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A B S T R A C T

Background: Artificial intelligence (AI) models have shown potential for diagnosing and prognosticating trau
matic spinal cord injury (tSCI), but their clinical utility remains uncertain.
Method: ology: The primary aim was to evaluate the performance of AI algorithms in diagnosing and prognos
ticating tSCI. Subsequent systematic searching of seven databases identified studies evaluating AI models. 
PROBAST and TRIPOD tools were used to assess the quality and reporting of included studies (PROSPERO: 
CRD42023464722). Fourteen studies, comprising 20 models and 280,817 pooled imaging datasets, were 
included. Analysis was conducted in line with the SWiM guidelines.
Results: For prognostication, 11 studies predicted outcomes including AIS improvement (30%), mortality and 
ambulatory ability (20% each), and discharge or length of stay (10%). The mean AUC was 0.770 (range: 
0.682–0.902), indicating moderate predictive performance. Diagnostic models utilising DTI, CT, and T2- 
weighted MRI with CNN-based segmentation achieved a weighted mean accuracy of 0.898 (range: 
0.813–0.938), outperforming prognostic models.
Conclusion: AI demonstrates strong diagnostic accuracy (mean accuracy: 0.898) and moderate prognostic 
capability (mean AUC: 0.770) for tSCI. However, the lack of standardised frameworks and external validation 
limits clinical applicability. Future models should integrate multimodal data, including imaging, patient char
acteristics, and clinician judgment, to improve utility and alignment with clinical practice.

1. Introduction

Traumatic spinal cord injury (tSCI) involves trauma to the spinal 
cord, causing temporary or permanent motor, sensory, or autonomic 
deficits (Adegeest et al., 2024). This often results in conditions like pa
ralysis and autonomic dysreflexia, significantly impairing quality of life 
(Adegeest et al., 2024; Konbaz et al., 2023; Kirshblum et al., 2011). 
TSCI, which affects either specific spinal regions, commonly cervical and 
thoracolumbar, or the entire spinal cord, account for up to 90% of spinal 
cord injuries, with incidence rates up to 906 cases per million globally 

(Adegeest et al., 2022; Ter Wengel et al., 2020; Barbiellini Amidei et al., 
2022; Wang et al., 2022; Chen et al., 2021; Ullah et al., 2023). TSCI is a 
leading cause of disability in young people due to high-velocity trauma 
and falls (Chen et al., 2013; Wilson et al., 2023). It presents substantial 
challenges within healthcare, characterised by a poor prognosis and 
high mortality rates (Wilson et al., 2023; Higashi et al., 2018; Majdan 
et al., 2017; Hall et al., 2019).

To address these challenges, the World Society of Emergency Surgery 
(WSES) and the European Association of Neurosurgical Societies (EANS) 
developed a 17-point Delphi consensus to guide tSCI treatment, 
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emphasising cross-specialty collaboration to improve outcomes of tSCI 
patients (Picetti et al., 2024). Current methods of tSCI diagnosis and 
prognostication involve time-intensive neurological consultations and 
imaging (Adegeest et al., 2024; Picetti et al., 2022; Wang et al., 2021; 
Badhiwala et al., 2021). They rely on multidisciplinary teams, rapid 
imaging, and assessment, though these methods can be time-consuming 
and risk inaccuracy (Adegeest et al., 2024; Picetti et al., 2022; Wang 
et al., 2021; Badhiwala et al., 2021). AI and ML present promising op
portunities to streamline the assessment of tSCI and improve diagnostic 
accuracy (Nagendran et al., 2020; Masood et al., 2022; Facchinello et al., 
2021).

Advancements in AI and ML for healthcare, driven by improvements 
in computational power, data availability, and deep learning algo
rithms, have enabled the development of versatile and complex models 
(LeCun et al., 2015). These models now have applications across various 
medical specialties (LeCun et al., 2015; Alowais et al., 2023; Kermany 
et al., 2018). Many AI models now automate clinical decisions with 
accuracy comparable to, or exceeding, that of healthcare professionals 
(HCPs) (Han et al., 2018; Nam et al., 2019; Gonzá et al., 2017; Shen 
et al., 2019; De et al., 2020; Hosny et al., 2018; Le et al., 2019). While 
few diagnostic models specifically target tSCI, AI’s prognostic potential 
is strong, particularly using ML algorithms like XGBoost, random forests, 
and decision trees for predictive accuracy (Tay et al., 2014; McCoy et al., 
2019; Jasim and Brindha, 2021; Chang et al., 2023; Karabacak and 
Margetis, 2023a; Dietz et al., 2022). However, research on AI based 
applications for tSCI in neurosurgery and neurotrauma remains limited.

To facilitate the adoption of newer diagnostic and prognostic 
methods for tSCIs, a robust quantitative and qualitative synthesis is 
needed. While current studies provide general insights into the appli
cation of AI in managing tSCI, this systematic review focuses on evalu
ating the performance and effectiveness of AI models in identifying and 
prognosticating tSCI (Dietz et al., 2022; Habibi et al., 2024; Maki et al., 
2024; Tao et al., 2024; Graham et al., 2024). We aimed critically 
examine the inputs and outputs of existing AI models in the literature, to 
provide a the most comprehensive analysis of their capabilities within 
clinical environments.

2. Methodology

2.1. Search strategy and selection criteria

This systematic review was registered on PROSPERO 
(CRD42023464722) and was conducted in line with the Preferred 
Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) 
2020 guidelines (Page et al., 2021). The completed PRISMA flowchart is 
shown in Fig. 1A. The literature search was conducted on the October 
24, 2023, encompassing MEDLINE, Embase, Scopus, PubMed, JSTOR, 
IEEE, and the Cochrane Library. The complete search strategy can be 
found in Supplemental Digital Content 1: Supplementary Table S1. Four 
reviewers (SG, RMA, SN, JK) conducted the initial abstract screening 
using COVIDENCE. Studies using ML or AI for the diagnosis or prog
nostication tSCI, and met our inclusion criteria, were included. Our 

Fig. 1. PRISMA diagram, World Map, Year of Publication 
A = PRISMA Diagram The PRISMA flowchart in Fig. 1A summarises the process of study identification, screening, and inclusion in this systematic review. A total of 
12,315 records were identified from various databases, including Web of Science (4725), PubMed (4558), Embase (2700), Scopus (450), IEEE (Ullah et al., 2023), 
JSTOR (Chen et al., 2021), and Grey Literature (Ullah et al., 2023). After removing duplicates (7276 records), 5039 records were screened for relevance. Following 
the exclusion of 4945 irrelevant records, 94 full-text articles were assessed for eligibility. Of these, 80 articles were excluded for various reasons, such as lack of 
applicability (Namireddy et al., 2024), wrong population (Badhiwala et al., 2021), wrong outcomes (Higashi et al., 2018), and others, leaving 14 studies included in 
the systematic review. The chart adheres to PRISMA guidelines for systematic reviews. B = World Map Fig. 1B describes the global distribution of countries of 
publication of included studies, based on their frequency. Countries with higher frequencies are shaded in darker red, while those with lower frequencies are lighter. 
Non-listed countries are shown in white. The gradient in shading represents the number of occurrences, highlighting countries such as Japan, the United States, and 
Canada with the highest frequencies C = Year of Publication The graph in Fig. 1C shows a steady number of studies from 2014 to 2021, followed by an increase in 
2022 and 2023, with a slight decline in 2024. Data points represent the total count of studies published in each respective year.
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inclusion criteria included: original quantitative research, published in 
English, focused on AI for diagnosing or prognosticating tSCI in adults, 
and evaluated AI performance (Supplemental Digital Content 1: Sup
plementary Table S2). All included papers were then subject to a full text 
screen by five independent reviewers (SG, RMA, SN, JK, SSG). Any 
disagreements were resolved by consensus after discussion with a fifth 
reviewer (HSP) (see Fig. 2).

