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A B S T R A C T

Background: Deep brain stimulation of the subthalamic nucleus (STN-DBS) effectively alleviates motor fluctua
tions in Parkinson’s disease (PD). Optimal electrode placement and effective programming significantly influence 
outcomes. From a patient’s perspective, DBS should relieve motor symptoms while avoiding side effects. How
ever, there is a lack of programming routines that consider patients’ subjective feedback for parameter 
adjustment.
Objective: This study assessed the usefulness of patients’ subjective ratings as feedback for DBS programming.
Methods: We analyzed 260 DBS settings from 11 STN-DBS patients, pairing each volume of tissue activated (VTA) 
with a subjective rating measured by a visual analogue scale (VAS). We performed sweet spot mapping and 
connectivity analyses, utilizing voxel-wise and nonparametric permutation statistics to identify neuroanatomical 
regions and connectivity profiles associated with the highest VAS ratings. To validate our findings, we cross- 
validated the results in an independent test dataset of 6 patients (189 settings) to determine if the sweet spot 
and connectivity profile could predict the subjective patient perception.
Results: VTAs with the highest VAS scores were localized to the dorsolateral STN, consistent with published sweet 
spots derived from clinical data. Connectivity with the supplementary motor area (SMA) and primary motor 
cortex (M1) was associated with a more positive subjective perception. Connectivity profiles derived from one 
dataset successfully predicted outcomes in an independent dataset, as validated through leave-one-cohort-out 
cross-validation.
Conclusions: Mapping patients’ subjective perceptions using VAS yields conclusive anatomical results that align 
with objective clinical and imaging measures. VAS-guided programming could provide an additional feedback 
mechanism for both acute and chronic DBS parameter adjustments.

1. Introduction

Deep brain stimulation (DBS) is the preferred treatment for advanced 
Parkinson’s disease (PD), essential tremor (ET), and complex segmental 
and generalized dystonia. Successful treatment outcomes depend on 
careful patient selection, precise electrode placement, and effective DBS 
programming [1,2]. Among these, DBS programming is the only factor 
that can be modified postoperatively, making it especially crucial 
whenever electrodes are not optimally implanted. Additionally, DBS 
programming plays a key role in treatment success and patient 

satisfaction [3,4].
Despite several clinical strategies for adjusting neurostimulation [5], 

DBS programming remains time- and resource-consuming [6]. Conse
quently, there is a demand for innovative approaches to adjust stimu
lation parameters and lead configurations quickly, precisely, and 
effectively. Disease-specific biomarkers are currently being examined, 
which can be integrated into adaptive closed-loop stimulation systems 
(aDBS) that respond to real-time patient needs and obviate the need for 
manual programming [7]. Besides clinical approaches based on motion 
sensors [8] and imaging-guided programming methods [9–17], 
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oscillatory activity in the beta frequency band (13–30 Hz) has been 
suggested as an electrophysiological feedback signal for aDBS [18–25].

Despite recent technological advancements aimed at optimizing 
motor symptoms, current DBS programming routines [5,7] lack the 
methodology to capture the patient’s subjective perspective on treat
ment efficacy. From a patient’s viewpoint, overall satisfaction with DBS 
depends not only on the clinical effectiveness in alleviating motor 
symptoms but also on the avoidance of DBS-associated motor and 
non-motor side effects. These findings emphasize the need to incorpo
rate additional feedback signals into aDBS protocols to ensure they ac
count for patient perceptions [26–28]. Ideally, such protocols could 
serve as supplementary approaches for remote programming, when 
traditional clinical signals are either inapplicable or can only be tested to 
a limited extent [29].

Previously, we examined the significance of patients’ subjective 
feedback measured by a visual analogue scale (VAS) and found no 
notable short-term difference between VAS-based and traditional pro
gramming approaches in terms of specific contact or amplitude used, nor 
in relation to clinical disease severity as assessed by the Unified Par
kinson’s Disease Rating Scale (UPDRS) [30]. This suggests the potential 
for VAS-based programming strategies as an alternative DBS program
ming approach. Yet, it remains uncertain whether the stimulation of 
specific brain regions is linked to a positive or negative subjective 
perception of DBS efficacy. In this study, we therefore employed 
MRI-based analytical tools to identify “subjective sweet spots” within 
the STN target area, guided by patient-reported VAS ratings. To achieve 
this, we conducted sweet spot mapping and connectivity analyses, using 
voxel-wise and nonparametric permutation statistics to pinpoint 
neuroanatomical regions and connectivity patterns associated with the 
best patient rating.Klicken oder tippen Sie hier, um Text einzugeben.

2. Subjects and methods

Study Participants: Detailed information regarding the study visits 
and programming procedures were previously published in Ref. [30]. 
All study-associated procedures have been approved by the local ethics 
committee at Ludwig Maximilian University of Munich, Germany 
(#18–809) and written informed consent has been obtained from all 
study participants. PD patients who underwent DBS of the STN were 
recruited from routine visits at our movement disorder outpatient clinic. 
Participants were selected based on their interest in participating and 
meeting main inclusion criteria, including a PD diagnosis and STN-DBS 
according to the Movement Disorder Society (MDS) criteria. Addition
ally, participants had undergone DBS for at least one year and were on a 
stable DBS program for at least three months prior to this study visit, 
without severe cognitive impairment or significant neuropsychiatric 
issues. All patients were examined in a pharmacological MED-ON state, 
without pausing any medication prior to the study visit.

