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We establish a toolbox for studying and applying spin-adapted generalized Pauli constraints (GPCs) in
few-electron quantum systems. By exploiting the spin symmetry of realistic N-electron wave functions, the
underlying one-body pure N-representability problem simplifies, allowing us to calculate the GPCs for larger
system sizes than previously accessible. We then uncover and rigorously prove a superselection rule that
highlights the significance of GPCs: whenever a spin-adapted GPC is (approximately) saturated—referred to
as (quasi)pinning—the corresponding N-electron wave function assumes a simplified structure. Specifically, in a
configuration interaction expansion based on natural orbitals only very specific spin configuration state functions
may contribute. To assess the nontriviality of (quasi)pinning, we introduce a geometric measure that contrasts it
with the (quasi)pinning induced by simple (spin-adapted) Pauli constraints. Applications to few-electron systems
suggest that previously observed quasipinning largely stems from spin symmetries.
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I. INTRODUCTION

Pauli’s exclusion principle [1] is fundamental to our
understanding of fermionic quantum systems, governing phe-
nomena across all length scales, from subatomic particles to
neutron stars. It ensures the stability of matter [2,3] and un-
derlies the Aufbau principle, which dictates atomic structure
and the periodic table. Beyond the Pauli principle, fermionic
exchange symmetry imposes additional constraints on oc-
cupation numbers [4,5]. However, a complete classification
of these generalized Pauli constraints (GPCs) remained elu-
sive for decades until a systematic framework was developed
[6–8]. These constraints take the form of linear inequalities
on the decreasingly ordered natural occupation numbers λ j ,
the eigenvalues of the one-particle reduced density matrix.
For each particle number N and one-particle Hilbert space
dimension d , the GPCs define a convex polytope in Rd of
admissible occupation number vectors λ, which is contained
within the Pauli simplex 1 � λ1 � · · · � λd � 0.

To assess their physical relevance, GPCs have been studied
in various few-fermion systems through analytical [9–20] and
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numerical approaches [21–35]. Initially, it was conjectured
that ground-state occupation numbers might exactly saturate
some GPCs, a phenomenon termed pinning [36]. However,
this was later refuted when sufficiently accurate wave function
approximations were employed (see, e.g., [9,28,30]). Instead,
quasipinning was observed, meaning occupation number vec-
tors lie remarkably close to but not exactly on the polytope
boundary [9,12–15,21,23,28,30].

The presence of (quasi)pinning has important conse-
quences: it constrains the system’s response to external
perturbations [12,36,37] and implies a significantly simpli-
fied structure of the N-fermion wave function [15,17,18,37].
This insight led to a hierarchy of multiconfigurational self-
consistent field (MCSCF) variational ansätze [18,38], system-
atically incorporating electron correlation by relating polytope
faces of increasing dimensionality. Furthermore, GPCs play
a crucial role in one-particle reduced density matrix func-
tional theory (RDMFT), where they define the domain of
the pure-state functional and strongly influence its general
form [39–41]. Notably, RDMFT has shown that fermionic
exchange symmetry manifests in the one-particle picture as
a repulsive kinematical exchange force, which diverges at
the polytope boundary. This, in turn, provides a comprehen-
sive explanation for the absence of exact pinning in realistic
systems [41,42].

Despite their potential significance, the application of
GPCs in physics and chemistry remains limited due to their
complexity and the lack of efficient algorithms for their calcu-
lation. Currently, GPCs are explicitly known only for systems
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with up to 10 spin orbitals [8,43] and, for N = 3, up to 12 spin
orbitals [30].

This work addresses these limitations by extending pre-
vious computational efforts to incorporate spin symmetries
in realistic electronic systems. Specifically, we determine
spin-adapted GPCs for larger active spaces than previously
accessible, reaching up to eight spatial orbitals (16 spin or-
bitals). Moreover, we establish a practical framework for
applying spin-adapted GPCs, providing a systematic approach
to exploring quasipinning in realistic fermionic systems while
circumventing common pitfalls.

Our paper is organized as follows. Section II introduces
key concepts, while Sec. III examines the implications of spin
symmetries within the one-body N-representability problem,
leading to spin-adapted GPCs. We then demonstrate con-
structively that (approximate) saturation of these constraints
implies a significantly simplified structure of the correspond-
ing N-electron wave function, with applications in wave
function theory and RDMFT. Section IV provides an illus-
trative example. To reliably distinguish genuine quasipinning
from trivial cases arising due to weak or reduced electron
correlation, we introduce the Q -parameter in Sec. V, a geo-
metric quantifier of nontriviality. Finally, applying our toolbox
to few-electron atoms in Sec. VI, we show that previously
observed (quasi)pinning in atomic systems [30] largely origi-
nates from spin symmetries.

II. KEY CONCEPTS AND NOTATION

A. Pure-state N-representability problem

The one-particle Hilbert space of a spin-1/2 fermion is
given by

H1 ≡ H(l )
1 ⊗ H(s)

1 , (1)

where H(l )
1

∼= Cd represents the orbital component and H(s)
1

∼=
C2 the spin component, with a finite orbital dimension d =
dim(H(l )

1 ). The corresponding Hilbert space for N fermions
follows as the antisymmetrized N-fold product,

HN = ∧NH1. (2)

The quantum states of N fermions are then described by
density matrices on HN , with pure states given by projectors
� ≡ |�〉 〈�|, where |�〉 ∈ HN is normalized. The set of all
pure-state density matrices is denoted by

PN := {� | �2 = �,� � 0, TrN [�] = 1}. (3)

To each N-fermion state �, we associate its one-particle
reduced density matrix (1RDM), obtained by tracing out N −
1 particles,

γ := N TrN−1[�] ≡
2d∑

r=1

λr |r〉〈r|, (4)

where λr and |r〉 are the natural occupation numbers and
natural spin orbitals, respectively.

The one-body pure N-representability problem aims to
characterize the set

P1
N := {γ | ∃� ∈ PN : N TrN−1[�] = γ }, (5)

which contains all admissible 1RDMs. A fundamental prop-
erty of P1

N is its invariance under unitary transformations:
for any γ ∈ P1

N and any unitary u on H1, the transformed
matrix γ̃ ≡ uγ u† also belongs to P1

N (see, e.g., Ref. [10]).
Consequently, the constraints defining P1

N involve only the
natural occupation numbers.

Building upon this observation, Klyachko and Altun-
bulak [7,8,44] established that the admissible decreasingly
ordered natural occupation number vectors λ ≡ λ↓ form
a convex polytope. They further developed a systematic
framework to determine the corresponding facet-defining
inequalities. Each of these finitely many GPCs takes
the form

D(λ) = κ0 +
2d∑

r=1

κrλr � 0, (6)

with distinctive integer coefficients κr .
A natural occupation number vector λ is said to be

pinned by a GPC D � 0 if D(λ) = 0 [36] and quasip-
inned if the equality holds approximately [9,10]. Pinning
has significant physical consequences: it restricts the sys-
tem’s linear response to external perturbations [12,36,37]
and enforces a simplified structure of the N-fermion wave
function [15,17,18,37].

To recall this, for a given state |�〉 each GPC D � 0 can be
associated with a Hermitian one-particle operator on HN ,

D̂(�) := κ01 +
2d∑

r=1

κr n̂r . (7)

Here, n̂r = f †
r fr is the occupation number operator, with

f †
r and fr denoting the fermionic creation and annihi-

lation operators for spin orbital |r〉. The dependence of
D̂(�) on |�〉 through its spin orbitals is made explicit, but
for simplicity, superscripts are often omitted. If D(λ) = 0,
then [15,17,18,37]

D̂(�)|�〉 = 0. (8)

Since the eigenstates of D̂(�) are occupation number states
|r〉 = f †

r1
. . . f †

rN
|0〉, this implies a superselection rule restrict-

ing the contributing configurations in the wave function
expansion,

|�〉 =
∑

r∈I (D)
N

cr|r〉. (9)

The index set I (D)
N contains precisely those configurations

r for which D̂(�)|r〉 = 0 [15,36,45]. This selection rule is
stable in the sense that quasipinning (D(λ) ≈ 0) implies
an approximate restriction of the wave function struc-
ture [15,45]. This result suggests to employ (9), and also
more restricted expansions corresponding to (quasi)pinning
by multiple GPCs, as MCSCF ansätze, as worked out
in [18,46].

