Biological
Psychiatry:
GOS

Archival Report

Predictive Processing in Autism Spectrum
Disorder: The Atypical Iterative Prior Updating
Account

Zhuanghua Shi, Fredrik Allenmark, Laura A. Theisinger, Rasmus L. Pistorius, Stefan Glasauer,
Hermann J. Miiller, and Christine M. Falter-Wagner

ABSTRACT

BACKGROUND: The nature of predictive-processing differences between individuals with autism spectrum disorder
(ASD) and typically developing (TD) individuals remains contested. Some studies have reported impaired predictive
processing in ASD, while others have suggested intact but atypical learning dynamics.

METHODS: We investigated duration reproduction tasks under high- and low-volatility settings to examine the
updating dynamics of prior beliefs and sensory estimate updating in individuals with ASD (n = 32) and TD
counterparts (n = 32). Using a two-state Bayesian model, we analyzed how the participants updated their prior
beliefs and perceptual estimates and how these updates affected their behavior over time.

RESULTS: Individuals with ASD integrated prior knowledge similarly to TD control participants for perceptual esti-
mates. However, they relied more heavily on sensory input for iteratively updating their prior beliefs, perceiving events
as less interconnected. This heightened reliance on sensory inputs led to the initial underweighting of priors in
perceptual estimates, resulting in a weaker central tendency early in sessions. Over time, ASD participants adapted,
reaching integration weights comparable to those of TD control participants by the end of the session. These findings
suggest that predictive processing in ASD is characterized by distinct updating dynamics, not an inability to form or
use prior effectively.

CONCLUSIONS: Our study highlights a unique interplay between sensory inputs and prior beliefs in ASD, where
greater reliance on sensory inputs during prior updating influences adaptation speed and intertrial dynamics. This
process clarifies inconsistencies in the literature and underscores the role of interactive updating in predictive pro-

cessing differences between individuals with ASD and TD individuals.

https://doi.org/10.1016/j.bpsgos.2025.100468

Autism spectrum disorder (ASD) presents challenges in social
interaction, communication, and repetitive behaviors, often
accompanied by heightened sensory sensitivity and adapta-
tion difficulties (1-3). Predictive processing and Bayesian
inference offer promising frameworks for understanding the
autistic cognitive profile, highlighting a distinct approach to
processing sensory information and prior knowledge in ASD
(4-12). According to Bayesian inference, perception and action
result from continuously refining predictions and minimizing
prediction errors by integrating sensory input with prior
knowledge, weighted by their associated uncertainties. While
theories agree that predictive processing differs in ASD, they
disagree on the exact mechanisms causing these differences,
leading to two broad model categories.

The attenuated-prior model argues that individuals with
ASD have weaker priors, resulting in a reduced reliance on the
priors in making predictions (4,13,14). Conversely, according
to the “heightened and inflexible precision of prediction errors
in autism” theory, sensory atypicality in ASD is attributable to
an overemphasis on prediction errors (6). Lawson et al. (5)

offered a similar view, highlighting an impaired ability in ASD to
downweight sensory input, skewing the balance toward sen-
sory input over prior beliefs in perceptual decisions. Despite
different explanations, both types of models agree that in-
dividuals with ASD have distinct predictive processing (7) and
tend to prioritize sensory information.