2.2. Data extractionfig2

Relevant data from each included study were manually extracted 
using COVIDENCE. A comprehensive list of extracted variables is pre
sented in Supplemental Digital Content 1: Supplementary Table S6. In 
cases where data was missing, corresponding authors were contacted. 
Tables 1–3 summarise key findings.

2.3. Critical appraisal

Two independent reviewers assessed the risk of bias for each 
included study using the Prediction model Risk Of Bias Assessment Tool 
(PROBAST), evaluating potential biases in four domains: participant 
selection, predictors, outcomes, and data analysis (Collins et al., 2021; 
Wolff et al., 2019). Any disagreements in risk assessment were resolved 
by a third reviewer. Additionally, adherence to the Transparent 
Reporting of a multivariable prediction model for Individual Prognosis 
Or Diagnosis (TRIPOD) guidelines was evaluated for each study, to 
ensure transparency and completeness in reporting (Collins et al., 2015).

2.4. Data analysis, qualitative synthesis and reporting

Due to the heterogeneity of methodologies, including differences in 
model architecture, predictive features, and outcome measures, a meta- 
analysis was not feasible. Instead, a qualitative synthesis was conducted, 
following the Synthesis Without Meta-analysis (SWiM) guidelines 
(Campbell et al., 2020). Data interpretation was enhanced through vi
sual representations created using Google Sheets and R statistical 
packages, with Radar and Sankey diagrams (Figs. 3 and 4).

3. Results

A total of 12,315 studies were screened. From these, 94 full texts 
were assessed using our inclusion criteria. A total of 14 studies, and a 
pooled total of 283,046 images in the diagnostic and prognostic do
mains, respectively, were included in this systematic review (Tay et al., 
2014; McCoy et al., 2019; Jasim and Brindha, 2021; Kato et al., 2024; 
Karabacak and Margetis, 2023b; Inoue et al., 2020; Fan et al., 2022; 

Okimatsu et al., 2022; Fallah et al., 2022; Belliveau et al., 2016; DeVries 
et al., 2020; Leidinger et al., 2023; Shimizu et al., 2023; Kapoor and Xu, 
2023). AI models predicted prognosis in 11 studies (79%), and diagnosis 
in 3 studies (21%). Characteristics of all included studies are found in 
Fig. 1B and C and Tables 1–3, describing the diagnostic and prognostic 
arms of this study, respectively.

3.1. Prognostication of tSCI

This domain of the study focussed on the use of AI in the prognos
tication of tSCI, comprising of 20 models (Kato et al., 2024; Karabacak 
and Margetis, 2023b; Inoue et al., 2020; Fan et al., 2022; Okimatsu et al., 
2022; Fallah et al., 2022; Belliveau et al., 2016; DeVries et al., 2020; 
Leidinger et al., 2023; Shimizu et al., 2023; Kapoor and Xu, 2023). 280, 
852 images were used to train these models, with the individual sample 
sizes ranging from 135 to 72,132.40% (8/20) of models were composed 
of less than 1000 samples. AUC was the most reported outcome, with a 
weighted mean of 0.770, reported in 75% of models (15/20), followed 
by accuracy (14/20) and recall (12/20) respectively (Tables 1 and 2, 
Fig. 3a). The system used by each model is shown in Fig. 4a. Improved 
American Spinal Injury Association Abbreviated Injury Scale (AIS) was 
the most predicted outcome, appearing in 30% (6/20) of the included 
models. Mortality and post-injury ambulatory ability were each pre
dicted in 20% (4/20) of the models, followed by discharge destination, 
ICU and hospital lengths of stay in 10% (2/20) of the models (Fig. 3a).

3.2. Diagnosis of tSCI

This domain of the study focussed on the use of AI in the detection of 
spinal cord injuries and is based seven models and trained on 2194 
images (Tay et al., 2014; McCoy et al., 2019; Jasim and Brindha, 2021). 
All studies were retrospective, and the ground truth was based on re
ports from neuroradiology fellows, a retrospective database, and uni
versity experts, respectively (Tables 1 and 3, Fig. 3b). A mean weighted 
average of all included models was 0.898.6 models (85.7%) diagnosed 
SCI directly using the binary outcomes of ‘SCI or ‘no SCI’ using DTI and 
CT scans (Tay et al., 2014; Jasim and Brindha, 2021). The remaining 
model (14.3%) diagnosed the volume of spinal contusion in SCI from 
T2W1 MRI scans (McCoy et al., 2019). The system used by each model is 
shown in Fig. 3b. Accuracy and specificity were the most reported 
outcomes, reported in 85.7% (6/7) of all included models.

3.3. Data input for AI models

3.3.1. Age and demographics
Five models identified age as the most critical predictive factor. 

Fig. 2. PROBAST Risk of Bias analysis. 
A = Risk of Bias domain This bar chart displays the number of studies rated as “High Risk,” “Unclear,” or “Low Risk” across different domains, including overall risk 
of bias, participants, predictors, outcomes, and analysis. A notable proportion of studies exhibit high or unclear risk, particularly in the “Analysis” and “Overall” 
categories. B = Applicability domain. This bar chart shows the number of studies with “High Concern,” “Unclear,” or “Low Concern” regarding applicability across 
the domains of participants, predictors, outcomes, and overall applicability. Most studies demonstrate low concern in these domains, though some uncertainty 
remains, particularly in the “Predictors” and “Outcomes” domains.
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Inoue et al. included “demographics,” encompassing age, as the primary 
predictor for AIS grade six months post-tSCI (Inoue et al., 2020). Fallah 
et al. found age to be the strongest predictor of both one year and in 
hospital mortality post-tSCI (Fallah et al., 2022), while DeVries et al. 
determined it as the best predictor of ambulatory ability one year 
post-tSCI (DeVries et al., 2020). Karabacak et al. calculated age to have 
the highest SHapley Additive exPlanations (SHAP)value, a measure 
quantifying the importance of input features in a ML model, (+0.25) for 
non-home discharge, far exceeding the next highest factor (0.06) 
(Karabacak and Margetis, 2023b).

3.3.2. AIS
AIS was the most significant predictive feature in four models. 

Kapoor et al. found AIS grades A, D, and C to be the top three features for 
predicting final AIS grade (Kapoor and Xu, 2023). Shimizu et al. used 
AIS at admission to predict AIS improvement six months post-tSCI 
(Shimizu et al., 2023). Similarly, Okimatsu et al. ranked AIS probabili
ties, and AIS at admission, as the first and third most important features 
for predicting AIS improvements one-month post-tSCI (Okimatsu et al., 
2022).