Study Visit and VAS Rating: We first determined the UPDRS III 
(UPDRS-Pre) in the MED ON/STIM-ON state at the start of the study 
visit, chronic stimulation parameters were documented, and the stim
ulation for the clinically predominant side turned off thereafter. Patients 
were then asked to rest for 30 min before the UPDRS III in MED-ON/ 
STIM-OFF state was measured again (UPDRS-Off). Afterward, all pa
tients underwent VAS-based reprogramming of their stimulator on the 
side that had been switched off. VAS sampling was conducted during the 
MED ON state. DBS was applied iteratively across all DBS contacts/ring 
levels of the corresponding lead, ranging from 0.5 to 3.5 mA in 0.5 mA 
increments. The various DBS program settings (contacts and amplitudes) 
were explored in a randomized manner to prevent habituation. 
Randomization has been achieved via a computer tool. For each 
adjustment, the patient had up to 30 s to rate their satisfaction with the 
current DBS program on a scale from 0 (very bad) to 10 (very good). We 
instructed all participants to consider not only motor symptoms but also 
other aspects they could perceive, such as mood, sense of well-being, 
and the presence or absence of side effects. This approach aimed to 

encourage an integrated rating that reflects their overall sense of benefit 
or discomfort from the stimulation settings. The respective VAS rating 
was documented, and the next adjustment was made manually. The 
UPDRS III (UPDRS-Post) in “MED ON/STIM-ON” state, under the VAS- 
derived DBS program, was conducted before switching back to the 
original settings. Throughout the adjustment process, all patients were 
blinded to the stimulator settings. A 60-s "washout" period [31] was 
maintained after each VAS setting before presenting the next one. 
During clinical testing, VAS ratings from stimulation settings that caused 
intolerable side effects were excluded. For instance, if strong side effects 
were produced by a given contact at 2.5 mA, the patient was not queried 
at 3 mA for the same contact. The overall VAS-based adjustment process 
took approximately 45 min per patient. The patient’s baseline motor 
symptoms remained consistent throughout the trial (Fig. S1e). Given the 
subjective nature of these ratings, VAS scores were normalized using 
z-scores prior to further analysis to ensure consistency and reliability.

Training Dataset (Dataset #1): The initial dataset included 11 PD 
patients who had undergone bilateral STN-DBS at LMU University 
Hospital, and their characteristics had been previously published. DBS 
was administered to these patients using varying amplitudes (ranging 
from 0.5 to 3.5 mA in 0.5 mA increments) from each ring of the DBS 
lead. In cases where patients had segmented DBS leads, segments were 
activated simultaneously to mimic ring activation, resulting in 28 
distinct combinations for each patient. After excluding DBS programs 
that caused significant side effects, the final dataset comprised 260 
stimulation settings sampled from 11 patients.

Test Dataset (Dataset #2): The second dataset consisted of 6 PD 
patients who underwent bilateral STN-DBS at LMU University Hospital 
using similar devices. Data acquisition was mostly equal in this cohort 
with two exceptions: Each contact was tested separately for patients 
with segmented electrodes. DBS programs at 3.5 mA were not explored 
as these induced considerable stimulation related side effects in the 
training dataset.

Localization of DBS Leads: Preoperative T1-weighted and T2- 
weighted MRI scans, as well as postoperative CT scans, were used for 
image processing for each patient. Electrode localization was performed 
using the Lead-DBS toolbox (lead-dbs.org) [32]. Specifically, preopera
tive MRI and postoperative CT scans were linearly co-registered using 
Advanced Normalization Tools (ANTs). The native patient images were 
then normalized into the Montreal Neurological Institute (MNI) space 
through a three-step affine normalization process using ANTs, with 
further refinement of the atlas fit as needed. The brain bias (brain shift) 
with respect to the skull caused by postoperative pneumocephalus 
resulting from the surgical procedure was corrected using the brain shift 
correction setting in Lead-DBS. The registration was manually verified. 
Electrode trajectories were pre-reconstructed using the PaCER algorithm 
[33] and manually optimized on a case-to-case basis. For directional 
leads, rotation was identified using the DiODe algorithm [31]. The 
DISTAL atlas [34] was used as the basis for defining atlas segmentations 
in this study.

Volume of Tissue Activated (VTA) Estimation: VTAs were calcu
lated using the Finite Element Method (FEM)-based VTA model imple
mented in Lead-DBS. Subcortical gray matter nuclei were defined by the 
DISTAL atlas, with conductivities set at 0.33 S/m for gray matter and 
0.14 S/m [35] for white matter. E-fields were calculated using the 
SimBio/FieldTrip pipeline in Lead-DBS to determine the extent and 
shape of the VTAs, applying a threshold of e = 0.2V/mm, commonly 
used in similar contexts [36]. A VTA was then created for each setting 
and paired with a specific VAS rating.