Contrary to the view that individuals with ASD form
compromised prior beliefs, many types of prior—particularly
those deriving from experience or top-down knowledge—
actually remain intact (15). For example, individuals with ASD
can accurately form one-shot priors, such as recognizing a
Dalmatian dog camouflaged by black patches (16), and they
show typical performance on tasks related to the processing of
gaze direction (17,18), statistical learning of likely distractor
locations (19), and using external reference coordinates in
tactile spatial tasks (20). These observations have led Palmer
et al. (8) to challenge the adequacy of simplistic Bayesian
models that only account for the integration of sensory input
with a single prior. Instead, they proposed that the peculiarities
in ASD may stem from altered expectations, in hierarchical
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inference, about the likelihood (or uncertainty) of changes
occurring in the hidden states governing the stimulus envi-
ronment (referred to as meta-volatility). To explore this, Law-
son et al. (10) devised a discrimination task in which
participants responded to probabilistic cues (either a high or
low tone) predicting an upcoming stimulus. They found that
individuals with ASD exhibited less variation in response times
and pupil dilation when faced with expected versus unex-
pected outcomes. Computational modeling indicated that
these individuals exhibited diminished surprise about unex-
pected outcomes and heightened sensitivity to uncertainty,
leading them to overestimate the volatility of their environment.
On the other hand, Manning et al. (21) found no such group
difference in a reward-probability learning task (learning the
likelihood of a chest containing a reward) involving children
with ASD and matched TD counterparts. Both groups adapted
appropriately to changing volatility, suggesting that predictive
mechanisms impacting perception in ASD may not extend to
learning tasks. This null finding is consistent with recent in-
dications that individuals with ASD do not show a generalized
learning deficit but rather atypical responding to short-term
prediction errors (19) or atypical updating of social expecta-
tions, such as other people’s intentions (22).

Notably, many relevant ASD studies have focused on
interpreting averaged outcomes as representing the percept,
overlooking a potentially important aspect: that of short-term,
iterative, and dynamic updating of priors from one trial to the
next. Recent reports indicate that individuals with ASD may be
less influenced by preceding events (23) and may adapt more
slowly to changes (24) than their matched peers. Thus, we
hypothesized that distinctive dynamic updating patterns might
not necessarily compromise long-term prior formation but
could impact average outcomes across different timescales.
Extended learning, rather than short-period adaptation, may
enable individuals with ASD to develop priors that are more
similar to those of their TD counterparts. Using dynamic, iter-
ative Bayesian updating models, we aimed to resolve dis-
crepancies in the literature and enhance our understanding of
the mechanisms underlying atypical responses in ASD.

Accordingly, we used a duration-reproduction task with
varied sequential volatility (25) to differentiate between short-
term-prior and perceptual-estimate updating and long-term
integration. The reproduction task is widely recognized for its
effectiveness in assessing the integration of sensory mea-
surements with priors, thus facilitating the assessment of
integration weights within a Bayesian framework (14,26,27).
This paradigm also allows direct comparisons with previous
work in ASD research, such as Karaminis et al. (14). Further-
more, the reproduction task supports the application of
dynamic-updating models (25,28,29), enabling the analysis of
rapid, short-term updates alongside slow, long-term adjust-
ments (28), as well as the impact of trial-to-trial variability or
volatility (29). Over 2 sessions, we kept the same set of durations
while varying their sequential presentation volatility, thereby
isolating the effects of short-term trialwise perceptual-estimate
updating (local volatility) from iterative updating of the long-
term prior. Crucially, we used iterative 2-state Bayesian
modeling (29) to track both the integration of sensory inputs with
priors and the dynamic updating of these priors, clearly delin-
eating them from the influences of perceptual estimate updating.

Predictive Processing in ASD

METHODS AND MATERIALS

Participants

Thirty-two individuals (13 female, aged between 18 and 67
years; mean [SD] = 32.0 [12.3] years) with a confirmed ASD
diagnosis (F84.0 or F84.5) according to ICD-10 (30) were
recruited from the database and network partners of the
Outpatient Clinic for ASD at the Department of Psychiatry,
LMU Munich, Germany. A total of 32 TD control participants
(13 female, aged between 18 and 70 years; mean [SD] = 31.6
[13.6]) with no reported history of mental illnesses or neuro-
logical deficits were recruited via local advertising. The groups
were matched pairwise using a measure of crystalline intelli-
gence, the Mehrfachwahl-Wortschatz-Intelligenztest [MWT-B;
multiple choice vocabulary test (31)]. The groups were com-
parable in terms of 1Q and age, but differed significantly on the
autism spectrum quotient (AQ) (32), empathy quotient (EQ)
(33), systemizing quotient (SQ) (34), and Beck Depression In-
ventory (BDI) scores (35), for details, see Table S1.