3.3.3. Images
Three studies (7 models) employed imaging to diagnose SCI. Jasim 

et al. used segmented and localised L1-5 CT scans (Jasim and Brindha, 
2021), while both McCoy et al. and Tay et al. utilised MRI (Tay et al., 
2014; McCoy et al., 2019). McCoy et al. used a 3T MRI of the cervical 

Table 1 
Study characteristics.

Title Author Year Country Study type Domain Conclusion

Decision Tree Analysis Accurately Predicts 
Discharge Destination After Spinal Cord 
Injury Rehabilitation

Kato et al. 2024 Japan Retrospective, single-centre 
study

Prognostication Even during early stages of 
rehabilitation, it is possible to predict 
the discharge destination

Precision medicine for traumatic cervical 
spinal cord injuries: accessible and 
interpretable machine learning models 
to predict individualized in-hospital 
outcomes

Karabacak 
et al.

2024 USA retrospective machine 
learning classification study

Prognostication ML models showed strong predictive 
ability for in-hospital mortality and 
nonhome discharges, fair ability for 
prolonged LOS, but poor ability for 
prolonged ICU-LOS and major 
complications.

XGBoost, a Machine Learning Method, 
Predicts Neurological Recovery in 
Patients with Cervical Spinal Cord Injury

Inoue et al. 2020 Japan Retrospective, single-centre 
study*

Prognostication The XGBoost model reliably predicted 
neurological changes in patients with 
cervical SCI

Machine Learning-based Prediction of 
Prolonged Intensive Care Unit Stay for 
Critical Patients with Spinal Cord Injury

Fan et al. 2022 China Retrospective cohort study Prognostication Ensemble classifiers effectively predict 
prolonged ICU and hospital stays.

Determining the short-term neurological 
prognosis for acute cervical spinal cord 
injury using machine learning

Okimatsu 
et al.

2022 Japan Retrospective cohort study Prognostication Predicting short-term neurological 
outcomes for acute cervical SCI using 
MRI and machine learning is feasible

Development of a machine learning 
algorithm for predicting in-hospital and 
1-year mortality after traumatic spinal 
cord injury

Fallah et al. 2022 Canada Retrospective review of a 
prospective cohort study

Prognostication An ML based Spinal Cord Injury Risk 
Score (SCIRS) can predict in-hospital 
and 1-year mortality following tSCI 
more accurately than the ISS measure

Developing Artificial Neural Network 
Models to Predict Functioning One Year 
After Traumatic Spinal Cord Injury

Belliveau 
et al.

2016 USA Retrospective analysis of data 
from the national, multicenter 
Spinal Cord Injury Model 
Systems (SCIMS) Database

Prognostication Models for predicting ambulation status 
post tSCI were highly accurate, but 
require further prospective validation

Development of an unsupervised machine 
learning algorithm for the 
prognostication of walking ability in 
spinal cord injury patients

DeVries 
et al.

2020 Canada Retrospective review of a 
prospective cohort study

Prognostication No clinically significant differences were 
observed between the unsupervised ML 
algorithm using complete admission 
neurological data and previously 
validated standards.

Predictors of spinal trauma care and 
outcomes in a resource-constrained 
environment: a decision tree analysis of 
spinal trauma surgery and outcomes in 
Tanzania

Leidinger 
et al.

2023 Spain Retrospective analysis of 
prospectively collected data

Prognostication Operative intervention and functional 
improvement following acute spinal 
trauma were low and inconsistent.

Efficacy of a machine learning-based 
approach in predicting neurological 
prognosis of cervical spinal cord injury 
patients following urgent surgery within 
24 h after injury

Shimizu 
et al.

2023 Japan Retrospective consecutive 
cohort study

Prognostication The ML models accurately predicted 
neurological outcomes six months post- 
injury in cervical SCI patients who 
underwent urgent surgery

Spinal Cord Injury AIS Predictions Using 
Machine Learning

Kapoor 
et al.

2023 USA Retrospective NSCISC 
database analysis

Prognostication AIS scores at admission, combined with 
demographic data, are highly predictive 
of neurological outcomes at hospital 
discharge for spinal cord injury patients

A machine learning approach for 
specification of spinal cord injuries using 
fractional anisotropy values obtained 
from diffusion tensor images

Tay et al. 2014 Republic 
of Korea

Retrospective study Diagnosis The ML based algorithm aids the 
diagnosis of SCI on DTI

Convolutional Neural Network-Based 
Automated Segmentation of the Spinal 
Cord and Contusion Injury: Deep 
Learning Biomarker Correlates of Motor 
Impairment in Acute Spinal Cord Injury

McCoy 
et al.

2019 USA Retrospective, single-center 
study

Diagnosis The segmentation tool performs better 
than currently available models. CNN 
improve algorithm performance and 
yields clinically relevant data for acute 
SCI patients

Spinal cord segmentation and injury 
detection using a Crow Search-Rider 
optimization algorithm

Jasim et al. 2021 India Retrospective analysis Diagnosis The proposed model has been shown to 
be effective in SCI detection

This table describes the basic characteristics of all included studies, all of which develop an AI model to either diagnose or prognosticate SCI.
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Table 2 
Results and outcomes from all studies in the prognostication domain.

Study (year) Input Outcome AI 
model

Sample size AUC (95% CI) Ground truth Other 
performance 
measures

Kato et al. 
(2024)

SCIM total and subtotal scores, 
including self-care, respiration, 
sphincter management, and 
mobility

Discharge destination 
(home; not home)

CART Training: 140 (66.7%) 
Testing: 70 (33.3%)

0.868 
(0.755–0.960)

Retrospective 
database

Recall: 0.857 
(0.759–0.955) 
Specificity: 0.810 
(0.642–0.977) 
PPV: 0.913 
(0.832–0.994) 
NPV: 0.708 
(0.526–0.890)

Karabacak 
et al. 
(2023)

GCS (total), Age, GCS (Verbal) 
Pulse Oximetry, Respiratory 
assistance

In-hospital mortality 
(mortality; no 
mortality)

RF Training: 42,997 
(60%) 
Validation (3-time 5- 
fold cross-validation): 
14,332 (20%) 
Testing: 14,332 (20%)

0.839 
(0.816–0.848)

Retrospective 
database

Accuracy: 0.564 
(0.556− 0.572) 
Recall: 0.961 
(0.958− 0.964) 
Precision: 0.951 
(0.947− 0.955) 
AUPRC: 0.145 
(0.139− 0.151) 
Brier score: 0.028 
(0.025− 0.031)

Age, Mechanism of Injury, Primary 
method of payment, Systolic blood 
pressure, Transport mode

Discharge destination 
(home; not home)

CB Training: 40,399 
(60%) 
Validation (3-time 5- 
fold cross-validation): 
13,466 (20%) 
Testing: 13,466 (20%)

0.815 
(0.803–0.818)

Retrospective 
database

Accuracy: 0.737 
(0.73− 0.744) 
Recall: 0.737 
(0.73− 0.744) 
Precision: 0.739 
(0.732− 0.746) 
AUPRC: 0.641 
(0.633− 0.649) 
Brier score: 0.177 
(0.171− 0.183)