The presence of (quasi)pinning can thus be understood as
a consequence of a formal U (1) symmetry generated by D̂(�).
This perspective explains why symmetries increase the likeli-
hood of (quasi)pinning and, in some cases, enforce it entirely.
A key objective of this work is to investigate to what extent
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the (quasi)pinning previously observed in few-electron atoms
arises from (spin-)symmetries. To achieve this, we integrate
symmetries directly into the GPC framework, ensuring a fully
consistent and symmetry-adapted formalism.

B. Spin symmetries

Spin SU(2) symmetry is a fundamental property of phys-
ical Hamiltonians. In this section, we first review the general
formalism of spin symmetries before examining how in-
corporating electron spin into the GPC framework affects
(quasi)pinning.

For spin-1/2 fermions, the generators of the Lie algebra
su(2) of the non-abelian Lie group SU(2) are given by

Sν
j = 1

2

∑
σ,σ ′

f †
jσ (τν )σσ ′ f jσ ′ , ν = x, y, z, (10)

and for the total system of d orbitals by Sν = ∑d
j=1 Sν

j . Here,

f †
jσ and f jσ create and annihilate fermions in the spin orbital

| jσ 〉, respectively, where the index r labeling the one-particle
states used in the previous Sec. II A is now replaced, here
and throughout, by the more specific jσ . Moreover, τ =
(τx, τy, τz ) denotes the Pauli matrices

τx =
(

0 1
1 0

)
, τy =

(
0 −i
i 0

)
, τz =

(
1 0
0 −1

)
. (11)

The total spin operator S2 is a Casimir operator of SU(2)
and as such commutes with all three generators Sx, Sy, Sz. In
second quantization, it takes the form

S2 =
d∑

i, j=1

Sz
i Sz

j + 1

2
(S+

i S−
j + S−

i S+
j ), (12)

where S± are the spin raising and lowering operators,

S±
j := Sx

j ± iSy
j . (13)

The total spin quantum number S and total magnetization M
follow from the eigenvalue equations S2|�〉 = S(S + 1)|�〉
and Sz|�〉 = M|�〉 for |�〉 ∈ H(S,M )

N .
We now examine the expansion of N-electron states |�〉

in spin-configuration states, adapting the standard expansion
in Slater determinants |r〉 ≡ | j1σ1, . . . , jNσN 〉 to incorporate
spin symmetry. This will be crucial in Sec. III B for formulat-
ing an analogous superselection rule when spin-adapted GPCs
are (quasi)pinned.

By the Peter-Weyl theorem [47], the N-fermion Hilbert
space decomposes into irreducible unitary representations la-
beled by S,

HN =
Smax⊕

S=Smin

H(S)
N , (14)

where Smax = N/2 and Smin = 0 for N even, while Smin =
1/2 for N odd. Each irreducible representation H(S)

N =
⊕S

M=−SH
(S,M )
N contains a unique highest weight state |
S〉

satisfying [47–51]

∀ j < i : Ei j |
S〉 = 0 ∧ S+|
S〉 = 0, (15)

where

Ei j := f †
j↑ fi↑ + f †

j↓ fi↓, (16)

and S+ denotes the spin-raising operator

S+ :=
d∑

j=1

f †
j↑ f j↓. (17)

The highest weight state for H(S)
N is

|
S〉 = | 1 ↑, 1 ↓, . . . , K ↑, K ↓︸ ︷︷ ︸
N−2S

, (K + 1) ↑, . . . , J ↑︸ ︷︷ ︸
2S

〉,

(18)

where

K = N − 2S

2
, J = N + 2S

2
. (19)

A monomial basis (Verma basis) [47–51] for H(S)
N is con-

structed by successively applying the negative root operators
E†

i j (i = j + 1) and S− to |
S〉. This generates a set of spin-
adapted configuration states |I〉, indexed by IN,S , analogous
to the spin-independent configurations r = (r1, . . . , rN ) in
Sec. II A. Any state |�〉 ∈ H(S)

N can then be expanded as

|�〉 =
∑

I∈IN,S

cI |I〉. (20)

Similarly, for each symmetry sector H(S,M )
N , the highest

weight state is given by [47–51]

|
S,M〉 = (S−)S−M |
S〉
‖(S−)S−M |
S〉‖2

, (21)

while the basis states {|I〉}I∈IN,S,M spanning H(S,M )
N are con-

structed via monomials of E†
j+1, j ( j = 1, . . . , d − 1). A basis

for H(S,M )
N can also be obtained by selecting from a basis

of H(S)
N only those states |I〉 with magnetization M. Thus,

any state |�〉 ∈ H(S,M )
N can be expanded as in Eq. (20), with

configurations restricted to IN,S,M ,

|�〉 =
∑

I∈IN,S,M

cI |I〉. (22)

In analogy to Eqs. (3) and (5), the set PN
S,M consists of pure

states � = |�〉 〈�| with |�〉 ∈ H(S,M )
N . The set of one-body

pure (N, S, M )-representable 1RDMs is

P1
N,S,M := N TrN−1

[
PN

S,M

]
. (23)

Both PN
S,M and P1

N,S,M are generally nonconvex. Since M is
conserved, any 1RDM γ ∈ P1

N,S,M is block diagonal in the
spin basis,

γ = γ ↑↑ ⊕ γ ↓↓, γ σσ
i j = Tr1[ f †

jσ fiσ ]. (24)

All the concepts introduced in this section will be essential
for analyzing the structural implications of (quasi)pinning in
the following parts of this work.
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III. SPIN SYMMETRY-ADAPTED GENERALIZED
PAULI CONSTRAINTS

This section introduces spin-adapted generalized Pauli
constraints, proving and illustrating how the structure of the
corresponding N-fermion wave function simplifies in the pres-
ence of (quasi)pinning.

A. Spin-adapted orbital one-body N-representability problem

In second quantization, the generators of the unitary group
U(d ) ⊂ U(2d ) describing orbital rotations are given by the
operators Ei j defined in Eq. (16). Similarly, the generators
Sσ,σ ′ of U(2) arise from the U(2d ) generators f †

jσ ′ fiσ by sum-
ming over the orbital degrees of freedom:

Sσ,σ ′ :=
d∑

i=1

f †
iσ ′ fiσ . (25)

These relate to the spin raising/lowering operators in Eq. (13)
via S+ = S↓↑ and S− = S↑↓.

The orbital 1RDM in a chosen basis Bl of H(l )
1 follows

directly from the U(d ) generators [recall (16)]:

(γl )i j = Tr[Ei j�], (26)

where � is an N-fermion quantum state, either pure or mixed.
Since the Ei j operators commute with S±, the orbital 1RDM
γl remains the same for all states of a given spin multiplet.

In analogy to P1
N,S,M in Eq. (23), we define the set of all

orbital 1RDMs that can arise from a pure N-fermion state
� ∈ PN

S,M as

L1
N,S,M :=

{
γl

∣∣∣ ∃� ∈ PN
S,M such that � �→ γl

}
. (27)

Since the partial trace � �→ γl is linear, the convex hull of this
set defines the admissible γl for ensemble states,

L̄1
N,S,M = conv

(
L1

N,S,M

)
. (28)

In striking contrast to the set (23) of admissible full 1RDMs,
both L1

N,S,M and L̄1
N,S,M are invariant under orbital rotations ul .

Consequently, L1
N,S,M is fully characterized by the spectral set

�
(p)↓
S,M :=

{
λ(l )

∣∣∣ ∃γl ∈ L1
N,S,M such that λ(l ) = spec↓(γl )

}
(29)

similar to the spectral polytope described by the spin-
independent GPCs for the full 1RDM γ . The polytope �

(p)↓
S,M

is described by the spin-adapted generalized Pauli constraints
[8,43], where λ

(l )
i denote the eigenvalues of γl , known as

natural orbital occupation numbers, and the corresponding
eigenstates |i〉 are the natural orbitals.