A typical duration reproduction study (29) showed that 14
participants yielded significant central tendency and sequential
dependence with a large effect size (Cohen’s d > 1.74), and a
prior study (10) on volatility also revealed a large effect size (d =
1.024) between the ASD and TD groups. With a similar effect
size, power of 0.8, and alpha of 0.05, the required sample size
was estimated to be 26. To be cautious, we increased the
sample size to 32. All participants provided written informed
consent prior to the experiment and received compensation of
€10/hour for their participation. The study was approved by
the Ethics Board of the LMU Munich Faculty of Pedagogics
and Psychology, Germany.

Design and Procedure

The experiment was conducted in a sound-attenuated and
moderately lit experimental cabin. A yellow disk patch (diam-
eter: 4.7° of visual angle; luminance: 21.7 cd/m?) was used for
delivering (stimulus) durations on a 21-inch LACIE CRT monitor
(refresh rate: 85 Hz). The experimental code was developed
using the MATLAB PsychToolbox (36).

We adopted the duration-reproduction paradigm (37)
(Figure 1A). Each trial started with a central fixation cross
(0.75°) presented for 500 ms, followed by a central white dot
(0.2°), signaling participants to press and hold either mouse
button to initiate the duration-encoding phase. Upon the press,
a yellow disk appeared on the center of the screen for a
random duration (100-1900 ms; see details below). Partici-
pants released the button when the disk disappeared. A 500-
ms blank screen separated the encoding and reproduction
phases. During the reproduction phase, a white dot appeared,
informing participants to press and hold the mouse button to
match the observed duration, during which the yellow disk
reappeared and disappeared upon button release. Subse-
quently, feedback display was presented for 500 ms, showing
5 horizontal disks representing reproduction error ranges:
<—-30%, —30% to —5%, —5% to 5%, 5% to -30%, and
>30%. One of the disks changed color—green for minor errors
(8 central disks) or red for large errors (2 outer disks)—to
indicate the accuracy of the response. Red highlighted a sig-
nificant bias, which participants were instructed to avoid.
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Figure 1. (A) Schematic illustration of a trial
sequence used in the duration-reproduction task.
(B) Example duration (trial) sequences in 2 consec-
utively performed duration-volatility sessions. The
I session depicted on the left (in cyan) represents a
e low-volatility sequence (Low Vola.), and the session
depicted on the right (in red) represents a high-
volatility sequence (High Vola.). Both sessions pre-
sented the exact same durations (i.e., the same
density function depicted on the right), differing only
Ml il in their presentation orders.
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The experiment consisted of 2 sessions, each comprising
10 blocks of 25 trials (250 trials total). One session featured a
low-volatility sequence of stimulus durations, and the other
featured a high-volatility sequence. Critically, both conditions
consisted of the same set of stimulus durations and an equal
number of duration repetitions; they differed only in terms of
the presentation order. First, individually for each participant
(i.e., matched pair of participants), a low-volatility sequence
was generated via a random-walk process starting from a
randomly selected duration. Each subsequent duration was
derived by adding a slight random fluctuation, sampled from a
normal distribution, to the previous duration. To ensure that all
values remained within the 100- to 1900-ms range, durations
exceeding these bounds were shifted and scaled back and
rounded to the nearest 100 ms, allowing for multiple repetitions
of each duration. This procedure resulted in a low-volatility
sequence characterized by mild fluctuations across trials.
The high-volatility sequence was created by randomly shuffling
the low-volatility sequence, producing greater trial-to-trial
variation. Figure 1B illustrates typical low- and high-volatility
sequences across 2 sessions. Both sequences were gener-
ated before the experiment, and the session order was coun-
terbalanced across participants. The 2 sessions were
conducted back-to-back, with participants taking a self-paced
break outside the cabin between sessions.

Importantly, we administered identical sequences to (age-
and 1Q-) matched participants in the ASD and TD groups,
thereby ensuring that any differential effects observed would
be attributable to differences between the 2 groups.

Prior to the experiment, participants received comprehensive
written and verbal instructions, and they underwent a pre-
experimental training block of at least 10 trials to ensure that
they understood the instructions. Subsequently, the experiment
was conducted, followed by filling out of the questionnaires and
debriefing of the task. The debriefing revealed that participants
did not notice any difference in the randomization (i.e.,
sequential duration volatility) regimens between the 2 sessions.