ACS Verification Level, systolic 
blood pressure, race, age, total 
GCS

Hospital LOS (>9 
days; <9 days)

RF Training: 46,070 
(60%) 
Validation (3-time 5- 
fold cross-validation): 
15,356 (20%) 
Testing: 15,356 (20%)

0.742 
(0.721–0.742)

Retrospective 
database

Accuracy: 0.596 
(0.588− 0.604) 
Recall: 0.816 
(0.81− 0.822) 
Precision: 0.786 
(0.78− 0.792) 
AUPRC: 0.372 
(0.364− 0.38) 
Brier score: 0.128 
(0.123− 0.133)

Systolic BP, ACS, Pulse oximetry, 
Pulse rate, primary method of 
payment

ICU LOS (>7 days; <7 
days)

CB Training: 15,969 
(60%) 
Validation (3-time 5- 
fold cross-validation): 
5323 (20%) 
Testing: 5323 (20%)

0.682 
(0.657–0.696)

Retrospective 
database

Accuracy: 0.599 
(0.586− 0.612) 
Recall: 0.765 
(0.754− 0.776) 
Precision: 0.775 
(0.764− 0.786) 
AUPRC: 0.219 
(0.208− 0.23) 
Brier score: 0.13 
(0.121− 0.139)

Inoue et al. 
(2020)

Demogrpahics and neurological 
statis, mechanism of injury, 
treatment strategies, radiographic 
information, concomitant 
degenerative spine disease

AIS grade 6 months 
post-injury (D/E or A/ 
B/C)

XGB Training: 165 (8-fold 
cross-validation)

0.867 Retrospective 
database

Accuracy: 81.1%

Fan et al. 
(2022)

Mechanical ventilation, diagnosis, 
Red cell count, Haemoglobin, 
Magnesium

Hospital LOS (>14 
days; <14 days)

EC Training: 1012 (80%) 
Validation (3-time 5- 
fold cross-validation): 
253 
Testing: 253 (20%)

Validation: 0.815 
Testing: 0.799

Retrospective 
database

Recall: 0.714 
Specificity: 0.750 
PPV: 0.481 
NPV: 0.890

Mechanical ventilation, diagnosis, 
LOS pre ICU, bicarbonate, chloride

ICU LOS (>7 days; <7 
days)

EC Training: 1279 (80%) 
Validation (3-time 5- 
fold cross-validation): 
320 
Testing: 320 (20%)

Validation: 0.864 
Testing: 0.802

Retrospective 
database

Recall: 0.864 
Specificity: 0.677 
PPV: 0.479 
NPV: 0.935

Okimatsu 
et al. 
(2022)

AIS probabilities, age and initial 
AIS at admission

AIS grade 1 month 
post-injury (A, B, C, D 
or E)

EC 
(CNN, 
RF, DL)

Training: 215 patients 
with 295 MR images 
(5-fold cross- 
validation)

– Retrospective 
database

Accuracy: 0.714 
Recall: 0.565 
F1 score: 0.567 
Precision: 0.59

Fallah et al. 
(2022)

age, AIS, NLI, Abbreviated Injury 
Scale scores, AOSpine injury 
morphology

Mortality 1 year post- 
injury (mortality; no 
mortality)

NN, DT Training: 849 
(validation: 10-fold 
cross-validation) 
Test: 396

Development: 
0.84 
Test: 0.86

Retrospective 
database

–

(continued on next page)
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Table 2 (continued )

Study (year) Input Outcome AI 
model 

Sample size AUC (95% CI) Ground truth Other 
performance 
measures

age, AIS, NLI, Abbreviated Injury 
Scale scores, AOSpine injury 
morphology

In-hospital mortality 
(mortality; no 
mortality)

NN, DT Training: 849 
(validation: 10-fold 
cross-validation) 
Test: 396

Development: 
0.87 
Test: 0.85

Retrospective 
database

–

Belliveau 
et al. 
(2016)

– Ambulate 150 ft 1 
year post-discharge 
(yes; no)

ANN Training: 2514 (80%) 
Cross-validation: 628 
(20%)

0.8801 
(0.8510–0.9092)

Retrospective 
database

Accuracy: 
87.74% 
PLR: 8.59 
NLR: 0.17

– Ambulate 1 street 
block 1 year post- 
discharge (yes; no)

ANN Training: 2512 (80%) 
Cross-validation: 628 
(20%)

0.8874 
(0.8589–0.9159)

Retrospective 
database

Accuracy: 
85.51% 
PLR: 5.46 
NLR: 0.14

​ Ambulate 1 flight of 
stairs 1 year post- 
discharge (yes; no)

ANN Training: 2511 (80%) 
Cross-validation: 628 
(20%)

0.9022 
(0.8754–0.9290)

Retrospective 
database

Accuracy: 
87.10% 
PLR: 7.57 
NLR: 0.17

DeVries 
et al. 
(2020)

Age, AIS. L2-S1 motor function, 
light touch and pin prick

Walking ability 1 year 
post-injury (walk; no 
walk)

UML Training: 862 (dataset 
re-sampling 2000 
times)

0.89 (0.87–0.91) Retrospective 
database

F1 score: 0.89 
(0.87− 0.91)

Leidinger 
et al. 
(2023)

– In-hospital mortality 
(mortality; no 
mortality)

DT Training: 284 
(bootstrapping)

– Retrospective 
database

Accuracy: 0.93 
Recall: 0.96 
Specificity: 0.71

– Improvement in AIS at 
discharge (>1 grade; 
no improvement)

DT Training: 284 
(bootstrapping)

– Retrospective 
database

Accuracy: 0.34 
Recall: 0.35 
Specificity: 0.29

Shimizu 
et al. 
(2023)

AIS at admission, intramedullary 
haemorrhage, longitudinal T2WI 
hyperintensity, HbA1c, MSCC

Improvement in AIS 6 
months post-injury 
(>1 grade; no 
improvement)

CB Training: 101 (75%) 
Validation (5-fold 
cross-validation): 34 
(25%)

0.90 Retrospective 
database

Accuracy: 0.837 
Recall: 0.892 
Precision: 0.852 
F1 score: 0.872

AIS at admission, intramedullary 
haemorrhage, longitudinal T2WI 
hyperintensity, HbA1c, MSCC

AIS grade 6 months 
post-injury (A, B, C, D, 
E)

CB Training: 101 (75%) 
Validation (5-fold 
cross-validation): 34 
(25%)

– Retrospective 
database

Accuracy: 0.80 
Recall: 0.572 
Precision: 0.834 
F1 score: 0.630

Kapoor et al. 
(2022)

AIS (A), AIS (D), AIS (C), 
Paraplegia, Tetraplegia

AIS grade (A, B, C, D, 
E)

RC Training: 18,737 
(90%) 
Testing: 2053 (10%)

– Retrospective 
database

Train accuracy: 
0.824 
Test accuracy: 
0.736

The input column contains the top 5 predictors for each study. SCIM: System for Cross-domain Identity Management; AIS: American Spinal Injury Association 
Impairment Scale; ANN: Artificial Neural Network; AUPRC: Area Under the Precision-Recall Curve; CART: Classification And Regression Tree; CB: CatBoost; CNN: 
Convolutional Neural Network; DL: Deep Learning; DT: Decision Tree; EC: Ensemble Classifier; ICU: Intensive Care Unit; LOS: Length Of Stay; NLR: Negative Like
lihood Ratio; NN: Neural Network; PLR: Positive Likelihood Ratio; RC: Ridge Classifier; RF: Random Forest; XGB: XGBoost; USML: Unsupervised Machine Learning.