Sweet Spot Analysis: Sweet-spot mapping utilized Sweetspot Ex
plorer from Lead DBS to pinpoint neuroanatomical regions within the 
STN that corresponded to subjective patient ratings. VTAs (Volume of 
Tissue Activated) were thresholded with an E-fields magnitude above 
0.2V/mm, and voxels covered by at least 20 % of VTAs were included in 
the analyses [32,36]. Subsequently, VTAs from the left hemisphere were 
mirrored to the right hemisphere using non-linear transformation. Each 
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voxel was then paired with the Visual Analog Scale (VAS), and the cu
mulative contribution of VTAs along with their mean VAS values were 
computed for each voxel. Mean-effects images were generated post 
z-score normalization of the data. Voxel-wise parametric permutation 
statistics were applied, testing against zero to identify statistically sig
nificant outcomes. After applying z-score normalization to the data, 
voxel-wise statistics were performed using a t-test, tested against zero to 
identify voxels significantly higher or lower than zero. The amplitudes 
were adjusted to mitigate the greater influence of higher amplitudes on 
stimulation maps, as these affect more voxels. For further analysis, only 
voxels displaying significant positive or negative results (p < 0.05) were 
considered part of the sweet spot or sour spot [37]. To assess effec
tiveness and reliability, Lead-DBS’ leave-one-patient- and 
leave-one-cohort-out strategy was employed for cross-validation pur
poses. In addition, and 5-fold and 10-fold cross-validation was per
formed as described [38].

Connectivity Estimation: To investigate the connectivity network 
model associated with VAS, whole-brain structural and functional con
nectivity seeding from bilateral VTA were calculated using two con
nectomes. Structural connectome data were derived from diffusion MRI 
(dMRI) of 85 patients from the Parkinson’s Progression Markers Initia
tive (PPMI) database [39]. The PPMI database includes data from 90 
patients (mean age ± SD: 61.38 ± 10.42 years; 31 % female) (www. 
ppmi-info.org). Our combined dataset consists of patients with a mean 
age of 63.91 ± 7.62 years and 23.52 % female, closely matching the 
PPMI cohort in terms of age and sex. Analysis for structural connectivity 
involved performing whole-brain tractography for each patient, 
normalizing tracts, and aggregating tracts across patients. Functional 
connectome data were derived from 74 PPMI PD-patients and 15 con
trols, with global signal regression and spatial smoothing applied (PPMI 
connectome). Based on different interactive connectivity models for 
predicting clinical outcomes, A-maps (weighted average maps), R-maps 
(correlation maps between VTA connectivity and VAS), and C-maps 
(combined maps) were created [40]. These connectivity maps were then 
analyzed using Spearman rank correlation with VAS values in a 
voxel-wise manner, resulting in maps that indicated positive or negative 
correlations with subjective patient ratings. The Human Connectome 
Project (HCP) connectome [41] or PPMI-75 connectome [42] were used 
as templates for validation purposes.

3. Results

3.1. Patients and clinical outcomes

Our study included a total of 17 patients who underwent STN-DBS 

treatment, divided into two separate datasets (Table 1). Among them, 
four were female, with a mean age of 63.91 ± 7.62 years. The average 
disease duration for the entire group was 14.65 ± 3.57 years, and the 
average duration of DBS treatment was 3.12 ± 1.87 years. Prior to the 
study visit, the UPDRS-III scores under chronic stimulation were 34.07 
± 11.55 (Stim On/MedOn) (Fig. S1e). Nine patients had unsegmented 
electrodes, while eight had directional electrodes. In total, we included 
449 stimulation combinations from 112 contacts (ring levels). The 
average VAS score of the training dataset (3.30 ± 2.97) showed a cor
relation with disease severity, as measured by the UPDRS-III (MED ON/ 
STIM ON) (R2 = 0.4634, P = 0.0211) (Fig. S1a). However, no such 
correlation was observed with the total levodopa equivalent dose 
(LEED), disease duration, or DBS duration (Figs. S1b–d).

3.2. Sweet spots predict subjective patient feedback

Initially, we analyzed the electrode positioning of the first dataset at 
the group level (Fig. 1a). To pinpoint anatomical regions linked to 
positive or negative subjective ratings, we used individual patient 
electrode positions and VTAs to identify “subjective sweet and sour 
spots”, where “positive” refers to a VAS rating of ≥5 and “negative” 
refers to a VAS rating <5. Voxel-wise analysis of VAS averages in the 
anatomical context indicated that the subjective sweet spot was mainly 
located in the dorsolateral STN, whereas the subjective sour spot was 
found in the posteroventral STN (Fig. 1b). Anatomical reconstructions 
showing the center of mass revealed that the VAS sweet spot was situ
ated between the sensorimotor and associative subregions (Fig. 1c). The 
center of mass for the sweet spots in both hemispheres combined was at 
MNI coordinates (x, y, z) + 13.88, - 12.18, - 6.08 mm, and the sour spot 
was at + 11.68, - 15.04, - 9.38 mm. The coordinates of the subjective 
sweet spot closely matched the previously published sweet spot co
ordinates by Dembek et al. and Horn et al. [37,40], derived from clinical 
data (Fig. 1c–Table 2). Analyzing data from 10 cases to predict the 
remaining 11th case (leave-one-out; cohort 1) demonstrated a positive 
correlation between the VAS value and the overlap extent of the VTA 
with the sweet spot map (Fig. 1d) and similar results were obtained from 
a 5-fold and 10-fold validation as described (Figs. S2a and b) [38]. In 
summary, we concluded that VTAs stimulating the dorsolateral STN 
produce the best subjective patient ratings, provided that DBS settings 
causing significant side effects are excluded.