By considering all valid permutations of natural occupation
number vectors, we define in addition

�
(p)
S,M :=

{
λ(l )

∣∣∣ ∃γ ∈ L1
N,S,M , π ∈ Sd : λ(l ) = π [spec↓(γ )]

}
,

(30)

�
(e)
S,M :=

{
λ(l )

∣∣∣ ∃γ ∈ L̄1
N,S,M , π ∈ Sd : λ(l ) = π [spec↓(γ )]

}
,

(31)

where Sd denotes the permutation group of degree d . The
set �

(e)
S,M is described by the spin-adapted Pauli constraints

derived in Ref. [52] [K ≡ (N − 2S)/2]:

2 � λ
(l )
1 � λ

(l )
2 � . . . λ

(l )
d � 0,

K+ j∑
m=1

λ(l )
m � N − 2S + j, ∀ j ∈ {1, . . . , 2S − 1},

d∑
m=1

λ(l )
m = N. (32)

Figure 1 illustrates the sets �
(e)
S,M and �

(p)↓
S,M for S = M = 1

and N = d = 4, where the latter is described by the following
spin-adapted GPCs [43]:

λ
(l )
1 � λ

(l )
2 � λ

(l )
3 � λ

(l )
4 � 0,

λ
(l )
1 + λ

(l )
2 + λ

(l )
3 + λ

(l )
4 = 4,

λ
(l )
1 − λ

(l )
3 � 1,

λ
(l )
2 − λ

(l )
4 � 1,

2λ
(l )
1 − λ

(l )
2 + λ

(l )
4 � 3,

λ
(l )
2 + 2λ

(l )
3 − λ

(l )
4 � 3. (33)

In the left panel, λ
(l )
4 is omitted since it is fixed by the

normalization Tr[γl ] = N . For S �= 0, the spin-adapted Pauli
polytope �

(e)
S,M (red) is more restrictive than the standard Pauli

exclusion principle 0 � λ
(l )
i � 2 [52]. The polytope �

(p)↓
S,M ,

characterized by spin-adapted GPCs, is shown in green. The
right panel projects �

(p)↓
S,M onto the hyperplane λ3 = 1. The

vertex v = (2, 1, 1, 0) is the only shared vertex of �
(p)↓
S,M and

�
(e)↓
S,M , and it represents the analog of the Hartree-Fock point

λHF = (1, . . . , 1, 0, . . .) in the space of full 1RDMs γ .

B. Selection rules

In this section, we prove that if the natural orbital oc-
cupation number vector λ(l ) is pinned to the boundary of
the spectral polytope �

(p)
S,M , the corresponding quantum state

|�〉 ∈ H(S,M )
N acquires a simplified structure. Furthermore, we

demonstrate quantitatively that this structural simplification
persists approximately in the case of quasipinning. In this way,
we extend the key results (8) and (9) to explicitly incorporate
spin degrees of freedom.

1. Consequences of pinning

Consider a pure state |�〉 ∈ H(S,M )
N and a spin-adapted

GPC,

D(λ(l ) ) = κ0 +
d∑

j=1

κ jλ
(l )
j � 0, (34)

for the corresponding setting (N, S, d ). Analogous to Eq. (7)
for the spin-independent case, we define the associated
operator

D̂(�) ≡ κ01 +
d∑

j=1

κ j n̂ j, (35)
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FIG. 1. Illustration of the spin-adapted Pauli polytope �
(e)
S,M (red and green) (32) and the polytope �

(p)↓
S,M (green) characterized by the

spin-adapted GPCs for N = d = 4, S = 1 in (33). Left: Three-dimensional illustration, where λ
↓
4 is fixed by the normalization. Right: Two-

dimensional projection of the three polytopes onto the hyperplane λ3 = 1. The red vertex v = (2, 1, 1, 0) marks the highest weight contained
in all three polytopes. The polytope �

(e)
0,0 (light gray, green, and red) denotes the Pauli simplex for S = M = 0. (See text for more explanations.)

where n̂ j ≡ Ê j j is the particle number operator for the jth
natural orbital of |�〉. This formulation allows us to interpret
Eq. (34) as the expectation value of D̂(�),

D(λ(l ) ) = 〈�|D̂(�)|�〉. (36)

To understand the implications of pinning, we seek a de-
formation of |�〉 that reduces the corresponding value D(λ(l ) ).
The hope is that this reveals structural constraints on |�〉 when
λ(l ) already saturates the GPC. We introduce the following
deformation, evaluated for infinitesimal times t ≈ 0:

|�(t )〉 := e−t D̂(�) |�〉
‖e−t D̂(�) |�〉‖2

= [1 − t (D̂(�) − D(λ(l ) ))]|�〉 + O(t2), (37)

where we used Eq. (36) in the second line. Following a deriva-
tion analogous to the one in Appendix A, this deformation of
|�〉 changes as well the residual value D(λ(l ) ) according to

D(λ(l )(t )) = D(λ(l ) ) − 2t Var� (D̂(�) ) + O(t2), (38)

where we introduce the variance

Var� (D̂(�) ) = 〈(D̂(�) − 〈D̂(�)〉� )2〉� (39)

of D̂(�) in the state |�〉.
If λ(l ) exactly saturates the spin-adapted GPC, D(λ(l ) ) = 0,

then Var� (D̂(�) ) = 0, as any nonzero variance would imply
a violation of D � 0 for small perturbations t . This means
that |�〉 must be an eigenstate of D̂(�), which, together with
Eq. (36), implies

D(λ(l ) ) = 0 ⇔ D̂(�)|�〉 = 0. (40)

To reformulate this key result of our work as a superse-
lection rule, we expand |�〉 ∈ H(S,M )

N according to (22) using
configuration state functions |I〉 built from its natural orbitals.
Since the basis states |I〉 are constructed by applying negative
root operators (16) to the highest weight state (21), they are
eigenstates of the orbital occupation number operators n̂ j .

Consequently, they are also eigenstates of the operator D̂(�)

in Eq. (35). Hence, relation (40) yields the following superse-
lection rule:

D(λ(l ) ) = 0 ⇒ |�〉 =
∑

I∈I (D)
N,S,M

cI |I〉, (41)

where the index set I (D)
N,S,M contains precisely those spin con-

figurations for which D̂(�)|I〉 = 0.

2. Consequences of quasipinning

In this section, we establish quantitatively that Eq. (40) and
the superselection rule (41) remain approximately valid in the
case of quasipinning, D(λ(l ) ) ≈ 0, implying an approximate
restriction on the wave function structure. To achieve this, we
modify (37) in such a way that it continuously transforms an
initial state |�〉 exhibiting quasipinning into one exhibiting
pinning. This requires generalizing (37) beyond infinitesimal
times by introducing a time-dependent variant of D̂(�) that
governs the imaginary time evolution. In analogy to the spin-
independent derivation in Ref. [15], we define the following
differential flow equation:

d

dt
|�(t )〉 = −(1 − |�(t )〉 〈�(t )|) D̂(�(t )) |�(t )〉, (42)

where the projector 1 − |�(t )〉 〈�(t )| ensures proper normal-
ization of |�(t )〉 at all times.

In Appendix A, we show that the evolution of the corre-
sponding D[λ(l )(t )] satisfies

d

dt
D(λ(l )(t )) = −2 Var�(t )(D̂

(�(t )) ), (43)

where D̂[�(t )] is given by Eq. (35) with |�〉 ≡ |�(t )〉. Since
the variance is always non-negative, Eq. (43) confirms that
the time evolution in (42) continuously reduces D(λ(l )(t )),
meaning that the vector λ(l )(t ) approaches the facet of the
polytope �

(p)
S,M corresponding to pinning by the GPC D � 0.
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FIG. 2. Spectral polytope �
(e)
0,0 = �

(p)
0,0 and weight lattice for N =

d = 4, S = 0. Configuration states whose weights, i.e., natural or-
bital occupation number vectors λ(l ), are not permutations of the
Hartree-Fock point v = (2, 2, 0, 0) map to nonextremal points on the
edges [permutations of (2, 1, 1, 0)] or the center (1, 1, 1, 1) of �

(e)
0,0.