Table 3 
Results and outcomes from all studies in the diagnostic domain.

Study (year) Input Output AI model Sample size 
(no. images)

No. Images AUC 
(95% CI)

Ground truth Other performance 
measures

Tay et al. 
(2014)

DTI Spinal cord injury 
(injured; normal)

SVM, 
KNN

14 (164) Training: 164 (3-fold 
cross validation)

– Experts at 
University

Accuracy: 0.938 
Recall: 0.952 
Specificity: 0.912

McCoy et al. 
(2019)

T2W1 MRI Volume of spinal 
contusion

CNN 47 (1880) Training: 1120 (60%) 
Validation: 200 (10%) 
Testing: 560 (30%)

– Neuroradiology 
fellows

Dice coefficient: 
0.93

Jasim et al. 
(2021)

CT lumbar 
spine with VCF

Spinal cord injury CS-ROA 
DCNN

30 (Hosny 
et al., 2018)

Training: 15 (50%) 
Validation: 15 (50%)

– Retrospective 
database

Accuracy: 0.8128 
Sensitivity: 0.8233 
Specificity: 0.7568

CT lumbar 
spine with VCF

Spinal cord injury CS-ROA 
DCNN

30 (Hosny 
et al., 2018)

Training: 18 (60%) 
Validation: 12 (40%)

– Retrospective 
database

Accuracy: 0.8204 
Sensitivity: 0.8364 
Specificity 0.8378

CT lumbar 
spine with VCF

Spinal cord injury CS-ROA 
DCNN

30 (Hosny 
et al., 2018)

Training: 21 (70%) 
Validation: 9 (30%)

– Retrospective 
database

Accuracy: 0.8672 
Sensitivity: 0.8703 
Specificity 0.8919

CT lumbar 
spine with VCF

Spinal cord injury CS-ROA 
DCNN

30 (Hosny 
et al., 2018)

Training: 24 (80%) 
Validation: 6 (20%)

– Retrospective 
database

Accuracy: 0.88 
Sensitivity: 0.8745 
Specificity 0.8964

CT lumbar 
spine with VCF

Spinal cord injury CS-ROA 
DCNN

Hosny et al. 
(2018)

Training: 27 (90%) 
Validation: 3 (10%)

– Retrospective 
database

Accuracy: 0.886 
Sensitivity: 0.8964 
Specificity 0.8986

VCF: Vertebral compression fracture; CNN: Convolutional Neural Network; DL: Deep Learning; DTI: Diffusion Tensor Imaging; KNN: K-Nearest Neighbour; SVM: 
Support Vector Machine; T2W1 MRI: T2 Weighted Magnetic Resonance Image, CS-ROA DCNN: Crow search-Rider Optimization-based DCNN.
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vertebrae with axial and sagittal T2 fast spin-echo sequences (McCoy 
et al., 2019). Whereas Tay et al. incorporated axial T1 and T2 scans with 
diffusion tensor imaging (DTI), derived from diffusion tensor measures 
to train their model (Tay et al., 2014).

3.3.3.1. Mechanical ventilation. Two models highlighted mechanical 
ventilation as the most important feature in their ensemble classifiers. 
Decision curve analysis and feature permutation assessments showed 
scores of 0.065 and 0.035 for predicting ICU and hospital length of stay, 
respectively (Fan et al., 2022).

3.3.4. Disability measures
Two models found that disability was the most important feature in 

their programming. Kato et al. found that the Spinal Cord Independence 
Measure (SCIM) is the best predictor of discharge location (Kato et al., 
2024). Yet, Karabacak et al. found that the total score on the Glasgow 
Coma Scale (GCS), followed closely by the verbal component of the GCS, 
are the primary predictors of in hospital mortality for tSCI patients 
(Karabacak and Margetis, 2023b).

3.3.5. Miscellaneous
Karabacak et al. found that both ACS verification levels, representing 

a hospital’s ability to deal with trauma, and a patient’s systolic blood 

Fig. 3. Sankey Diagram. 
A: This diagram displays the type of model used by each outcome in the prognostication arm of this study CatBoost (CB) was the most commonly used model, 
appearing in 20% (4/20) of the included models. Artificial Neural Networks (ANN) also appeared in 15% (3/20) of the models, as did Ensemble Classifiers (EC), 
which included one ensemble combining Convolutional Neural Networks (CNN), Random Forest (RF), and Deep Learning (DL) (Campbell et al., 2020; Kato et al., 
2024; Inoue et al., 2020). Random Forest (RF) models alone were used in 10% (2/20) of the models, as were Decision Trees (DT) models alone. A combination of 
Neural Networks (NN) and Decision Trees (DT) was utilised in 10% (2/20) of the models (Karabacak and Margetis, 2023b). Classification and Regression Trees 
(CART), XGBoost (XGB), Unsupervised Machine Learning (UML), and Ridge Classifier (RC) were each used in 5% (1/20) of the models.B: This diagram displays the 
type of model used by each outcome in the diagnosis arm of this study Six of the seven models were based on neural networks. Specifically, five models utilised a 
Crow Search-Rider Optimization-based Deep Convolutional Neural Network (CS-ROA DCNN), with one model based exclusively on Convolutional Neural Networks 
(CNN). The remaining model employed a combination of Support Vector Machines (SVM) and k-Nearest Neighbors (KNN). These models used a total of 2194 images 
for testing and validation. Accuracy and specificity were the most commonly reported metrics, reported for 86% (6/7) of models followed by sensitivity (5/7, 71%), 
dice and recall (1/7, 14%). AIS: American Spinal Injury Association Impairment Scale; ANN: Artificial Neural Network; CART: Classification And Regression Tree; CB: 
CatBoost; CNN: Convolutional Neural Network; DL: Deep Learning; DT: Decision Tree; EC: Ensemble Classifier; ICU: Intensive Care Unit; LOS: Length Of Stay; ML: 
Machine Learning; NN: Neural Network; RC: Ridge Classifier; RF: Random Forest; XGB: XGBoost; USML: Unsupervised Machine Learning; KNN: K-Nearest Neighbour; 
SVM: Support Vector Machine; CS-ROA DCNN: Crow Search-Rider Optimization-based DCNN.

