust and reliable
marker for sarcopenia assessment. Our study highlights the clinical potential of automated segmentation tools
while identifying key areas for future improvement and validation.

Data availability

The clinical data and CT scans analyzed this study cannot be shared due to data protection laws. The source code
and a docker image of the pipeline are available under Apache 2.0 license at https://github.com/fohofmann/B
odyComposition/releases/tag/v0.1. The segmentation tasks are performed using TotalSegmentator, available at
https://github.com/wasserth/TotalSegmentator under Apache 2.0 license?”. The weights for the segmentation
models were available under free or non-commercial usage licenses from https://github.com/wasserth/TotalSeg
mentator. TotalSegmentator uses the nnU-Net framework>*.
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