RESULTS
The Central-Tendency Effect and Impact of
Volatility

To assess the central tendency effect, we preprocessed
reproduced durations by removing outliers—values outside
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(duration/3, 3 X duration)—which accounted for only 0.58%
of trials. Given the linear nature of the central-tendency
effect (25,38), we used the absolute value of the regression
slope to estimate this effect, termed the central-tendency
index (CTI). A CTI of 0 indicates no bias, while 1 reflects a
pronounced central tendency. Both the ASD and TD groups
exhibited a linear decrease in reproduction error with
increasing duration (Figure 2). The high-volatility session
showed a steeper linear trend, indicating a stronger central-
tendency bias.

Figure 2C presents boxplots of the CTls by volatility and
group. A volatility-by-group mixed-design analysis of variance
(ANOVA) on the CTls yielded a robust main effect of volatility,
Fis2 = 80.11, p < .001, np2 = 0.56, with no significant
effects for group or the volatility X group interaction (Fs < 0.23,
ps > .63).

In the ASD group, 3 outlier participants exhibited a sub-
stantial central-tendency effect (CTI > 0.9), reproducing similar
durations across all tested durations in the high-volatility
session (Supplement 2). Excluding these 3 outliers and their
matched controls did not change statistical outcomes (vola-
tility: Fy 56 = 81.37, p < .001, n,? = 0.59; others: Fs < 3.324,
p > .074).

Moreover, reproduction errors skewed toward over-
estimation. A volatility-by-group mixed-design ANOVA on er-
rors revealed a significant main effect of volatility, F 2 = 5.57,
p = .021, np2 = 0.08, with greater overestimation in low-
volatility (39 ms) than high-volatility (22 ms) sessions. Neither
group nor the group-by-volatility interaction was significant, Fs
< 0.698, ps > .4, n,%s < 0.01.

Autocorrelation Reveals a Reduction of Positive
Correlation in ASD

If reproduction errors were solely driven by the central ten-
dency effect, the residuals from the regression should repre-
sent independent random errors. However, the residual
analysis revealed a marked differential autocorrelation,
showing a dependency of the reproduction error from the
preceding trial (n — 1). Figure 2D shows average Durbin-
Watson (DW) statistics for the 2 groups across sessions. The
DW statistics, which ranges from 0 to 4, measures autocor-
relation between trials n and n — 1. A DW value of 2 suggests
no autocorrelation, while values < 2 indicate positive
autocorrelation.
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Figure 2. Average reproduction error as a func-
tion of the (to-be-reproduced) stimulus duration for
the autism spectrum disorder (ASD) (A) and typically
developing (TD) (B) groups (each group n = 32),
separately for the high- (red) and low- (green) vola-
tility sessions. Each individual dot represents a sin-
gle participant’s mean reproduction error for that
given duration. Dots above the horizontal dashed
line indicate overestimations, and dots below the
line indicate underestimations. Solid lines indicate
i the fitted trend of the reproduction errors. Notably,
the steepness of the fitted trends is higher in the
high- than the low-volatility session, indicative of

-06 r
05

ASD H ASD

[e]

TD

*%

TD

T
1.0

Duration (s)

’

stronger central-tendency biases during high-
volatility conditions. (C) Boxplots of the central-
tendency index (CTI) for the ASD and TD groups,
separately for the high- and low-volatility sessions. A
CTI of 0 implies a lack of a central-tendency effect,
whereas a CTI of 1 indicates a pronounced central-
tendency effect. The left and right boundaries of the
box denote the interquartile range (IQR), from the
25th to the 75th percentile, while the whiskers indi-
cate 1.5 times the IQR. Three outliers were observed
in the ASD group during the high-volatility session.
(D) The boxplots of the average Durbin-Watson (DW)
autocorrelation indices, separately for the high- and
low-volatility sessions, for both the ASD and TD
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The DW scores for both groups were significantly below 2
(ts < —7.9, ps < .001), confirming positive autocorrelation. A
further mixed-design ANOVA on DW revealed a significant
group difference, Fy 62 = 4.50, p = .038, np2 = 0.07 (excluding
outliers: Fq 56 = 8.36, p = .005), showing that autocorrelation
was significantly less in the ASD group than in the TD group.
These findings indicate that central tendency alone did not fully
capture intergroup differences, particularly regarding intertrial
dependencies. However, the main effect of volatility and the
volatility X group interaction failed to reach significance (Fs <
2.19, ps > .145).