Assuming that initially D(λ(l )(0)) � 1, it follows anal-
ogously to the derivation presented in Ref. [15] for the
spin-independent case, that

‖|�(t → ∞)〉 − |�(0)〉‖2 �
√

2D(λ(l )(0)), (44)

and D(λ(l )(t → ∞)) = 0, where λ(l )(0) is the natural orbital
occupation number vector of the initial state |�(0)〉 ≡ |�〉.
Since the evolved state |�(t → ∞)〉 exhibits pinning by the
GPC D � 0, the estimate (44) implies that the original state
|�〉 approximately exhibits the structure associated with pin-
ning. The deviation of |�〉 from an exactly pinned state,
measured in the L2 norm, is bounded above by

√
2D(λ(l )(0)).

This confirms quantitatively the stability of the key results
(40) and (41) in case of quasipinning.

C. Vertices versus configuration state functions

Inspired by the superselection rule derived in Sec. III B,
we further investigate the relationship between the vertices of
the spectral polytopes and the configuration states |I〉 used to
expand |�〉 ∈ H(S,M )

N . In particular, we emphasize the poten-
tial differences from the spin-independent case. Notably, two
distinctive features arise in the spin-dependent setting that do
not occur in the spin-independent case.

First, in the spin-independent case, configuration states are
simply Slater determinants. In contrast, spin-adapted config-
uration states |I〉, I ∈ IN,S,M can be linear combinations of
Slater determinants. Consequently, some configuration states
|I〉 do not correspond to vertices of the spectral polytopes
�

(p)
S,M and �

(e)
S,M . Following representation theory terminology

(see [47] for further details), we refer to the natural orbital
occupation number vectors λ(l ) associated with configurations
I ∈ IN,S,M as weights. The collection of these weights forms
the weight lattice, whose convex hull defines the spectral set
�

(e)
S,M .

Figure 2 illustrates �
(e)
0,0 and its weight lattice for N =

d = 4 and S = 0. The Hilbert space H(0,0)
4 is 20 dimen-

sional. Since no spin-adapted GPCs exist for S = 0 beyond
the Pauli exclusion principle, 0 � λ

(l )
i � 2, the spectral sets

coincide, �
(e)
0,0 = �

(p)
0,0. Notably, only the six vertices of �

(e)
0,0

corresponding to permutations of the Hartree-Fock point v =
(2, 2, 0, 0) represent Slater determinant states. Additionally,
12 configuration states map to points along the edges of �

(e)
0,0,

while two configuration states correspond to the center point
λ(l ) = (1, 1, 1, 1) (marked in red).

A second fundamental difference from the spin-
independent case is that in the context of the self-consistent
expansion (22) a nonzero expansion coefficient cI for
configuration states corresponding to the interior of �

(p)
S,M

precludes pinning for all spin-adapted GPCs. Specifically,
in Fig. 2, if either of the configuration states associated with
(1, 1, 1, 1) contributes to the wave function expansion (22),
then, by virtue of the superselection rule (41), pinning is
impossible since none of the generalized spin-adapted Pauli
constraints can be exactly saturated.

IV. PINNING IN THE BORLAND-DENNIS SETTING

A key question emerges from the previous sections: Is the
(quasi)pinning observed in Refs. [9,12–15,18,21,23,28,30,45]
at the level of the full 1RDM reflecting a hidden structural
feature of the wave function, or is it merely a consequence of
spin symmetries? To elaborate on this issue, we examine the
Borland-Dennis setting [4,5] with N = d = 3.

The solution to the spin-independent variant of this prob-
lem was originally derived by Borland and Dennis in 1972
[4] and later rigorously proven in Ref. [5]. The corresponding
convex polytope of admissible natural occupation numbers
λ = λ↓ is constrained by the following conditions [4,5]:

λ1 � λ2 � λ3 � λ4 � λ6 � 0,

λ1 + λ6 = λ2 + λ5 = λ3 + λ4 = 1,

D(λ) = λ5 + λ6 − λ4 � 0. (45)

For S = M = 1/2, any pure state |�〉 ∈ H(1/2,1/2)
3 can be

expressed as [29,53]

|�〉 = c121̃|1 ↑, 2 ↑, 1̃ ↓〉 + c132̃|1 ↑, 3 ↑, 2̃ ↓〉
+ c233̃|2 ↑, 3 ↑, 3̃ ↓〉, (46)

where |c121̃| � |c132̃| � |c233̃|, and {| j〉}3
j=1, {| j̃〉}3

j=1 form two
orthonormal sets of orbitals. As demonstrated in Refs. [29,53],
the spatial components of the natural spin orbitals must addi-
tionally satisfy

eiϕ1

√
λ1̃↓〈3|1̃〉 − eiϕ2

√
λ2̃↓〈2|2̃〉 +

√
λ3̃↓〈1|3̃〉 = 0, (47)

where ϕi ∈ R for i ∈ {1, 2, 3}. This condition highlights that
the solution to the pure one-body (N, S, M )-representability
problem is inherently dependent not only on the natural oc-
cupation numbers but also on the natural spin orbitals, as
discussed in Sec. III A.

The 1RDM γ of the state |�〉 is diagonal in the natu-
ral spin-orbital basis {|i ↑〉, |ĩ ↓〉}. Consequently, the three
equalities in Eq. (45) directly translate into

λ1↑ + λ3̃↓ = λ2↑ + λ2̃↓ = λ3↑ + λ1̃↓ = 1. (48)
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Furthermore, the structure of the quantum state |�〉 in Eq. (46)
results in the following ordering relations:

λ1↑ � λ1̃↓, λ1↑ � λ2̃↓,

λ2↑ � λ1̃↓, λ2↑ � λ3̃↓,

λ3↑ � λ2̃↓, λ3↑ � λ3̃↓. (49)

Thus, only two possible orderings of the six natural occupa-
tion numbers are possible:

(i) λ1↑ � λ2↑ � λ3↑ � λ1̃↓ � λ2̃↓ � λ3̃↓,

(ii) λ1↑ � λ2↑ � λ1̃↓ � λ3↑ � λ2̃↓ � λ3̃↓. (50)

The first one corresponds to |c132̃|2 + |c233̃|2 � |c121̃|2 and the
second one to |c132̃|2 + |c233̃|2 � |c121̃|2. For nondegenerate
natural occupation numbers, ordering (i) never results in pin-
ning of the GPC in Eq. (45),

D(λ) = |c132̃|2 + |c233̃|2 − |c121̃|2 > 0, (51)

whereas ordering (ii) inherently implies pinning,

D(λ) = |c132̃|2 + |c233̃|2 − (|c132̃|2 + |c233̃|2) = 0. (52)

Furthermore, in case (ii), we have D̂(�) = n̂2̃↓ + n̂3̃↓ − n̂3↑.
The selection rule D̂(�)|�〉 = 0, as discussed in Secs. II B
and III B, dictates that the state |�〉 takes precisely the form
given in Eq. (46). Since any pure state in the spin sector
H(1/2,1/2)

3 can be expressed in this form, pinning does not pro-
vide any additional structural information beyond confirming
that |c121̃|2 � |c132̃|2 + |c233̃|2, corresponding to case (ii).