Fig. 4. A = Radar Chart of the Prognosis Domain 
AI algorithms performance metrics. Fig. 4A illustrates the performance metrics of various AI algorithms, as reported by each article’s authors, in the prognosis 
domain. The radar chart specifically showcases 5 key metrics: Area Under the Curve (AUC), Accuracy, Precision, Specificity, and Sensitivity. Each vertex of the radar 
chart corresponds to one of these metrics, scaled from 0 to 1, where 1 denotes optimal performance. For the sake of graphical illustration, a metric value of 0 is 
equivalent to “NR” (Not Reported), indicating that the specific performance metric was not disclosed in the respective study. A mean of testing and training data was 
used where both were availableA = Radar Chart of the Diagnosis Domain AI algorithms performance metrics. Fig. 4B illustrates the performance metrics of various AI 
algorithms, as reported by each article’s authors, in the diagnosis domain. The radar chart specifically showcases 5 key metrics: Area Under the Curve (AUC), 
Accuracy, Precision, Specificity, and Sensitivity. Each vertex of the radar chart corresponds to one of these metrics, scaled from 0 to 1, where 1 denotes optimal 
performance. For the sake of graphical illustration, a metric value of 0 is equivalent to “NR” (Not Reported), indicating that the specific performance metric was not 
disclosed in the respective study. A mean of testing and training data was used where both were available ANN: Artificial Neural Network; CART: Classification And 
Regression Tree; CB: CatBoost; CNN: Convolutional Neural Network; DL: Deep Learning; DT: Decision Tree; EC: Ensemble Classifier; ML: Machine Learning; NN: 
Neural Network; RC: Ridge Classifier; RF: Random Forest; XGB: XGBoost; USML: Unsupervised Machine Learning; KNN: K-Nearest Neighbour; SVM: Support Vector 
Machine; CS-ROA DCNN: Crow Search-Rider Optimization-based DCNN.
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pressure are the best predictors of length of stay in the hospital and ICU, 
respectively (Karabacak and Margetis, 2023b).

3.4. Algorithms and validation of AI model

3.4.1. Machine Learning algorithms and performance
Convolutional Neural Networks (CNNs) achieved the highest mean 

accuracy (86.78%) and AUROC (0.8899) across three models for prog
nosticating tSCIs. XGBoost (XGB) followed with 81.1% accuracy and an 
AUROC of 0.867 from one model. Ridge Classifiers (RC) ranked third 
with 78% accuracy, though AUROC was unreported. CatBoost (CB) 
recorded 74.33% accuracy and a mean AUROC of 0.799 across four 
models, and Ensemble Classifiers (ECs) delivered 71.4% accuracy and 
0.828 AUROC over five models. These ECs incorporating Neural Net
works (NNs), Decision Trees (DTs), Random Forests (RFs), and Deep 
Learning (DL). Decision Trees (DTs) showed 63.5 accuracy without 
AUROC data from one model. RFs reported 58 accuracy and 0.791 
AUROC from two models. CART lacked accuracy data but achieved an 
AUROC of 0.868 with one model, while UML reported a high AUROC of 
0.89 without accuracy, based on one model. Leidinger et al.’s DT 
excelled in mortality prediction with 93% accuracy and 96% sensitivity, 
making it the best prognostic model (Leidinger et al., 2023). However, 
its accuracy and sensitivity for predicting AIS improvements (34% and 
35%, respectively) were the lowest in this study (Leidinger et al., 2023). 
In the diagnostic domain, Tay et al.’s EC, outperformed other CNNs with 
mean accuracies of 93.8% and 85.33%, respectively (Tay et al., 2014). 
Their model combined SVM and KNN (Tay et al., 2014). Tay et al.’s KNN 
model, optimised with two features, outperformed their SVM model 
(93.8% vs. 93.3% accuracy), using eight features (Tay et al., 2014). 

Despite focusing only on C4-6 SCI, Tay et al.’s model was the top 
performer in this domain (Tay et al., 2014).(Fig. 4)

3.4.2. Validation methods
The majority of studies used cross validation techniques, between 5 

and 10 cross-folds. Only Tay et al. and Jasim et al. used k-fold cross- 
validation as their approach (Tay et al., 2014; Jasim and Brindha, 
2021). Four studies did not specify their validation methods (Kato et al., 
2024; Karabacak and Margetis, 2023b; Leidinger et al., 2023; Kapoor 
and Xu, 2023), and DeVries et al. compared their model to a previously 
validated model, but did not perform formal validation (DeVries et al., 
2020).

3.4.3. Output and outcome measures
The American Spinal Injury Association (AIS) scale was the most 

common target for tSCI prognostication, with models achieving 71.37% 
mean accuracy and an AUC of 0.8835 for binary AIS improvement 
predictions (Tables 3 and 4). Ambulatory ability predictions showed 
mean AUCs of 0.890 and accuracies of 86.78%, demonstrating strong 
reliability for post-discharge mobility forecasts. Mortality models ach
ieved a mean accuracy of 74.7%, and AUC of 0.841, using predictors like 
age and Glasgow Coma Scale (GCS) scores. Models for prolonged hos
pital and ICU stays also performed well, with mean AUCs of 0.771 and 
0.742, respectively. For the diagnosis of SCI, detection was performed 
with a mean accuracy of 86.74%, while the volume of spinal cord 
contusion was diagnosed with a DICE coefficient of 0.93 (see Table 5).

Table 4 
PROBAST.

Study Risk of Bias Applicability Overall

Author (year) AI Model Participants Predictors Outcomes Analysis Participants Predictors Outcomes ROB Applicability

Kato et al. (2023) CART L L L H L L L H L
Karabacak et al. 

(2023)
RF L L L L L L L L L
CB L L L L L L L L L
RF L L L L L L L L L
CB L L L L L L L L L

Inoue et al. (2020) XGB L U L L L L L L L
Fan et al. (2021) EC L U H U L L H U U

EC L U H U L L H U U
Okimatsu et al. (2022) EC (CNN, RF, DL) L H H U L L H H U
Fallah et al. (2022) NN, DT L L L H L L L L L

NN, DT L L L H L L L L L
Belliveau et al. (2016) ANN L H H L L L H H U

ANN L H H L L L H H U
ANN L H H L L L H H U

DeVries et al. (2020) UML L H L U L L L H L
Leidinger et al. (2023) DT H L L H L L L L L

DT H U L H L L L U L
Shimizu et al. (2023) CB L H L L L L L L L

CB L H L L L L L L L
Kapoor et al. (2022) RC L H L H L L L H L
Tay et al. (2014) SVM, KNN H L L H L L L U L
McCoy et al. (2019) CNN H U L H L L L H L
Jasim et al. (2021) CS-ROA DCNN (50% 

Training)
H L U H U L U H L

CS-ROA DCNN (60% 
Training)

H L U H U L U H L

CS-ROA DCNN (70% 
Training)

H L U H U L U H L

CS-ROA DCNN (80% 
Training)

H L U H U L U H L

CS-ROA DCNN (90% 
Training)

H L U H U L U H L

Table 4 describes the PROBAST analysis for each subsection. H=High; U=Unclear; L = Low; ROB=Risk of Bias; ANN: Artificial Neural Network; CART: Classification 
And Regression Tree; CB: CatBoost; CNN: Convolutional Neural Network; DL: Deep Learning; DT: Decision Tree; EC: Ensemble Classifier; ML: Machine Learning; NN: 
Neural Network; RC: Ridge Classifier; RF: Random Forest; XGB: XGBoost; USML: Unsupervised Machine Learning; KNN: K-Nearest Neighbour; SVM: Support Vector 
Machine; CS-ROA DCNN: Crow Search-Rider Optimization-based DCNN.
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3.5. Appraisal of AI models and studies

3.5.1. TRIPOD assessment
TRIPOD adherence, excluding items considered “not applicable”, 

ranged from 0% to 100%, with a mean adherence of 74.30%. Nine items 
had total (100%) adherence: 1, 3a, 3b, 7a, 10b, 10d, 18, 19b, and 20. 
Items 10e, 11, and 17 were considered “not applicable” to the majority 
of the articles, reflecting the focus on model development without 
external validation.