3.3. Effect of ring level and amplitude in the subjective patient’s rating

We hypothesized that electrodes positioned more effectively would 
yield better VAS ratings. To test this, we calculated the average VAS 
score for each electrode and identified the respective sweet spots 
(Fig. S3a). As anticipated, significant differences were observed in the 
overall distribution of VAS scores for each electrode, with some elec
trodes showing a bimodal distribution (Fig. S3b). This led us to conclude 
that subjective patient ratings may partially allow for the differentiation 
between favorable and unfavorable contacts on a given electrode. To 
further investigate the correlation between patient ratings and VTA 
localization, we examined the relationship between VAS values and the 
ring level for each electrode. We observed a trend towards higher VAS 
ratings with more dorsal electrode contacts (Fig. S3c). Consistently, 
higher stimulation amplitudes produced the best VAS ratings at the most 
dorsal contact level (Fig. S3d). To account for the influence of amplitude 
size on our data, we analyzed individual sweet spots at various ampli
tudes (ranging from 0.5 to 3.5 mA). Although the size and shape of sweet 
spots varied with amplitude, they consistently localized between the 
sensorimotor and associative STN, in line with our previous findings 
(Figs. S3e and f). Additionally, examining the impact of stimulation 
current on VAS ratings across all contacts revealed a peak in VAS ratings 
at 2–2.5 mA, with ratings decreasing at higher amplitudes. This sug
gested that stimulation amplitudes between 2 and 2.5 mA were 
preferred by patients, while higher amplitudes were less favorable 

Table 1 
Table depicting the sweet and sour spots of our dataset #1, #2, the combined 
dataset as well as published PD sweet spots from previous work.

MNI Coordinates X Y Z

Right Hemisphere
Sweet spot (Training Dataset) 13.88 mm − 12.18 mm − 6.08 mm
Sour spot (Training Dataset) 11.68 mm − 15.04 mm − 9.38 mm
Sweet spot (Test Dataset) 14.76 mm − 11.96 mm − 6.08 mm
Sour spot (Test Dataset) 14.76 mm − 15.04 mm − 8.28 mm
Sweet spot (Combined Datasets) 14.10 mm − 11.52 mm − 6.30 mm
Sour spot (Combined Datasets) 13.66 mm − 15.26 mm − 9.60 mm
Sweet Spot Dembek et al.60 12.5 mm − 12.72 mm − 5.38 mm
Sweet Spot Horn et al.62 12.42 mm − 12.58 mm − 5.92 mm
Left Hemisphere
Sweet spot (Training Dataset) − 14.06 mm − 13.28 mm − 5.42 mm
Sour spot (Training Dataset) − 11.64 mm − 15.70 mm − 9.16 mm
Sweet spot (Test Dataset) − 15.82 mm − 13.72 mm − 4.54 mm
Sour spot (Test Dataset) − 14.94 mm − 16.80 mm − 6.96 mm
Sweet spot (Combined Datasets) − 14.28 mm − 12.40 mm − 5.86 mm
Sour spot (Combined Datasets) − 13.40 mm − 16.08 mm − 8.94 mm
Sweet Spot Dembek et al.60 − 12.68 mm − 13.53 mm − 5.38 mm
Sweet Spot Horn et al.62 − 12.58 mm − 13.41 mm − 5.87 mm
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(Fig. S3g).

3.4. Beneficial brain networks predict subjective patient feedback

VTAs are believed to connect to various remote brain networks, 
which patients may perceive as either favorable or unfavorable. To 
explore this, we examined the connectome profiles of our subjective 
sweet spots using whole-brain structural and functional connectivity 
seeding from bilateral VTAs. Our findings indicated a positive structural 
connectivity between VTAs with high VAS scores and primary motor 
cortex (M1) and the supplementary motor area (SMA), and superior 
frontal gyrus (Fig. 2a), aligning with previous studies that highlighted 
beneficial structural connectivity in these regions for PD patients [40]. 
In terms of functional connectivity, we observed positive connectivity 
with the motor cortex, temporal, and occipital lobes, and negative 
connectivity with the frontal lobes (Fig. 2b). These models were further 
validated using a leave-one-cohort-out strategy (x-y-graph inserts: R =
0.29, p < 0.001 and R = 0.25, p < 0.001) and confirmed on the Human 
Connectome Project (HCP) dataset (Figs. S4a and b).

To delve deeper into the relationship between clinical symptoms and 
patients’ subjective experiences, we conducted connectivity analyses on 
individuals with the most severe and mild symptoms (measured by 
UPDRS III scores, MED ON/STIM ON) within the entire dataset (Fig. 2c). 
The structural and functional connectivity maps for the case with the 
highest UPDRS-III score showed notable differences from the overall 
maps. Specifically, in terms of structural connectivity, regions that 

positively correlated with VAS were primarily located in the temporal 
and parieto-occipital lobes rather than the motor cortex and superior 
frontal gyrus. Conversely, the case with the lowest UPDRS-III score, 
connectivity maps were consistent with those of the entire dataset. We 
then used the highest and lowest VAS scores from the case with the 
lowest UPDRS-III score to generate the corresponding fiber tract 
topography (Fig. 2c, right panel). We found that in the case with the low 
UPDRS-III score, higher VAS scores were associated with more fibers 
originating from the dorsolateral STN projecting to the SMA and pre- 
SMA, thereby activating additional brain regions commonly linked to 
PD improvements, whereas low VAS values indicated a narrower con
nectivity. These findings, combined with our sweet spot analyses, 
strongly suggest that patients’ subjective ratings can influence clinical 
outcomes and vice versa.