Distinct Prior Updating Revealed by Two-State
Iterative Model

To more closely model intertrial dependence, we used the two-
state model (29), a hybrid Bayesian iterative-updating frame-
work that accounts for both long-term central-tendency effects
and short-term intertrial sequential dependencies. This model
posits that an individual’s internal prior belief, represented by a
prior distribution, evolves iteratively by incorporating new
sensory information, thereby forming a revised belief, the
posterior distribution. The posterior is used to compute an
estimate, often with a certain cost function like the maximum
a-posteriori.

Unlike traditional Bayesian models with fixed priors, the
two-state model updates the mean of the prior distribution
dynamically through a Kalman filter process (Figure 3A) (29).
Each new sensory information is integrated with two Kalman
gains (weights): K1, influencing sensory estimation (state 1),

4
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1 groups. The dashed line, representing a DW value of
3.0 2.0, signifies the absence of autocorrelation, while a
DW value <2 indicates a positive autocorrelation. “p
< .05, *p < .01.

T
25

and Kj, affecting updates to the mean prior (state 2). The 2
Kalman gains (K1 and K3) are latent variables that capture how
estimates and beliefs adjust over time. Specifically, Ky is
responsible for the central tendency effect, while intertrial
sequential bias is shaped by K>(1 — K1) in a steady state (see
analytical proof and simulations in Supplement 3). To reflect a
general bias, we included a constant bias parameter c in the
state 1 updating.

The two-state model outperformed the standard linear
regression (reported in the previous subsection), reducing the
Akaike information criterion (AIC) by 10.75, which indicates a
markedly better fit to the behavioral data. Additionally, we
compared the two-state model to the dynamic-updating IRM
(39). The IRM assumes that an internal reference is updated
with the sensory input trial by trial and used for reproduction.
Even though updating weight could reflect changes in envi-
ronmental volatility and differences between groups, none of
the factors became significant (Supplement 4). The model
comparison revealed that our two-state model captured the
behavioral findings clearly better than the IRM (average
reduction of AIC: 11.25). Because the IRM can be interpreted
as a steady version of the two-state model with one of the
parameters fixed at zero, the model comparison strongly
suggests that all model parameters are crucial for interpreting
the data.

Figures 3B to 3D show the mean estimates for the two
Kalman gains, K; and K,, along with the general bias.
Parameter recovery revealed that K; and K, in the realistic
range can be well-recovered (Supplement 3). A volatility-by-
group mixed-design ANOVA on K; revealed a significant
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Figure 3. (A) Two-state iterative Bayesian updating model. The left panels illustrate the iterative updates of the perceptual estimate of the stimulus (state 1), while
the right panels depict the iterative updates of the mean of stimulus distribution (state 2). On trial t — 1 (top row), the percept (yellow) is computed by multiplying the
prior of the stimulus (red) and the sensory likelihood (dark blue), which corresponds to Eq. 4 in Supplement 3. The posterior distribution (light blue) of the stimulus
mean is derived by combining the prior of the mean distribution (green) with the sensory likelihood (dark blue), which corresponds to Eq. 5 in Supplement 3. After
trial t — 1 (middle row), the stimulus mean distribution (light blue) for trial t is updated from the posterior distribution (indicated by the dashed blue arrow). The
stimulus prior (red) for trial t is then formulated for the prediction. Additionally, the prediction of the mean of stimulus distribution (green) for trial t is computed from
the posterior distribution (light blue). On trial t (bottom row), these processes are repeated as in trial t — 1. (B) Estimated Kalman gain K; for the state of duration
prediction; (C) estimated Kalman gain K> for the updating of the prior belief; (D) general overestimation (ms), separately for 2 groups (autism spectrum disorder
[ASD] vs. typically developing [TD]) and volatility sessions (low vs. high volatility). Each group n = 32. Error bars denote 1 standard error. *p < .05, *p < .01.

volatility effect, F1 5, = 10.61, p = .002, ﬂp2 = 0.146. K; was
higher in the high-volatility (68.2%) than in the low-volatility
(60.5%) session, indicating greater reliance on sensory input
over prior knowledge in unpredictable environments. There
were no main or interaction effects involving group, Fs < 2.62,
ps > .11, np’s < 0.04.