3.5.2. PROBAST assessment
After a thorough evaluation, 48% of the studies included in this re

view were considered to have a high risk of bias (ROB), primarily due to 
issues in the analysis domain. A smaller proportion (15%) were classi
fied as having an unclear ROB, while 37% were rated as having a low 
ROB. Outcome applicability was a high concern in 22% of the articles, 
while participant and predictor applicability were consistently rated as 
low risk (100%). Overall, this resulted in a low concern for applicability 
in 78% of the studies, with the remaining 22% showing unclear appli
cability (Table 4).

4. Discussion

This systematic review, without a meta-analysis, synthesises the 
growing body of literature on the potential and performance of AI in 
diagnosing and prognosticating tSCI. It encompasses 14 studies and in
cludes data from 27 models. Several studies highlighted models with 
high discriminatory power and robust performance, particularly in 
predicting ambulatory ability, in-hospital mortality, and tSCI diagnosis 
using various imaging modalities, such as DTI, MRI, and CT (Tay et al., 
2014; McCoy et al., 2019; Jasim and Brindha, 2021; Kato et al., 2024; 
Karabacak and Margetis, 2023b; Inoue et al., 2020; Fan et al., 2022; 
Okimatsu et al., 2022; Fallah et al., 2022; Belliveau et al., 2016; DeVries 
et al., 2020; Leidinger et al., 2023; Shimizu et al., 2023; Kapoor and Xu, 
2023).Our findings suggest that AI shows significant promise in 
improving tSCI risk stratification and supporting clinical 
decision-making. Future advancements in AI should aim to integrate the 
predictive precision of traditional ML with the diagnostic accuracy of 
deep learning to enhance the overall assessment and management of 
tSCI.

The high specificity and AUROC reported in studies, such as those by 
Karabacak et al. and Kapoor et al., underscore the potential of AI as an 
adjunct to radiologists in interpreting scans for tSCI patients (Karabacak 
and Margetis, 2023b; Kapoor and Xu, 2023). By working alongside ra
diologists, AI can help address the clinical need for rapid management of 
tSCI, reducing the reliance on a second radiologist to review complex 
scans and significantly improving the speed and efficiency of scan 
interpretation (Picetti et al., 2024; Mahmoudi et al., 2021; Hosman 
et al., 2023; Mora-Boga et al., 2023). While no studies have compre
hensively compared the time efficiency of radiologists with and without 
AI assistance in diagnosing tSCI, broader research by Meng F et al. 
suggests that AI can significantly reduce diagnostic time in other 

contexts, such as COVID-19 (p<0.01) (Meng et al., 2023). In their study, 
using 780 CT images from a multinational dataset consisting of 
COVID-19 or community-acquired pneumonia positive scans, AI assis
tance saved an average of 9.3 min per diagnosis (p<0.01) (Meng et al., 
2023). Therefore, this warrants further investigation specifically for tSCI 
(Meng et al., 2023). Furthermore, models should be trained across a 
diverse demographic of patients, aiming to avoid the ‘black box’ effect, 
wherein AI decision-making lacks transparency, and focus on explain
able AI (XAI) (Wadden, 2021; Javed et al., 2023). Future models should 
prioritise XAI to provide a clear rationale or justification for their de
cisions, enhancing both their utility and validity in clinical settings (Ali 
et al., 2023). Methods such as SHAP and LIME (Local Interpretable 
Model-Agnostic Explanations) can pinpoint the features that most 
influenced a prediction, including patient demographics, lab results, or 
imaging findings (Aldughayfiq et al., 2023). By offering this level of 
transparency, XAI enables clinicians to validate a model’s reasoning 
against their clinical expertise, assess its reliability across different 
scenarios, and identify potential biases. Ultimately, XAI fosters greater 
confidence in AI models and could allow for its integration into clinical 
workflows.

Our study demonstrated that AI offers varying levels of clinical 
utility. For instance, Kato et al. showed that discharge destination can be 
accurately predicted early in rehabilitation, enabling tailored care plans 
and improved discharge outcomes (Kato et al., 2024). Accurate pre
dictions are vital, as they may necessitate modifications to patients’ 
houses or additional support, including transitions into care facilities 
(Abad et al., 2021; Badawi and Breslow, 2012; Zimmerman et al., 1994). 
Additionally, leveraging these predictions to prioritise pre-discharge 
education can address common gaps in patient knowledge, ensuring 
that discharge planning for tSCI patients can be thorough and patient 
focussed (New, 2015; Simpson et al., 2012). The rates of readmission for 
SCI patients are known to be high, ranging from 28 to 45% within the 
first year (Hiremath et al., 2021). While pre-discharge education has not 
been formally assessed in tSCI patients, it has proven effective in 
improving post-discharge outcomes in other fields. Oh et al., found that 
adequate pre-discharge education can significantly reduce readmission 
rates and complications in heart failure patients (Oh et al., 2023). If 
similar educational strategies were applied to tSCI patients and were 
tailored according to patient specific information using AI models, they 
could potentially improve outcomes by addressing individual care 
needs, enhancing self-management, and reducing the likelihood of 
post-discharge complications. Similarly, predicting AIS grades was a 
frequent focus in the review. While AIS is a validated and widely used 
assessment tool for SCI, it is not without limitations (Marino et al., 2008; 
Roberts et al., 2017). It does not fully capture injury severity or symp
toms like pain or spasticity, whilst some components of the score, such 
as the bulbocavernosus reflex, are challenging to measure in clinical 
settings (Marino et al., 2008; Roberts et al., 2017; Hunt and McQuillan, 
2023). Despite the continued debate around the minimal clinically 
important difference (MCID) for AIS, some authors view an improve
ment of one AIS grade as significant (Marino et al., 2008; van Mid
dendorp et al., 2009; Samdani et al., 2011). As such, the outcomes and 
predictive features determined by the included algorithms, although 
significant, may not offer meaningful clinical insights for tSCI patients.

Applying predictive models for tSCI in clinical practice allows for the 
incorporation of more widely used and validated clinical data into 
model training, improving predictive accuracy and providing evidence- 
based monitoring parameters (Shimizu et al., 2023). Namely, Shimizu 
et al. presented a ML model to predict neurological prognosis post cer
vical SCI in clinical practice (Shimizu et al., 2023). They used readily 
available parameters like HbA1c, alcohol intake, and MRI features to 
predict AIS grades six months post-SCI (Shimizu et al., 2023). These 
findings demonstrate clinical utility and could reshape the initial 
workup for suspected tSCI, potentially improving outcomes and prog
noses by using data that may already be present in patients’ notes. This 
underscores the need for a critical appraisal of current practices, 

Table 5 
– Mean AUROC and accuracy for each domain.