3.5. Sweet spot and connectivity predict subjective patient ratings in an 
independent dataset

To validate our findings in an independent dataset, we utilized sweet 
spot and connectivity data from our training dataset to predict the VAS 
rating in the test dataset (Fig. 3a). The average VAS score of the test 
dataset was 3.78 ± 2.46, thus comparable with the training dataset. 
Following the methodology outlined for the training dataset, we paired 
VTA measurements with VAS scores, allowing us to identify both sub
jective sweet- and sour spots within the test dataset and the combined 
two datasets. Like for the training dataset, the respective sweet spot for 

Fig. 1. Subjective sweet spots localize to the dorsolateral STN. (a) Group-level electrode reconstructions from the training dataset. (b) Upper panel: Images 
showing the voxel-wise distribution of positively (red) and negatively (blue) rated VTAs across the STN. Lower panel: Heat map illustrating the distribution of VAS 
ratings in three different anatomical planes. R: Right; D: Dorsal; P: Posterior. (c) Graphical representation comparing the center of mass for the subjective sweet spot 
of the training dataset (red) with sweet spots identified through clinical evaluation (yellow, green). (d) Graph displaying a positive correlation between VAS scores 
and the sweet spot score.

J. Dong et al.                                                                                                                                                                                                                                    Brain Stimulation 18 (2025) 770–779 

773 



the test dataset was found between the sensorimotor and associative 
STN regions, while the sour spot was localized to the posteroventral 
region (Fig. 3b). A comparison with the previously published sweet spot 
[37,40] suggested that their centers of mass were very close in spatial 
distribution and ours were slightly dorsal (Fig. 3c–Table 2). To assess the 
robustness of each subjective sweet spot, we conducted a 
cross-validation between the datasets. Sweet spots identified from the 
test dataset were compared with those from the training dataset. The 
similarity between the groups showed a significant correlation with VAS 
scores (R = 0.22, p < 0.001). This exceeded the performance observed 
during validation on the test dataset (R = 0.07, p = 0.154). However, 
analysis of the combined dataset still demonstrated the predictive 
robustness via leave-one-cohort-out fashion (R = 0.20, p < 0.001) 
(Fig. 3d).

Subsequently, we investigated the utility of structural and functional 
connectivity for cross-validation across datasets. The connectivity pat
terns identified in the training dataset were applied to predict on test 
dataset, revealing significant predictive capability for both structural 

connectivity (R = 0.13, p = 0.033) and functional connectivity (R =
0.21, p < 0.001) (Fig. 4a). Moreover, the connectivity patterns, both 
structural and functional, from VTA sites to distributed brain regions 
showed high similarity across training dataset, test dataset, and the 
combined dataset (Fig. 4b) and remained significant with the HPC 
connectome (Figs. S4c–f). Structural connectivity from the DBS site to 
the motor cortex and superior frontal gyrus, as well as functional con
nectivity to the motor cortex, temporal lobes, and occipital lobes, 
exhibited a positive correlation with VAS scores, while displaying partial 
negative correlations with functional connectivity to the superior frontal 
gyrus and middle frontal gyrus. Furthermore, predictions based on the 
full dataset demonstrated robustness and effectiveness in utilizing pa
tients’ subjective ratings as a novel feedback signal for DBS program
ming, with both structural connectivity (R = 0.22, p < 0.001) and 
functional connectivity (R = 0.23, p < 0.001).

Table 2 
Summary table of demographic and device-related characteristics of the study subjects.

ID Gender Age 
Range 
(yrs.)

Clinically 
Pre- 
dominant 
Side

Frequency 
(Hz)

Pulse 
width 
(μs)

Disease 
Duration 
(yrs.)

DBS 
Duration 
(yrs.)

UPDRS- 
III Pre

UPDRS- 
III Post

Mean 
LEDD

Mean VAS 
Score

Clinical 
Phenotype 
After DBS 
Implantation

Dataset 
#1

11 (3) 61.40 
± 6.2

​ ​ ​ 15.76 ±
2.86

3.29 ±
2.73

34.64 
± 13.04

35.27 
± 11.37

271.5 
±

158.99

3.30 ± 2.97 ​

01 male 70–75 Left 130 60 16 1 60 56 200 0.16 ± 0.20 H&Y Stage 3 
No MF

02 female 55–60 Right 130 60 16 1 52 47 150 1.55 ± 1.30 H&Y Stage 2 
Constipation; 
orthostatic 
Hypotension; 
intermittent FOG

03 male 70–75 Right 130 60 18 1 29 32 400 5.35 ± 2.69 H&Y Stage 2.5 
Intermittent FOG; 
slight postural 
instability

04 male 50–55 Left 130 60 15 3 36 37 400 3.66 ± 3.80 H&Y Stage 2 
Constipation; 
hyposmia 
No MF

05 male 60–65 Right 130 60 18 4 35 35 200 4.14 ± 1.96 H&Y Stage 2 
Orthostatic 
hypotension 
No MF

06 female 60–65 Right 130 60 14 5 30 30 610 3.23 ± 3.03 H&Y Stage 1.5 
Discrete 
hyperkinesia 
0.5–1.5 h after L- 
Dopa intake

07 female 60–65 Left 140 60 12 1 25 21 200 3.14 ± 3.33 H&Y Stage 2 
FOG 3–4 h after 
medication