For K,, the ANOVA showed a significant group difference,
Fieo = 423, p = .04, ﬂp2 = 0.146: on average, individuals with
ASD exhibited a higher K> (0.395) than their TD counterparts
(0.297), indicative of a stronger tendency of the former to revise
their priors. Volatility also significantly affected K, F1 62 = 11.75,
p =.001, np2 = 0.159: participants were more inclined to update
their priors (i.e., less reliable prediction) in the high- (0.42) versus
low-volatility (0.27) environment. However, the group X volatility
interaction was nonsignificant, F1 g = 1.21, p = .276, np2 =0.019.

Another mixed-design ANOVA revealed volatility as the only
significant factor affecting the general bias, F1 6, = 11.83, p =
.001, T]p2 = 0.16, corroborating earlier reported behavioral re-
sults. No main or interaction effects involving group were
observed, Fs < 0.794, ps > .37, n,°s < 0.013).

In summary, while volatility impacted all three parameters
examined, a differential effect of ASD versus TD group was

Biological Psychiatry: Global Open Science May 2025; 5:100468 www.sobp.org/GOS

observed only in the Kalman gain K5, which is closely related to
the sequential bias.

First Versus Second Half: Impact of Updating
Parameters on the Central-Tendency Bias

Higher K, in ASD causes more fluctuations in updating the
mean prior, leading to heavy reliance on sensory inputs, which
might show differential central-tendency biases during initial
stages. To further validate this, we analyzed the first half of
trials in each session. Given that we only applied the first half of
the trials (limiting data quality), we excluded the 3 outliers and
their counterparts. Figure 4A shows mean CTls from these
initial trials. A mixed-design ANOVA revealed significant main
effects of group (Fy 56 = 6.236, p = .015, 1,° = 0.1) and volatility
(F156 =24.74, p < .001, np2 = 0.31), which is in contrast to the
nonsignificant main effect of group when tested across all tri-
als, even when excluding the outlier individuals. The CTI was
significantly smaller for the ASD group than for the TD group in
these initial trials (while being comparable across all trials),
indicating slower adaptation in autistic individuals. Similar to
the analysis of all trials, the DW values were significantly higher
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for the ASD group than the TD group already during the first
half of trials, F1s6 = 7.2, p = .01, np2 = 0.114 (Figure 4B).

Next, we re-estimated the Kalman gains K; and K, based on
the first half of trials in each session and compared them with the
parameters obtained for the entire set of trials. Statistical tests on
K; and K> revealed similar results as the entire session we re-
ported earlier: K; only differed significantly between volatility
sessions (volatility: F1 56 =21.89, p < .001, np2 =0.281; others: Fs
< 1.91; ps > .17), while K differed in both factors: group (F1 56 =
451, p =.038, np2 = 0.075) and volatility (F1s6 = 11.18, p < .001,
Mp° = 0.167), but not their interaction (Fy g6 = 0.02, p = .89, 1> <
0.001). This suggests that Kalman gains may reflect long-term
steady-state updating rates. In fact, K; and K, remained rela-
tively stable for the first session and the entire session (mean
differences 0.006-0.058 for K;, and 0.007-0.022 for K»). A sig-
nificant change was only observed in K; between two volatility
sessions (Fy 56 = 4.31, p = .043, np2 = 0.071). Specifically, there
was an increase of 0.032 in Ky in the high-volatility condition and
a decrease of 0.013 in the low-volatility condition, a net difference
of 0.045 (mean K;: 0.643). The change was comparable between
the 2 groups, Fi56 = 2.23, p = .141, npz = 0.038, indicating that
both groups adjusted their weighting similarly.