In contrast, pinning at the level of the orbital 1RDM leads
to a further simplification of the structure (46), as demon-
strated in the following. The spectral polytope �

(p)↓
S,M for the

Borland-Dennis setting in the spin sector S = M = 1/2 is
described by two spin-adapted GPCs [8]:

D1(λ(l ) ) = 1 − λ
(l )
1 + λ

(l )
2 � 0,

D2(λ(l ) ) = 1 − λ
(l )
2 + λ

(l )
3 � 0. (53)

We illustrate this polytope in Fig. 3 in red. The nonconvex set
�

(p)
S,M , which includes all 3! = 6 orderings of λ

(l )
1 , λ

(l )
2 , λ

(l )
3 , is

also shown (blue and red). Additionally, the three vertices v(i),
i = 1, 2, 3, marked by the red, green, and blue dots in Fig. 3,
correspond to the configuration states:

|I1〉 ≡ |1 ↑, 1 ↓, 2 ↑〉,
|I2〉 ≡ E†

31E†
32|I1〉 = |1 ↑, 3 ↑, 3 ↓〉,

|I3〉 ≡ E†
31E†

21|I1〉 = |2 ↑, 2 ↓, 3 ↑〉, (54)

where |I1〉 is the highest weight state from Eq. (18). Additional
configuration states, defined as |I4〉 ≡ |1 ↑, 2 ↑, 2 ↓〉, |I5〉 ≡
|2 ↑, 3 ↑, 3 ↓〉, |I6〉 ≡ |1 ↑, 1 ↓, 3 ↑〉, are obtained via suc-
cessive applications of negative root operators E†

j+1, j . Their
occupation number vectors yield the remaining three vertices
of the gray polytope �

(e)
S,M . Additionally, two configuration

states, denoted |Ĩ7/8〉, map to the weight (1, 1, 1). These
states are generated from the highest weight state |I1〉 ≡
|1 ↑, 1 ↓, 2 ↑〉 via the operators E†

21E†
32 and E†

32E†
21, leading

FIG. 3. Illustration of the spectral polytope �
(p)↓
S,M and the spin-

adapted GPCs for the Borland-Dennis setting with N = 3, 2d = 6,
and S = M = 1/2.

to (after normalization) [54]

|Ĩ7〉 = 1√
2

(|1 ↑, 2 ↑, 3 ↓〉 − |1 ↑, 2 ↓, 3 ↑〉),

|Ĩ8〉 = 1√
2

(|1 ↑, 2 ↓, 3 ↑〉 − |1 ↓, 2 ↑, 3 ↑〉). (55)

These states can be further orthogonalized to yield

|I7/8〉 = 1√
3

(|1 ↑, 2 ↑, 3 ↓〉 + e±i2π/3|1 ↑, 2 ↓, 3 ↑〉

+ e∓i2π/3|1 ↓, 2 ↑, 3 ↑〉). (56)

Any state |�〉 ∈ H(1/2,1/2)
3 can then be expanded as

|�〉 =
8∑

i=1

ci|Ii〉. (57)

If, in addition, the orbitals entering the eight spin-adapted con-
figuration states |Ii〉 are the natural orbitals of |�〉, this leads to
additional quadratic conditions on the expansion coefficients
ci that further restrict the expansion in Eq. (57).

To analyze the impact of pinning by spin-adapted GPCs,
we assume D1(λ(l ) ) = 0. According to the superselection
rule (41), this implies that any state |�〉 ∈ H(1/2,1/2)

3 with
natural orbital occupation numbers λ(l ) can be expressed
as a linear combination of the configuration states |I1〉
and |I2〉. Geometrically, this means that only configuration
states whose occupation number vectors lie on the hyper-
plane D1 ≡ 0 contribute—here those mapping to the vertices
v(1) = (2, 1, 0) (red) and v(2) = (1, 0, 2) (green). Similarly, if
D2(λ(l ) ) = 0, the wave function simplifies to |�〉 = c1|I1〉 +
c3|I3〉 with c1, c3 ∈ C and |c1|2 + |c3|2 = 1. In the case where
both GPCs are saturated, D1(λ(l ) ) = D2(λ(l ) ) = 0, we have
|�〉 = |I1〉.

This analysis confirms that pinning by spin-independent
GPCs can arise purely due to spin symmetries of the N-
electron quantum state |�〉 and thus should be considered
trivial, as it does not further simplify the wave function ex-
pansion. In contrast, pinning by spin-adapted GPCs leads to
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an actual structural restriction. Moreover, these conclusions
extend naturally to quasipinning in virtue of the estimate (44).

Finally, we illustrate these findings through an exemplary
state exhibiting quasipinning. This example reveals a subtle
but crucial aspect: (Quasi)pinning can be trivial not only due
to symmetry constraints but also as a direct consequence of
weak correlation, or more generally, due to (quasi)pinning by
(spin-adapted) Pauli constraints. To illustrate this, we consider
the state

|�〉 =
√

2

3
− ε2|I1〉 +

√
1

3
|I3〉 + ε|I2〉 + O(ε2), (58)

where ε � 1 and in leading order (ε2) neither |I1〉 nor |I3〉 con-
tribute to the generic terms O(ε2). Then, the spin-independent
GPC in Eq. (45) satisfies

D(λ) = λ5 + λ6 − λ4 = O(ε3), (59)

indicating quasipinning with leading order proportional to ε3,
while for the spin-adapted GPCs (53) we obtain

D1(λ(l ) ) = 1 + O(ε3), D2(λ(l ) ) = 3ε2 + O(ε3). (60)

Thus, in absolute terms, D2(λ(l ) ) is one order of magnitude
larger than D(λ), reflecting that one order of quasipinning by
the spin-independent GPC originates from spin symmetries.

To determine whether quasipinning is nontrivial in the
sense that it is enforced by quasipinning of (spin-adapted)
Pauli constraints (see also Sec. III B), we analyze its relation
to the Pauli constraints. In the spin-independent case, the dis-
tance of λ to the Hartree-Fock point vHF = (1, . . . , 1, 0, . . .)
is given by

X1(λ) ≡ 3 − λ1 − λ2 − λ3 = 2
3 + 2ε2 + O(ε3). (61)

Thus, the ratio D/X1 remains of order ε3, implying that the
quasipinning of order ε3 cannot (not even partially) be at-
tributed to weak correlation. However, since λ1 = 1 enforces
pinning, as confirmed by the estimate

D(λ) = 2 − λ1 − λ2 − λ4 = 1 − λ1 − λ2 + λ3 � 1 − λ1,

(62)

we also compute

X2(λ) ≡ 1 − λ1 = ε2 + O(ε3). (63)

Therefore, comparing D and X2 confirms that two orders of
quasipinning can be attributed to quasipinning by the Pauli
constraint X2 � 0.

Similarly, in the spin-adapted setting, we find that both
D1/2(λ(l ) ) intersect with the hyperplanes of the spin-adapted
Pauli constraints X (l )

1/2, which satisfy

X (l )
1 (λ(l ) ) ≡ 2 − λ

(l )
1 = 2

3
+ ε2 + O(ε3),

X (l )
2 (λ(l ) ) ≡ 3 − λ

(l )
1 − λ

(l )
2 = 1

3
+ O(ε3). (64)

Thus, the ratio between D2(λ(l ) ) and X (l )
i is of order ε2. This

confirms that the quasipinning of D2(λ(l ) ) is one order of
magnitude less trivial than that of D(λ) when compared to
the Pauli constraints.

V. SPIN-ADAPTED Q PARAMETER

As motivated in the previous section, we introduce a spin-
adapted Q parameter, extending the Q parameter from the
spin-independent case [46] to the more general, and prac-
tically relevant, spin-dependent setting. The Q parameter
serves as a crucial tool in complementing the (quasi)pinning
analysis, as it systematically quantifies the extent to which
(quasi)pinning of spin-adapted GPCs is induced by ordinary
or spin-adapted Pauli constraints.

The construction of the Q parameter is based on the inclu-
sion relation

�
(p)↓
S,M ⊆ �

(e)
S,M ⊆ �(e), (65)

where �(e) denotes the spectral polytope of admissible orbital
occupation numbers, disregarding spin symmetry and there-
fore not involving any reference to the quantum numbers S
and M [see also Eq. (66)]. This hierarchy follows directly
from the definitions of the three polytopes �

(p)↓
S,M , �

(e)
S,M , and

�(e), which are the spectral sets of orbital 1RDMs γl corre-
sponding to three different sets of N-fermion states. The latter
satisfy an analogous inclusion relation,

PN
S,M ⊆ EN

S,M ⊆ EN , (66)

where PN
S,M represents pure states in the (S, M )-spin sector

H(S,M )
N , EN

S,M denotes the set of all ensemble states on H(S,M )
N ,

and EN is the space of general ensemble N-fermion states on
HN .

The inclusion relation (65) is illustrated in Fig. 1 for
an exemplary setting. From this visualization, it becomes
evident that the three sets �

(p)↓
S,M , �

(e)
S,M , �(e) share common

boundaries. Consequently, if a point λ ∈ �
(p)↓
S,M is close to the

boundary of �
(e)
S,M or �(e), then it must necessarily be at least

as close to the boundary of �
(p) ↓
S,M . This observation implies

that (quasi)pinning by (spin-adapted) Pauli constraints lead to
apparent (quasi)pinning of spin-adapted GPCs.