08 male 55–60 Left 140 60 17 5 32 34 255 2.92 ± 3.03 H&Y Stage 2.5 
No MF

09 male 55–60 Left 130 60 5 1 11 15 none 4.98 ± 1.78 H&Y Stage 2.5 
No MF

10 male 50–55 Left 130 60 15 4 40 43 50 4.42 ± 2.08 H&Y Stage 2.5 
Orthostatic 
hypotension

11 male 55–60 Right 130 60 17 3 31 38 250 1.42 ± 2.67 H&Y Stage 2 
No MF

Dataset#2 6 (1) 69.83 
± 5.31

​ ​ ​ 14.33 ±
3.61

4.0 ± 2.0 32.0 ±
3.0

33.33 
± 3.51

​ 3.78 ± 2.46 ​

01 male 65–70 Left 130 30 19 6 – – – 4.25 ± 2.85 n.d.
02 male 70–75 Right 130 60 15 3 – – – 5.13 ± 3.64 n.d.
03 male 70–75 Left 130 60 12 3 – – – 4.85 ± 1.54 n.d.
04 male 60–65 Right 130 60 18 7 35 37 – 2.38 ± 1.44 n.d.
05 male 70–75 Left 130 40 10 2 29 30 – 2.83 ± 1.57 n.d.
06 female 70–75 Right 130 60 12 3 32 33 – 2.67 ± 2.61 n.d.
Total 17 (4) 63.91 

± 7.62
​ ​ ​ 14.65 ±

3.57
3.12 ±
1.87

34.07 
± 11.55

34.86 
± 10.10

​ 3.50 ± 2.77 ​
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Fig. 2. Patient subjective ratings correlate with beneficial brain network connectivity. (a,b) Images depicting structural and functional connectivity maps 
determined through a weighted average (first column), correlation analysis with VAS (R maps, second column), and a combination of these maps (third column) 
associated with VAS ratings. Graphs illustrating the correlation of VAS with connectivity; a leave-one-cohort-out approach was used to predict VAS ratings of each 
patient through the combined map. (c) Images illustrating structural and functional connectivity maps (combined maps) of two representative cases with a high or 
low UPDRS-III score (Med On/Stim On), respectively. Right panel: Topography of the white matter tracts from the case with the lowest UPDRS-III score associated 
with the highest and lowest VAS values obtained during the study visit.

Fig. 3. Validation of VAS based sweet and sour spots in a separate dataset. (a) Electrode reconstructions from individual patients in the test dataset (n = 6). (b) 
Images displaying the locations of sweet and sour spots identified in the test dataset (left), as well as those identified when combining data sets (right). (c) Illustration 
comparing the center of mass of sweet spots by MNI coordinates in each dataset with previously published sweet spots [37,40]. (d) Graphs demonstrating the 
predictive accuracy of VAS sweet spots between training and test dataset through cross-validation. Validation on training dataset (left) perform better predictive 
capability than validation on test dataset (middle). Combined dataset prediction further reveals the robustness of VAS sweet spots predictive capability by 
leave-one-cohort-out fashion (right).
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4. Discussion

DBS programming in PD is classically guided by clinical parameters, 
such as rigor or tremor and has been recently supported by imaging and 
bioelectrical feedback signals. If a patient’s subjective perception or 
judgement can be helpful for optimizing DBS settings is unclear. Here, 
we employed advanced imaging analysis in conjunction with psycho
metric testing to understand which VTAs exhibit the most favorable 
patient rating and termed thus the subjective sweet spot. Surprisingly, 
we found that this VAS-based sweet spot localizes to the dorsolateral 
STN, closely aligning with published sweet spots linked to motor 
improvement [37,40]. These findings thus underscore the usefulness of 
patient subjective ratings as a novel feedback signal for effective and 
well-tolerated DBS programming [43]. Although the correlation was 
relatively low across the entire dataset, we believe our findings will 
contribute to the development of VAS-based strategies for DBS pro
gramming. Notably, other biomarkers currently under investigation also 
demonstrate limited predictive value on an individual level. For 
example, beta-band local field potentials (LFPs) explain only 17 % (R2) 
of the individual variability in symptom severity [44].

VAS-based programming routines have the potential to enhance 
current advancements in DBS programming. For instance, oscillatory 
activity in the beta frequency band has been suggested as an electro
physiological feedback signal for aDBS, with several studies exploring 
various closed-loop algorithms utilizing beta-band LFPs [18–25]. How
ever, some reports have questioned the suitability of LFPs as the sole 
feedback signal for aDBS due to reasons such as the low percentage of 
explained variability in outcome measures [44–49]. Additionally, the 
effectiveness of electrophysiological signals can be compromised by 
incorrect electrode placement in the target area [50]. Misplaced elec
trodes not only reduce clinical effects and may affect LFP readout ac
curacy but also contribute to both motor and non-motor side effects of 
DBS. Even with correct placement in the STN, current projections to 
other subregions or non-target areas can induce non-motor side effects 

during chronic STN stimulation [51–58]. A VAS-based programming 
strategy, which considers patients’ subjective perceptions from the 
outset, could more directly capture these non-motor side effects, thereby 
improving overall patient satisfaction with DBS treatment. This 
approach could be further validated by using VAS-based programming 
as a long-term stimulation parameter and by assessing its impact on 
quality of life (QoL).