Outcome Group Mean AUROC Mean Accuracy

AIS 0.8835 71.37%
Ambulation 0.8899 86.78%
Discharge 0.8415 73.70%
Hospital LOS 0.7705 59.60%
ICU LOS 0.7420 59.90%
Mortality 0.8497 74.70%
SCI N/A 86.74%

This table depicts the mean AUROC to 4 decimal places, and accuracy to 2 
decimal places, of each outcome domain. Contusion volume was excluded due to 
no data on AUROC or accuracy.
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including evaluations of existing guidelines and predictive models, to 
identify novel clinical features that could enhance clinician performance 
and offer novel variables for AI models for tSCI to incorporate and ul
timately improve care for tSCI patients.

Performance comparisons between ML models and clinicians or 
existing prognostication algorithms, such as regression models, were 
limited. Overall, the discriminatory ability of ML models was compa
rable to that of logistic regression (LR) when evaluated on the same 
sample, with median AUCs of 0.88 (0.87–0.89) for ML models and 0.87 
(0.87–0.88) for LR models. Notably, we observed superior AUCs for LR 
when trained and validated on larger sample sizes. Poor data quality, 
bias, overfitting, and limited features may explain ML’s disadvantages in 
these settings (Rajput et al., 2023). Christodoulo et al. suggest that there 
is no significant difference between the performance of ML and LR based 
models, with 0 (95%CI: − 0.18 – 0.18) difference in AUC. They also 
suggest that any observed differences often result from methodological 
flaws, including homogeneity in reporting transparency (Christodoulou 
et al., 2019). Despite this, ML is often regarded as more accurate and 
powerful than LR, largely due to its ability to automatically determine 
the relative importance of predictive features (Cruz and Wishart, 2007; 
Panesar et al., 2019). Additionally, ML is less restrictive and better 
equipped to address non-linear relationships, making it more suitable 
for predictive modelling in large datasets, such as those required to draw 
valid conclusions for tSCI, than LR (Panesar et al., 2019; Lee et al., 2018; 
Khan et al., 2019).

DeVries et al. highlighted how dataset imbalance can skew AUC, 
with ML models producing higher false-negative rates despite having 
similar AUCs to logistic regression (DeVries et al., 2020). To address this, 
future research should prioritise metrics like the F1 score, which are 
more robust against imbalanced datasets and provide more reliable 
performance evaluations (Seo et al., 2021). AUC, while widely used, is 
prone to over-optimism in the presence of class imbalance, making its 
outputs less generalisable to the diverse presentations seen in clinical 
practice (Seo et al., 2021; Buda et al., 2018). Similarly, the lack of 
external validation also limits conclusions about ML’s superiority over 
traditional methods, a recurring issue in novel ML studies (Siontis et al., 
2015; Pauling et al., 2024; Namireddy et al., 2024). Large, multicentred 
datasets focused on tSCI imaging and clinical data are needed to enable 
rigorous validation and standardisation of future models. However, 
overcoming challenges such as the initial cost and server space required 
for a large number of high-resolution scans, issues of patient consent, 
compliance with General Data Protection Regulation (GDPR) laws, and 
the logistical complexities of coordinating the creation of a large dataset 
are essential to achieve this (Pauling et al., 2024; Chico, 2018). Over
fitting was a common issue, with seven studies addressing it explicitly 
(Tay et al., 2014; McCoy et al., 2019; Karabacak and Margetis, 2023b; 
Inoue et al., 2020; Okimatsu et al., 2022; Belliveau et al., 2016; Shimizu 
et al., 2023). Many studies had events per variable (EPVs) below 10, 
indicating that small sample sizes with numerous predictors risked 
overfitting by including spurious predictors (Wolff et al., 2019). Most 
studies poorly handled missing data, often failing to report its presence, 
extent, or management. PROBAST guidelines recommend multiple 
imputation to mitigate selection bias and maintain data integrity (Wolff 
et al., 2019; Janssen et al., 2010). However, high levels of missing data 
increase bias risk, with the acceptable threshold for imputation or 
exclusion remaining unclear (Wolff et al., 2019; Rizvi et al.).

Future model development should apply these principles to enhance 
clinical utility for HCPs managing tSCIs. All included studies were 
retrospective, using pre-existing databases with limited features and 
lacking specific protocols, likely contributing to disparities in model 
performance due to unaccounted confounders, database granularity, 
and poor handling of missing data. The absence of quality control for 
datasets further complicates the reliability of model training (Liu et al., 
2019). While most studies conducted internal validation, inconsistencies 
in defining and distinguishing between internal and external validation 
were common. True external validation, critical for assessing model 

transportability, was often unclear, emphasising the need for 
out-of-sample testing (Van Calster et al., 2023; Steyerberg and Harrell, 
2016).

Furthermore, clinical prediction model guidelines recommend 
resampling techniques such as cross-validation and bootstrapping for 
internal validation (Collins et al., 2021; Wolff et al., 2019). However, 
some studies used simpler methods, such as random data splits into 
testing and training samples, that inadequately address optimism since 
models aren’t trained on all available data (Collins et al., 2021; Wolff 
et al., 2019; Christodoulou et al., 2019). Reporting of model perfor
mance was inconsistent, with many omitting calibration and clinical 
utility assessments, including the 95% confidence intervals, despite 
PROBAST and TRIPOD guidelines, limiting the clinical applicability of 
their findings (Collins et al., 2021; Wolff et al., 2019).

The study’s strengths include a comprehensive literature search 
following PROBAST, TRIPOD, and PRISMA guidelines. Despite rigorous 
methods, some limitations remain. Individual study outcomes were 
treated as separate models, with limited information on missing data 
handling and analysis procedures. Sample sizes varied significantly, 
with some studies testing models on as few as 34 data points. Hetero
geneity among studies and diverse AI models with unique methodolo
gies prevented the conduction of a meta-analysis, warranting cautious 
interpretation of findings and raising concerns about the adequacy of 
evidence to support the routine clinical use of these AI models. This 
variability reflects ongoing challenges in standardising and regulating 
AI methodologies in healthcare complicating comparisons and limiting 
broad conclusions (Namireddy et al., 2024; Marwaha and Kvedar, 2022; 
Cimpeanu et al., 2022). Thereby, slowing the process of updating best 
practices for managing conditions such as tSCI, ultimately impacting 
tSCI patient care (Namireddy et al., 2024; Cimpeanu et al., 2022).

This review highlights the potential of AI and ML in managing tSCIs, 
particularly in predicting outcomes like ambulatory ability, mortality, 
and injury detection. Diagnostic models showed strong performance 
with a weighted accuracy of 0.898, while prognostic models had more 
variability, with a weighted mean AUC of 0.770. Some prognostic 
studies approached AUCs near 0.9, but many fell closer to 0.7, indicating 
room for improvement. Methodological issues like overfitting, incon
sistent data handling, and insufficient validation, along with high 
development costs, hinder immediate clinical adoption. Future research 
should address these methodological shortcomings, improve model 
validation, and assess cost-effectiveness to better establish the role of AI 
in tSCI care and ensure its integration into clinical practice.
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