To formalize this point, we establish a relation between
spin-adapted GPCs and spin-adapted Pauli constraints by
identifying linear dependencies among them. Specifically, for
each spin-adapted GPC D � 0, we determine the minimal
set of (spin-adapted) Pauli constraints whose simultaneous
saturation would necessarily imply pinning of the GPC. Geo-
metrically, this corresponds to identifying, for each nontrivial
facet of �

(p)↓
S,M (described by D ≡ 0), the largest possible face

of the surrounding polytope—either �
(e)
S,M or �(e)—that con-

tains this facet.
Based on this construction, we define the spin-adapted Q

parameter. Since the polytope �
(p)↓
S,M is enclosed within two

distinct reference polytopes in (65), this procedure yields two
alternative formulations of the spin-adapted Q parameter, de-
pending on the choice of the surrounding polytope:

(1) Case A: �
(e)
S,M , characterized by spin-adapted Pauli

constraints (32).
(2) Case B: �(e), characterized by the ordinary Pauli

constraints, thus disregarding additional spin-adapted Pauli
constraints (32).

In Fig. 1, Case A corresponds to the red polytope, while
Case B corresponds to the Pauli polytope outlined by gray
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dashed lines. Case A is conceptually more relevant, as it
ensures (N, S, M ) representability at both the GPC and Pauli
constraint levels. However, including Case B allows for a
direct comparison with previous results from Refs. [30,46].

Since �
(e)
S,M exhibits a more intricate geometric structure

than the Pauli polytope �(e) (see Ref. [53]), deriving the
spin-adapted Q parameter requires refining the methods from
Ref. [46] rather than directly applying them. Moreover, �(e)

is a simplex only for even N , but not for odd N . In the latter
case, �(e) corresponds to the permutohedron of the vertex
v = (2, ..., 2, 1, 0, ..., 0).

We proceed by first deriving the symmetry-adapted Q
parameter for Case A and subsequently discussing Case B.
Before doing so, we clarify some essential terminology: The
dimension of a convex polytope is defined as the dimension
of its affine hull. Zero-dimensional faces are called vertices,
one-dimensional faces are edges, and faces of codimension 1,
i.e., those of maximal dimension, are referred to as facets. This
distinction between general faces and facets is crucial and will
be used throughout the discussion.

We use calligraphic notation, F , to denote facets, while
noncalligraphic notation, F , refers to general k-dimensional
faces. The facet of �

(p)↓
S,M associated with the pinning of the ith

GPC, Di(λ(l ) ) = 0, is denoted by F (p)
i . Similarly, facets of the

convex polytope �
(e)↓
S,M are denoted by F (e)

x , where x indexes
different facets.

To compute the symmetry-adapted Q parameter for a given
spin-adapted GPC Di � 0, we determine the intersections be-
tween its corresponding facet F (p)

i and the boundary ∂�
(e)↓
S,M

of �
(e)↓
S,M . The resulting set of intersection elements is denoted

by

Ki := {
M (i)

x | M (i)
x ≡ F (e)

x ∩ F (p)
i for some F (e)

x

}
. (67)

Elements M (i)
x ∈ Ki are at most (d − 2) dimensional. More-

over, the set Ki exhibits a natural hierarchical structure in
which some of its elements are related by set inclusion (see
Ref. [55]), i.e., M (i)

x ⊆ M (i)
x′ . This ordering plays a crucial role

in the computation of the spin-adapted Q parameter (see also
Ref. [46]).

In fact, elements M (i)
x satisfying M (i)

x ⊆ M (i)
x′ for some

M (i)
x′ ∈ Ki are redundant, as they obey the relation

dist
(
λ(l ),F (p)

i

)
� dist

(
λ(l ), M (i)

x′
)

� dist
(
λ(l ), M (i)

x

)
. (68)

An instructive example of this was provided at the end of
Sec. IV, for the explicit quantum state (58) [recall also
Eqs. (61) and (63)]. There, in the spin-independent setting,
we compared the distances of λ to the Hartree-Fock point
(a zero-dimensional face, M1) and to the facet M2 given by
λ1 ≡ 1. The distance to M2 is necessarily smaller than that to
M1. Consequently, a conclusive analysis of the nontriviality of
quasipinning by the GPC in (48) requires comparing D(λ) to
X2(λ), while the comparison to X1(λ) is redundant.

Following these geometric insights, it suffices to retain
only those elements M (i)

x ∈ Ki that are not contained in any
other element of Ki. Formally, this means computing the set

Ji := {
M (i)

x ∈ Ki

∣∣ ∀M (i)
y ∈ Ki : M (i)

x ⊆ M (i)
y ⇒ x = y

}
.

(69)

This ensures that each element in Ji represents a maximal in-
dependent intersection relevant for defining the spin-adapted
Q parameter.

Since each M (i)
x is contained within F (p)

i , the l1 distance
of an orbital natural occupation number vector λ(l ) ∈ �

(p)↓
S,M is

bounded from above as follows:

dist1
(
λ(l ),F (p)

i

)
� c(i)

x dist1
(
λ(l ), M (i)

x

) ∀M (i)
x ∈ Ji. (70)

The optimal constant c(i)
x � 1 in Eq. (70) is given by

c(i)
x := max

λ∈�
(p)↓
S,M

(
dist1

(
λ(l ),F (p)

i

)
dist1

(
λ(l ), M (i)

x
) )

. (71)

This naturally leads, in analogy to Ref. [46], to a face F (e)
x -

induced spin-adapted auxiliary parameter,

Q(i)
x (λ(l ) ) := − log10

(
dist1

(
λ(l ),F (p)

i

)
c(i)

x dist1
(
λ(l ), M (i)

x
))

. (72)

Maximizing this over all M (i)
x ∈ Ji,

Q(i)(λ(l ) ) := max
M (i)

x ∈Ji

Q(i)
x (λ(l ) ), (73)

yields the sought-after spin-adapted Q parameter for the GPC
Di � 0. The definitions in Eqs. (70)–(73) can be extended
analogously to any other l p-distance metric.

Furthermore, a global Q parameter, incorporating all spin-
adapted GPCs, is defined as

Q(λ(l ) ) := max
i

Q(i)(λ(l ) ). (74)

Accordingly, the Q parameter quantifies on a logarithmic scale
the extent to which quasipinning by spin-adapted GPCs arises
from quasipinning by spin-adapted Pauli constraints. For ex-
ample, a value of Q(λ(l ) ) = 2 indicates that λ(l ) is 102 = 100
times closer to the boundary of �

(p)
S,M than expected from its

proximity to the boundary of �
(e)
S,M .

The derivation for Case B follows analogously, replacing
�

(e)
S,M with �(e).
For both settings A and B, we explicitly determine the set

Ji and the constants c(i)
x required to compute the spin-adapted

Q parameter Q(i) for various spin-adapted GPCs Di. This
encompasses all settings (N, d, S, M ) solved in Ref. [8], as
well as additional ones solved in this work. To achieve this, we
analyze the l1 norm and determine the sets Ki,Ji as defined
in Eqs. (67) and (69) using SAGEMATH [56]. Additionally, for
all M (i)

x ∈ Ji, we compute their hyperplane representation to
facilitate a direct calculation of Q(i). The explicit results are
provided in the Supplemental Material [57].

VI. EXAMPLES

In this section, we apply our toolbox of spin-adapted
GPCs to two few-electron systems: the Lithium and Beryllium
atoms. This analysis not only demonstrates the utility of our
framework but also reveals that the quasipinning previously
observed in these systems [30] is largely a consequence of
spin symmetries.

Before proceeding with the quasipinning analysis, we first
outline the methodology used to quantify quasipinning.