Integrating VAS as a feedback signal into the aDBS system alongside 
beta frequency data could enhance future developments. Periodic or 
conditional VAS input would supplement neurophysiological data with 
patient-reported feedback, enabling real-time, multiparameter adjust
ments to stimulation. This approach would allow the aDBS system to 
simultaneously process both objective neurophysiological signals and 
the patient’s subjective experience, thereby optimizing individualized 
treatment.

The sweet spots identified in our study were predominantly localized 
to the dorsolateral STN, which is consistent with previous research 
identifying this area as a common surgical target for STN-DBS in PD [32,
37,59]. This alignment underscores the effectiveness of VAS-based 
adjustment in DBS programming. It is notable that the VAS ratings 
were obtained within a short period of time after changes in stimulation 
parameters, suggesting that patients can sense beneficial DBS settings 
without needing to perform motor tasks or other assessments. VAS rat
ings may thus be particularly useful for identifying optimal stimulation 
parameters in settings where clinical examination is not feasible, such as 
during remote DBS programming [29]. Prospective studies should 
examine the relevance of VAS-based programming over extended pe
riods as chronic DBS settings.

With cross-validation, sweet spots derived from one dataset showed 
predictive capability for another dataset, but not the reverse. This 
discrepancy is likely due to the differing number of data points between 
the two datasets (11 patients vs. 6 patients), even though both datasets 
were effective. Moreover, the smaller size of the second dataset might 
have led to the formation of a larger volume and less variable clusters, 

Fig. 4. Validation of VAS based connectivity in a separate dataset. (a) Both structural (top) and functional connectivity (bottom) connectivity maps derived from 
training dataset predict VAS ratings and demonstrate its effectiveness in the independent test dataset. (b) The structural (top) and functional connectivity (bottom) 
profiles identified from training dataset (first column), test dataset (second column) and combined dataset (third column) are all consistent. Statistic graphs (last 
column) further illustrate the predictive capability of VAS based both structural and functional connectivity by leave-one-cohort-out fashion.
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contributing to the observed differences.
Traditionally, surgical planning for DBS has targeted specific sites 

within the STN. However, recent trends emphasize linking DBS benefits 
to broader network regulation [40,60]. Notably, recent work suggests 
that different connectivity patterns are associated with distinct motor 
symptoms and their therapeutic targeting with DBS [61]. Our results 
suggest that fiber tracts reaching the STN from the motor cortex posi
tively correlate with subjective patient evaluation, aligning with previ
ous research and highlighting the role of the motor cortex in DBS 
response [40,62]. Interestingly, we also found a positive association 
between the M1 and effective STN DBS, which contrasts with some 
previous studies [40,63,64]. This discrepancy may stem from differ
ences in timing, as VAS captures acute outcomes while previous studies 
focus on chronic outcomes. Additionally, the subjective nature of VAS 
encompasses motor and non-motor symptoms, possibly influencing 
functional networks differently [65]. Our findings support the presence 
of overlapping stimulation sites within the STN, with different cortical 
connectivity patterns, associated with improvement in tremor, rigidity 
and bradykinesia [59,61]. Furthermore, our findings support the exis
tence of potential differences between connectomes associated with 
clinical outcomes and those linked to subjective patient perceptions, 
emphasizing their relevance for research aimed at refining DBS pro
gramming to address distinct motor symptoms in PD [38,61,66].

5. Limitation

Several limitations of our study should be acknowledged. Notably, 
the acute nature of the VAS in this study may limit its ability to capture 
long-term clinical effects, including potential side effects that could 
emerge over time. VAS may not effectively capture changes in motor 
symptoms that take longer to manifest, such as bradykinesia or dystonia 
[67]. Future research, including studies on chronic remote program
ming, should emphasize long-term efficacy and safety, especially con
cerning non-motor symptoms, across diverse patient populations and 
neurological disorder. These studies should consider the clinical reality 
of misplaced electrodes that appear to occur in 7–17 % of DBS leads 
[50], with double the risk of at least one electrode being misplaced in 
bilateral DBS [68]. Our group has explored the applicability of 
VAS-based programming in a diverse population in the context of the 
REMOTE trial (NCT05193825), a randomized, prospective, multicenter 
study evaluating the efficacy and safety of VAS-assisted remote pro
gramming. In the REMOTE study, a randomized VAS-based monopolar 
review was conducted at both the initial (first study visit) and final 
(second study visit, 90 days post-surgery) time points. This approach 
aimed to provide study physicians with a standardized summary of the 
participant’s subjective feedback. During remote programming, physi
cians had the flexibility to use this information for iterative parameter 
adjustments. While this method may contribute to chronic DBS opti
mization, further research is needed to explore the practical imple
mentation of chronic VAS programming, potentially as part of an 
automated machine learning-based approach that integrates repeated 
VAS feedback into a multi-layer algorithm for DBS parameter refine
ment. In real-world scenarios, employing such as strategy in conjunction 
with larger sample sizes would help minimize the impact of outliers, 
while repeated patient feedback could enhance reliability and 
robustness.