Thus, the process of short-term belief updating remained
relatively stable over the course of all trials, with the ASD group
exhibiting a significantly higher Kalman gain K, than the TD
group. This difference in K5 influenced the rate at which long-
term beliefs are formed, which in turn affected the central
tendency effect. A significant difference in the central tendency
effect between the 2 groups was evident in the first half of the
trials, though it diminished across the entire session.

Finally, we examined potential relationships between the
estimated parameters and symptom severity (Supplement 5).
We only found a negative correlation between the SQ and K>
for both groups: individuals with higher SQ (that is, systematic
thinking) scores tended to exhibit lower updating weights K.
However, K> was significantly higher for individuals with ASD
than for their TD counterparts.

DISCUSSION

The nature of differences in predictive processing between
individuals with ASD and their TD peers remains debated
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Figure 4. (A) Average central-tendency indices
(CTls) and associated standard errors for the autism
spectrum disorder (ASD) and typically developing
(TD) groups (each group n = 29), separately for the
high- and low-volatility sessions. A CTl of 0 implies a
lack of a central-tendency effect, whereas a CTI of 1
indicates a pronounced central-tendency effect. (B)
Average Durbin-Watson (DW) autocorrelation
indices and associated standard errors, separately
for the high- and low-volatility sessions, for both the
ASD and TD groups. A DW value of 2.0 signifies the
absence of autocorrelation, while a DW value <2
indicates a positive autocorrelation. Error bars
denote 1 standard error. *p < .05, *p < .01.
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(4-12,40-43). Some studies have reported general impaired
predictive processes in ASD (4-6,14), while others have found
that predictive processing remains intact (11,42,43), although
with atypical learning dynamics (23,24,43). We hypothesized
that these discrepancies may stem from how studies
conceived of the updating of prior beliefs, perceptual estimates
from integration of prior knowledge and sensory input, and the
time scales examined.

Using the two-state Bayesian model (29) in a duration-
reproduction task under high- and low-volatility conditions,
we distinguished how ASD and TD groups updated prior
means and perceptual estimates. Both groups demonstrated
similar central tendency effects after the entire session,
consistent with recent findings (40), and both responded to
changes in environmental uncertainty, showing a more pro-
nounced central tendency under high- relative to low-volatility
conditions. However, rather than overestimating or under-
estimating volatility per se [as suggested by the study using
the hierarchical Gaussian filter model (10)], autistic participants
formed appropriate priors in response to different volatile en-
vironments across the session.

Crucially, our model dissociated two distinct mechanisms via
separate Kalman gains. The first gain (K;) weights the sensory
input for immediate perceptual estimation, and both groups
showed similar reliance on sensory information in this regard.
The second gain (K5) governs the iterative updating of the prior
mean based on recent experiences. Here, individuals with ASD
relied more heavily on sensory input—reflected in a higher Ko—
suggesting that their internal prior distributions are updated more
dynamically on a trial-by-trial basis. In other words, while the
overall environmental statistics (K;) were accurately captured
over the session, the ASD group treated successive temporal
events as less interconnected, leading to more rapid adjust-
ments of interim priors (K2). This differential updating process
may explain differences in the temporal dynamics observed in
our task. Early in the session, autistic participants exhibited a
smaller central-tendency effect than TD participants, consistent
with previous reports (4,14). However, these differences dimin-
ished over time, and both groups converged on a similar rep-
resentation of the distribution.

In short, our two-state Bayesian model (29) distinguishes
between immediate perceptual adjustments (K;) and slower,
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iterative updates to the prior (K). The increased weighting of
sensory input in the updating of priors among individuals with
ASD does not imply a misestimation of environmental volatility
but rather indicates that they are perceiving temporal events as
less interconnected than their TD counterparts. These results
support the idea that individuals with ASD can accurately
gauge environmental statistics, although their intertrial updat-
ing processes differ from those of TD control participants (19).