023247-9



JULIA LIEBERT et al. PHYSICAL REVIEW RESEARCH 7, 023247 (2025)

A. Quantifying quasipinning and the concept of truncation

To quantify quasipinning by a spin-adapted GPC D � 0
one may consider its residual value D(λ(l ) ), and analogously
D(λ) for a spin-independent GPC. However, this measure has
two fundamental shortcomings. First, any GPC D � 0 can be
rescaled according to

D(λ) � 0 ⇔ D̃(λ) ≡ qD(λ) � 0, (75)

for any positive scaling factor q. Consequently, the residual
value D(λ(l ) ) can be arbitrarily modified without affecting
the underlying physics. This ambiguity can be resolved by
renormalizing the GPC, for instance, by ensuring that the
minimal gap between consecutive eigenvalues of D̂(�) in (35)
is set to one. Alternatively, one can use the distance of λ(l ) to
the respective facet F of the spectral polytope �

(p)
S,M , defined

by D ≡ 0, or to the entire hyperplane extending F beyond
�

(p)↓
S,M .
Second, since spin-adapted and spin-independent GPCs are

only known for relatively small numbers of spatial orbitals, we
employ a truncation scheme similar to that in Refs. [13,30].
In this approach, natural (orbital) occupation numbers that
are close to zero are neglected, effectively reducing the one-
particle Hilbert space H(l )

1 to a subspace of dimension d ′, for
which the GPCs are already known. This introduces a small
truncation error [13,30], quantified as the sum of the neglected
natural (orbital) occupation numbers:

ε′ :=
d∑

j=d ′+1

λ
(l )
j = N −

d ′∑
j=1

λ
(l )
j . (76)

To obtain a reliable estimate of quasipinning, we first com-
pute the distance of the truncated vector λ(l )′ to any GPC facet
F (p)′

i in the truncated setting (N, d ′, S, M ) and then determine
its minimum over all GPCs,

F ′
min := min

i
dist1

(
λ(l )′,F (p)′

i

)
. (77)

While F ′
min could be interpreted as the minimal distance of

λ(l )′ to the boundary of �
(p)′
S,M , it is crucial to note that λ(l )′

does not, in general, lie within the polytope �
(p)′
S,M due to its

small deviation ε′ from exact normalization.
As shown in Appendix B, this framework allows us to

rigorously establish lower and upper bounds on the actual dis-
tance of λ(l ) to the boundary of the unknown spectral polytope
�

(p)
S,M according to

F− � dist1
(
λ(l ), ∂�

(p)
S,M

)
� F+, (78)

where the upper bound is given by F+ ≡ F ′
min + ε′, while the

procedure for computing the lower bound F− ≡ F−(λ(l ) ) is
detailed in the appendix.

B. Lithium and Beryllium atoms

To obtain accurate approximations of the quantum states
for our atomic systems, we performed highly accurate Full
Configuration Interaction (FCI) computations of the lowest-
energy 2S Li and 3P Be states using the LUCITA module
[58,59] of the DALTON2020.1 program package [60–62]. A

FIG. 4. Comparison of the pinning analysis for the Beryllium
triplet ground state using (a) spin-independent GPCs and (b) spin-
dependent GPCs. The point corresponds to the facet distance F ′

min in
the truncated setting, whereas the error bars indicate upper and lower
bounds defined in Eq. (78).

tight convergence threshold of 10−7 was applied to the it-
erative Davidson procedure. Facet distances were computed
using the CLARABEL solver [63] via the CVXPY package [64].

For Beryllium, to relate our results to those in [36] and
[30], we computed the lowest-energy triplet state with S =
M = 1 for (N, d ) = (4, 25) using the “Be triplet 5” basis set
from Ref. [30], consisting of 25 s-type functions. To compare
our spin-adapted GPC analysis with the spin-independent case
from Ref. [30], we considered truncated one-particle Hilbert
spaces with 2d ′ ∈ {8, 10, 12, 14} for spin-adapted GPCs and
2d ′ ∈ {6, . . . , 10} for spin-independent GPCs. In both cases,
we determined the natural occupation number vector λ and the
natural orbital occupation number vector λ(l ) of the variational
ground state |�〉. The two panels of Fig. 4 show the minimal
distance F ′

min to the facets of the spin-adapted (right) and
spin-independent (left) GPC polytope for different truncated
settings (N, 2d ′). The red error bars indicate the lower and
upper bounds given in Eq. (78).

Compared to the spin-independent case in the left panel,
the minimal facet distance increases by an order of magnitude
when using spin-adapted GPCs. Notably, exact pinning can
already be ruled out for 2d ′ = 8 in the spin-adapted case. Fur-
thermore, we assess the nontriviality of quasipinning based
on the (spin-adapted) Q parameter introduced in Eq. (74) in
Sec. V. The spin-adapted Q parameter is computed using the
intersections Mx and constants cx provided in the Supplemen-
tal Material [57]. In the spin-independent case, we use the
Q-parameter definitions and coefficients c from Refs. [46,65].

For spin-independent GPCs with (N, 2d ′) = (4, 10), we
find Q = 0.864, whereas for spin-adapted GPCs with
(N, 2d ′) = (4, 14), we obtain a lower value of Q = 0.369.
This suggests that in the spin-independent case, some portion
of the quasipinning is not implied by the Pauli constraints,
whereas in the spin-adapted case, nearly all observed quasip-
inning is trivial, meaning it originates from spin-adapted Pauli
constraints. The reduction in the Q parameter further indicates
that the nontrivial part of the quasipinning observed in the
spin-independent analysis is largely a consequence of spin
symmetries.

A similar (quasi)pinning analysis was performed for the
Lithium atom in the S = 1/2 sector, using the “Li doublet 3”
basis set from Ref. [30]. This corresponds to a decontracted
aug-cc-pCVQZ basis set [66] with additional tight functions

023247-10



TOOLBOX OF SPIN-ADAPTED GENERALIZED PAULI … PHYSICAL REVIEW RESEARCH 7, 023247 (2025)

FIG. 5. Comparison of the pinning analysis for the Lithium
doublet ground state using (a) spin-independent GPCs and (b) spin-
dependent GPCs. The point corresponds to the facet distance F ′

min in
the truncated setting, whereas the error bars indicate upper and lower
bounds defined in Eq. (78).

up to � = 4 and further augmented by h- and i-type functions.
In its Cartesian representation and after eliminating linear
dependencies with an overlap eigenvalue threshold of 10−7,
this results in the setting (N, d ) = (3, 495). We analyzed
various truncated settings for which spin-adapted and spin-
independent GPCs are available. The minimal facet distances
are shown in Fig. 5. As in Ref. [30], we cannot rule out exact
pinning, not even for the largest truncated setting of 2d ′ = 12
in the spin-independent case. Moreover, the global Q pa-
rameter for the spin-independent analysis (left panel) with
(N, 2d ′) = (3, 10) is Q = 0.930, whereas for spin-adapted
GPCs with (N, 2d ′) = (3, 18), it is significantly lower at Q =
0.024. This suggests that the previously observed quasipin-
ning was a direct consequence of spin symmetries.

VII. CONCLUSIONS AND OUTLOOK

In this work, we established a comprehensive toolbox for
studying and applying spin-adapted GPCs in few-electron
quantum systems. By leveraging the spin symmetry of re-
alistic N-electron wave functions, the underlying one-body
pure N-representability problem simplifies. This, combined
with computational resources, enabled us to calculate GPCs
for larger active spaces than previously feasible. Notably, for
N = 4 electrons, we successfully determined the spin-adapted
GPCs for systems with d = 7, 8 spatial orbitals, a significant
improvement over the spin-independent case, where GPCs
have so far been computed only for up to ten spin orbitals
(d = 5). Furthermore, incorporating spin symmetry drasti-
cally reduces the number of GPCs, making their application
more feasible for realistic system sizes. For example, in the
spin-independent setting, the number of GPCs for N = 3, 4, 5
electrons and d = 5 orbitals reaches several hundred, while
for d = 7, 8 in the spin-adapted setting, there are still around
ten constraints.

To facilitate further applications in physics and chemistry,
we provide a complete list of spin-adapted GPCs as supple-
mental material [57], including both newly computed cases
(N, d, S) and recalculated results for previously studied set-
tings. In that sense, to the best of our knowledge, our work
presents a state-of-the-art reference for spin-adapted GPCs
and maximizes the availability of constraints across different
system sizes.