VAS sampling - like any psychometric research method - is poten
tially susceptible to confounding by external and internal factors, like for 
instance fatigue. In the present study, we indeed observed a small trend 
toward more positive VAS values over time (Fig. S5), suggesting the 
influence of additional, yet unidentified, confounders on VAS ratings. 
Although these effects apparently did not influence our main outcome, 
future studies should systematically examine the impact of such factors 
(e.g., On vs. Off states) to enhance the reliability of VAS ratings in 
clinical practice. Finally, we used connectome datasets instead of indi
vidual dMRI and fMRI data, which may not fully correspond to 

individual anatomy. Although we validated our findings using two 
distinct connectome datasets and across different cohorts, the small 
sample size and limited clinical diversity—characterized by relatively 
low LEDD levels and a short time interval since DBS implantation—may 
restrict the generalizability of our results. This underscores the need for 
larger studies with a more diverse participant pool. Recruiting a more 
diverse group of patients across multiple centers, including cases with 
sub-optimally placed electrodes, could enhance the robustness of our 
findings and confirm the utility of subjective patient ratings as a feed
back signal for DBS programming.

6. Conclusion

Our study suggests that stimulation of the dorsolateral STN, based on 
subjective patient perception, results in the best patient ratings. These 
findings indicate that patients can identify beneficial stimulation set
tings, emphasizing that subjective ratings could be valuable in opti
mizing DBS programming.
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programming deep brain stimulation improves clinical outcomes in patients with 
Parkinson’s disease. Npj Park’s Dis 2024;10:29. https://doi.org/10.1038/s41531- 
024-00639-9.

[17] Rolland A-S, Touzet G, Carriere N, Mutez E, Kreisler A, Simonin C, et al. The use of 
image guided programming to improve deep brain stimulation workflows with 
directional leads in Parkinson’s disease. J Park’s Dis 2024;14:111–9. https://doi. 
org/10.3233/jpd-225126.

[18] Rosa M, Arlotti M, Marceglia S, Cogiamanian F, Ardolino G, Fonzo AD, et al. 
Adaptive deep brain stimulation controls levodopa-induced side effects in 
Parkinsonian patients. Mov Disord 2017;32:628–9. https://doi.org/10.1002/ 
mds.26953.

[19] Rosa M, Arlotti M, Ardolino G, Cogiamanian F, Marceglia S, Fonzo AD, et al. 
Adaptive deep brain stimulation in a freely moving Parkinsonian patient. Mov 
Disord : Official Journal of the Movement Disorder Society 2015;30:1003–5. 
https://doi.org/10.1002/mds.26241.

[20] Little S, Tripoliti E, Beudel M, Pogosyan A, Cagnan H, Herz D, et al. Adaptive deep 
brain stimulation for Parkinson’s disease demonstrates reduced speech side effects 
compared to conventional stimulation in the acute setting. J Neurol Neurosurg 
Psychiatr 2016;87:1388–9. https://doi.org/10.1136/jnnp-2016-313518.

[21] Piña-Fuentes D, Dijk JMC van, Zijl JC van, Moes HR, Laar T van, Oterdoom DLM, 
et al. Acute effects of adaptive deep brain stimulation in Parkinson’s disease. Brain 
Stimul 2020;13:1507–16. https://doi.org/10.1016/j.brs.2020.07.016.

[22] Velisar A, Syrkin-Nikolau J, Blumenfeld Z, Trager MH, Afzal MF, Prabhakar V, 
et al. Dual threshold neural closed loop deep brain stimulation in Parkinson disease 
patients. Brain Stimul 2019;12:868–76. https://doi.org/10.1016/j. 
brs.2019.02.020.

[23] Arlotti M, Marceglia S, Foffani G, Volkmann J, Lozano AM, Moro E, et al. Eight- 
hours adaptive deep brain stimulation in patients with Parkinson disease. 
Neurology 2018;90:e971–6. https://doi.org/10.1212/wnl.0000000000005121.

[24] Bocci T, Prenassi M, Arlotti M, Cogiamanian FM, Borellini L, Moro E, et al. Eight- 
hours conventional versus adaptive deep brain stimulation of the subthalamic 
nucleus in Parkinson’s disease. Npj Park Dis 2021;7:88. https://doi.org/10.1038/ 
s41531-021-00229-z.

[25] Little S, Pogosyan A, Neal S, Zavala B, Zrinzo L, Hariz M, et al. Adaptive deep brain 
stimulation in advanced Parkinson disease. Ann Neurol 2013;74:449–57. https:// 
doi.org/10.1002/ana.23951.

[26] Jost ST, Sauerbier A, Visser-Vandewalle V, Ashkan K, Silverdale M, Evans J, et al. 
A prospective, controlled study of non-motor effects of subthalamic stimulation in 
Parkinson’s disease: results at the 36-month follow-up. J Neurol Neurosurg 
Psychiatr 2020;91:687–94. https://doi.org/10.1136/jnnp-2019-322614.

[27] Nassery A, Palmese CA, Sarva H, Groves M, Miravite J, Kopell BH. Psychiatric and 
cognitive effects of deep brain stimulation for Parkinson’s disease. Curr Neurol 
Neurosci Rep 2016;16:87. https://doi.org/10.1007/s11910-016-0690-1.

[28] Castrioto A, Lhommée E, Moro E, Krack P. Mood and behavioural effects of 
subthalamic stimulation in Parkinson’s disease. Lancet Neurol 2014;13:287–305. 
https://doi.org/10.1016/s1474-4422(13)70294-1.

[29] Nie P, Zhang J, Yang X, Shao Y, Zhang X, Liu W, et al. Remote programming in 
patients with Parkinson’s disease after deep brain stimulation: safe, effective, and 
economical. Front Neurol 2022;13:879250. https://doi.org/10.3389/ 
fneur.2022.879250.
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