This atypicality in intertrial prior updating is partially
consistent with recent suggestions that ASD is characterized
by slower adaptation (23,24). For example, Lieder et al. (23)
found that in a tone-discrimination task, individuals with ASD
weighted the immediately preceding stimulus less than control
participants despite similar long-term weighting. However, our
study highlights a different pattern: the groups did not differ in
integrating past information into perceptual estimates but in
updating internal prior beliefs. A general linear model analysis
(Supplement 6) further confirmed this distinction. While the
analysis showed differences in the weighting of preceding
durations (i.e., the sequential dependence) between high- and
low-volatility sequences, it found no group differences be-
tween ASD and TD participants, suggesting that the observed
differences are specific to prior updates rather than sensory
integration.

The distinctive updating of prior beliefs in ASD is not
inherently a slower process but is marked by heavier reliance
on sensory inputs, which can slow adaptation over time. In
uncertain environments, this sensory-driven approach is ad-
vantageous, enabling quicker responses to immediate stimuli
and a less pronounced central-tendency bias early in a ses-
sion. However, over longer periods, such as an entire session,
this reliance results in slower behavioral adaptation, potentially
contributing to the behavior rigidity observed in individuals
with ASD.

Thus, our findings may help explain some mixed findings
on predictive processing in ASD (15), which often depend on
the rate of adaptation and the timescales used in studies. For
example, some studies have indicated intact sensitivity to
interval timing in ASD (40,44,45), while others have reported
reduced sensitivity, especially with certain intervals or tasks
(41,46-48). Notably, Karaminis et al. (14) found that children
with ASD exhibited a stronger central tendency and poorer
temporal resolution in duration reproduction than their TD
counterparts. However, their central tendency was weaker
than predicted by Bayesian integration, implying poorer
priors in the ASD group. Notably, their study involved only 77
trials per whole session for child participants, fewer than the
first half of trials in our sessions (i.e., 125 trials). Accordingly,
their findings may reflect an initial low weight of prior beliefs
during sensory-prior integration, consistent with our obser-
vations in early session trials. One prediction deriving from
our findings is that extended testing may allow children with
ASD to develop priors similar to those of their TD
counterparts.

It is worth noting that in the ASD group, 3 individuals of 32
exhibited markedly different behavior, showing strikingly
similar response patterns among themselves (see Supplement
1). In the low-volatility session, they reproduced durations
proportional to the target stimuli, although with some general
over- or underestimations. However, in the high-volatility
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environment, they consistently reproduced the same duration
across all intervals, ignoring sensory inputs (with K; and K,
values at 0.07 and 0.04, respectively) and relying solely on an
overly strong internal prior. Their normal performance in the
low-volatility sequence rules out a misunderstanding of the
instructions. Interestingly, during the debriefing, these 3 in-
dividuals reported no awareness of the difference in the vola-
tility regimen between the 2 sessions, suggesting that their
performance was influenced implicitly. We hypothesize that
when experiencing a highly volatile stimulus sequence, they
treated large, uncorrelated stimulus changes as noise rather
than signal, effectively discounting sensory inputs. That is,
they seem to change their model between high- and low-
volatility environments concerning the likelihood distribution,
the assumption about what is noise and what is signal. It
should be noted that even when we included these outliers in
our analysis, the critical results of the 2-state model remained
consistent.

Conclusions

In summary, our findings offer a new perspective on
predictive-processing dynamics in ASD and clarify apparent
inconsistencies in the literature. Individuals with ASD use prior
knowledge similarly to control participants but place greater
emphasis on sensory information when updating interim priors,
distinct from updating percepts. This distinctive process may
lead to slower adaptation of perceptual decision making over
time, which, depending on the environmental volatility, may not
necessarily be a disadvantage. Discrepancies in the extant
literature may stem from different studies focusing on different
timescales, overlooking the dynamics of these two distinct
updating processes.

Our results indicate that individuals with ASD adapt
appropriately to both volatile and stable environments but
exhibit unique intertrial dynamics. Specifically, the two-state
iterative updating model highlights their focus on temporal
discontinuity and overreliance on sensory input during
moment-to-moment prior updating, both of which are char-
acteristic of predictive processing in ASD.
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