Beyond these computational advancements, we rigorously
proved a fundamental mathematical result that general-
izes a similar finding [15] to spinful systems: whenever a
spin-adapted GPC is saturated (pinning), the corresponding
N-electron wave function assumes a constrained structure.
More specifically, in a configuration interaction expansion
based on natural orbitals, only specific symmetry-adapted
configuration state functions may contribute. Furthermore, we
established the stability of this selection rule by demonstrating
quantitatively that approximate saturation of a GPC (quasip-
inning) implies an approximate simplification of the wave
function.

We also examined the practical significance of
(quasi)pinning and showed that it can often be attributed
to weak electron correlation or, more generally, to
(quasi)pinning by the simpler (spin-adapted) Pauli
constraints. To distinguish nontrivial (quasi)pinning from
such trivial cases, we introduced a geometric measure, the
symmetry-adapted Q parameter, which precisely quantifies
the contrast between GPC-induced (quasi)pinning and that
arising from Pauli constraints. Applying our toolbox to
two atomic systems—Lithium in its ground state (doublet)
and Beryllium in the lowest-energy eigenstate of the triplet
sector—our results confirmed that previously observed
quasipinning primarily stems from spin symmetry. This aligns
with expectations, as spin symmetry inherently simplifies the
configuration interaction expansion and, according to the su-
perselection rules, increases the likelihood of (quasi)pinning.

Our findings suggest several promising directions for
future research. In one-particle RDMFT [41,67–92], spin-
adapted GPCs are expected to play a central role. In pure-state
RDMFT, they define the functional domain, while in the
ensemble variant, they still influence the structure of the en-
semble functional [39]. As a direct consequence of our proof
of the superselection rule and its stability, we predict that the
gradients of the universal interaction functionals in various
RDMFT variants will exhibit repulsive divergences on the
boundary of the functional domain, extending the concept of
diverging exchange forces to spinful systems. Since common
RDMFT approximations fail to reproduce such divergences,
incorporating spin-adapted GPCs into functional develop-
ment could significantly enhance accuracy, particularly in
strongly correlated systems where conventional approaches
often struggle.

Analogous to the spin-independent case [18], solving
the spin-adapted one-body N-representability problem es-
tablishes a complete hierarchy of variational MCSCF wave
function ansätze. Each face of the respective polytope corre-
sponds to a distinct ansatz, forming a systematic hierarchy
of increasingly sophisticated wave function approximations.
This hierarchy allows for successive improvements in sys-
tematically capturing electron correlation to higher and higher
degrees, starting from the highest weight, which corresponds
to the Hartree-Fock point in the spin-independent setting.

Finally, our work underscores the need for more ef-
ficient algorithms for computing GPCs, encouraging the
mathematical community to bridge the gap between com-
putational feasibility and the practical demands of physics
and quantum chemistry. By providing theoretical insights and
computational tools, we hope this work stimulates further re-
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search on the role of generalized Pauli constraints in quantum
many-body systems.
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APPENDIX A: SELECTION RULE
FOR CONFIGURATION STATES

We prove Eq. (43), a crucial step in the derivation of the
selection rule for spin-adapted configuration states discussed
in Sec. III B. Here, the dot above a symbol (e.g., in |�̇(t )〉)
denotes differentiation with respect to t , and the map μ(·) :=
TrH(s)

1
[TrN−1[·]] represents a partial trace that first traces out

N − 1 particles and subsequently also the spin degree of
freedom of the remaining fermion. By following a similar
approach as in Ref. [15] for the spin-independent case, one
obtains

d

dt
D(λ(l )(t )) =

d∑
k=1

κk〈k(t )|γ̇l (t )|k(t )〉 =
d∑

k=1

κkTrH(l )
1

[|k(t )〉〈k(t )|μ(|�(t )〉〈�̇(t )| + |�̇(t )〉〈�(t )|)]

=
d∑

k=1

κkTrN [Ekk (|�(t )〉 〈�̇(t )| + |�̇(t )〉〈�(t )|)] = TrN [D̂(�(t ))(|�(t )〉〈�̇(t )| + |�̇(t )〉〈�(t )|)]

= −2(〈�(t )|(D̂(�(t )) )2|�(t )〉 − 〈�(t )|D̂(�(t ))|�(t )〉2) = −2 Var�(t )(D̂
(�(t )) ). (A1)

In the first line, we applied first-order perturbation theory to
the orbital 1RDM γl (t ) to determine λ

(l )
k (t ) for small times,

which assumes that the natural orbital occupation numbers
λ

(l )
k are nondegenerate. The treatment of degenerate cases is

mathematically more intricate; therefore, we exclude it here
and refer the interested reader to the general framework out-
lined in Ref. [17].

APPENDIX B: BOUNDS ON THE TRUNCATION ERROR

In this Appendix, we derive the relation (78), which pro-
vides a rigorous justification for the truncation procedure.

Due to the truncation error,

ε′ :=
d∑

j=d ′+1

λ
(l )
j = N −

d ′∑
j=1

λ
(l )
j , (B1)

the truncated occupation number vector λ(l )′ ≡ (λ(l )
j )d ′

j=1 no
longer lies within the hyperplane enforcing proper nor-
malization in the Euclidean space Rd ′

. This introduces a
nonuniqueness issue, since for any GPC D′ � 0 in the trun-
cated setting, one can construct an equivalent constraint

D̃′(λ(l )′; α) := D′(λ(l )′) + α

⎛⎝N −
d ′∑

j=1

λ
(l )′
j

⎞⎠, (B2)

by incorporating the normalization condition with a tunable
parameter α. For ε′ > 0, the residual D′(λ(l )′) can be arbitrar-
ily adjusted by varying α, which geometrically corresponds to
a rotation of the (d ′ − 1)-dimensional hyperplane D′(λ(l )′) =
0 about its intersection with the normalization plane.

To circumvent this ambiguity, we characterize quasipin-
ning not by the residual but by the distance of λ(l ) to the facet
F (p). The objective is now to estimate this distance in the full
setting (N, d, S, M ) using the distance of the truncated vector
λ(l )′ to the facets F (p)′ in the reduced setting (N, d ′, S, M ). To
confirm the validity of this approach, we derive the following
bounds. Consider the hyperplane

ED := {λ(l ) ∈ Rd |D(λ(l ) ) = 0} (B3)

in the full setting, and the corresponding hyperplanes

E ′
D := {λ(l )′ ∈ Rd ′ |D′(λ(l )′) = 0}, (B4)

Ẽ ′
D(α) := {λ(l )′ ∈ Rd ′ |D̃′(λ(l )′, α) = 0} (B5)

in the truncated setting, where

D(λ(l ) ) = D′(λ(l )′) +
d∑

j=d ′+1

κ jλ
(l )
j . (B6)

Using results from Ref. [30], we obtain the inequality:

dist1(λ(l ), ED) � c dist1(λ(l )′, E ′
D) − ε′ (B7)

with the constant

c = max1� j�d ′ |κ j |
max1� j�d |κ j | � 1. (B8)

Formally, knowledge of the GPC in the full setting
(N, d, S, M ) would be required to determine c; however, as
was the case for spin-independent GPCs, an analysis of the
known GPCs suggests that c = 1 for sufficiently large d ′.
Since (B7) holds for any rotation of E ′

D parametrized by α,
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and given that dist1(λ(l ),F (p) ) � dist1(λ(l ), ED), we obtain
the lower bound:

dist1(λ(l ),F (p) ) � max
α

dist1(λ(l )′, Ẽ ′
D(α)) − ε′ � 0. (B9)

For the upper bound, following a similar reasoning of subset
relations as in Ref. [30], we arrive at

dist1(λ(l ),F (p) ) � dist1(λ(l )′,F (p)′) + ε′. (B10)

Combining these results, we establish the following hierarchy:

0 � max
α

dist1(λ(l )′, Ẽ ′
D(α)) − ε′ � dist1(λ(l ), ED)

� dist1(λ(l ),F (p) ) � dist1(λ(l )′,F (p)′) + ε′. (B11)

This establishes rigorous lower and upper bounds on the true
facet distance, in particular (78), ensuring a controlled trunca-
tion scheme in practical applications.
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