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The extension of the Rayleigh-Ritz vari-
ational principle to ensemble states p,, =
Yok we| V) (Pi| with fixed weights wy lies
ultimately at the heart of several recent
methodological developments for targeting
excitation energies by variational means.
Prominent examples are density and den-
sity matrix functional theory, Monte Carlo
sampling, state-average complete active
space self-consistent field methods and
variational quantum eigensolvers. In or-
der to provide a sound basis for all these
methods and to improve their current im-
plementations, we prove the validity of the
underlying critical hypothesis: Whenever
the ensemble energy is well-converged, the
same holds true for the ensemble state p,,
as well as the individual eigenstates |¥y)
and eigenenergies F;. To be more specific,
we derive linear bounds d_AF,, < AQ <
d4+AFE,, on the errors AQ of these sought-
after quantities. A subsequent analytical
analysis and numerical illustration proves
the tightness of our universal inequalities.
Our results and particularly the explicit
form of dy = d,S_LQ) (w, E) provide valuable in-
sights into the optimal choice of the auxil-
iary weights w;, in practical applications.

1 Introduction

Quantum excitations play a crucial role in the
understanding of quantum systems in general,
and they lie at the heart of numerous appli-
cations in physics, chemistry, materials science
and biology [1-5]. Unlike ground states, which
can nowadays be numerically calculated with
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high accuracy and ever-increasing efficiency |6,
7], the study of excited-state properties is still
a long-standing computational challenge [8-15].
The complexity of the latter lies in the multi-
configurational character of the corresponding
wave functions [16], as well as in the lack of a
variational principle for targeting individual ex-
cited states exclusively.

As far as the computation of ground states
is concerned, the effectiveness of numerous nu-
merical methods [17-19] rests on the underlying
Rayleigh-Ritz (RR) variational principle: For any
Hamiltonian

D—-1

=" Ep|Up) (W (1)
k=0

on a D-dimensional Hilbert space H the ground
state energy Ep can be obtained by variational
means according to

Ey < (U|H|D), V|U)eH. (2)

The extremality within the energy spectrum of
the sought-after minimal eigenvalue Ey of H is
absolutely crucial for the effectiveness and predic-
tive power of variational ground state approaches.
It namely implies (see, e.g., Ref. [20] and Sec. 2.1)
that the accuracy of a trial state |¥) increases as
the variational energy (V| H |¥) approaches the
ground state energy Fjp, and equality with the
exact ground state is reached if and only if the
variational energy equals Ej.

In order to target the low-lying excitation spec-
trum by variational means, Gross, Oliveira and
Kohn [21] extended the RR variational principle
to ensemble states pu = Y1 wi|Pg) (¥y| with
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Figure 1: Illustration of the Rayleigh-Ritz (RR), Ky Fan
(KF), and Gross-Oliveira-Kohn (GOK) variational prin-
ciples and their scope in the context of recent method-
ological developments of ground and excited state ap-
proaches.

fixed spectrum w:

K-1
Ew= Y wpEy < Tr[pwH]

k=0
= > wp(UyH|Ty).
k=0

The first K eigenenergies Ey and eigenstates |Uy,)
of H are then obtained from the spectral de-
composition of the resulting minimizer p,, =
Yo wil W) (Wel.

This Gross-Oliveira-Kohn (GOK) variational
principle naturally extends the scope of ground
state methods to excited states (see the overview
in Figure 1), and has recently become a key in-
gredient for the conceptual and numerical devel-
opments in quantum sciences due to a number
of reasons: First, since the common approach in
density functional theory (DFT) [22] to target
excited states through a time-dependent formu-
lation |23, 24| suffers from conceptual and practi-
cal limitations, ensemble/ GOK-DFT [25-37] has
emerged as a promising alternative. Second, due

to the difficulties of DFT in dealing with strong
correlation effects, a one-particle reduced den-
sity matrix functional theory (RDMFT) [38-41]
based on the GOK variational principle for tar-
geting selected eigenstates has been proposed in
2021 (w-RDMFT) [42-46]. Third, wave function-
based approaches that calculate the lowest K
eigenstates consecutively suffer from an uncon-
trollable accumulation of errors. Utilizing in-
stead the GOK variational principle with flexi-
ble weights w provides a more direct approach
to the specific eigenstates of interest, which is
successfully exploited, e.g., in quantum Monte
Carlo techniques [47-49], some traditional quan-
tum chemical methods [50-54] and quantum com-
puting [55-63].

However, despite its broad applicability in re-
cent years, two crucial aspects regarding the
GOK variational principle have not been prop-
erly formulated nor addressed yet. (i) There are
two seemingly misaligned objectives which first
need to be reconciled: It is the ensemble energy
that is minimized, yet the interest lies in the in-
dividual eigenstates and their energies. Although
reaching the exact ensemble energy F,, implies
that the eigenstates of the ensemble are exact
as well [21], it is from a mathematical point of
view not clear at all that the GOK variational
principle maintains this predictive power for the
practically relevant case of imperfect convergence.
Indeed, particularly for quasidegenerate weights
wg, one could easily imagine an incorrect ensem-
ble puw = > g>0 wk|¥k) (V| # pw which, how-
ever, (almost) attains the exact energy E,, due to
a cancellation of individual energy errors Ej, — Ej.
(ii) There is an under-explored degree of freedom
in the choice of w. The validity of the GOK
variational principle is independent of the specific
choices of weights. Yet clearly, a variational algo-
rithm can be biased towards a specific eigenstate,
if it is assigned a larger weight. One extreme ex-
ample would be the reduction of the GOK vari-
ational principle to the original RR version, or
the one of equal weights, when virtually no infor-
mation regarding the individual eigenstates could
be gained. It is the ultimate goal of our work to
address both of the above issues comprehensively
and settle them conclusively.

The paper is structured as follows. First, we
discuss the GOK variational principle and point
out related caveats in Sec. 2.1, formulate con-
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cisely our scientific problem in Sec. 2.2 and intro-
duce in Sec. 2.3 two elegant concepts from con-
vex geometry required for its solution. In Sec. 3,
we present our main results, namely universal
bounds, d_AF,, < AQ < diAFE,, on the error
AQ of the variational ensemble state, the eigen-
states and eigenenergies. In Sec. 4, we then con-
firm by analytically and numerically means the
tightness of these bounds and identify optimal
choices of the weights for practical applications
based on the explicit form of dy = d(iQ) (w,E).
Last but not least, in Sec. 5, as a proof of con-
cept, we illustrate our results in the context of
variational quantum eigensolvers.

2 Notations, Concepts and Scientific
Problem

2.1 GOK variational principle

In this section we provide a brief recap of the
GOK variational principle, identify some crucial
caveats in its practical applications and explain
what is required from a variational principle in
order to have a sound basis.

Attempts to extend the RR ground state
variational principle date back to the late 40s,
when Kohn and Ky Fan (the latter provided
a full proof) established that the energy of an
equiensemble state of rank K is bounded from
above by the sum of the K lowest energy eigen-
values |64, 65]:

Theorem 1 (Ky Fan (1949)). For any Hamilto-
nian (1) and any integer K < D the inequality

K-1 K-
S B Z (Ui H|Py) (4)
k=0

holds for any set of K orthonormal states
{\\i/k> ,If:_ol. Moreover, as long as Ex > Ex_1,
equality is attained if and only if the span of the
latter coincides with the span of the first K eigen-
states {| W)} o

Here and in the following, an arrow 1 () indi-
cates that the entries of a vector are arranged
increasingly (decreasingly).

It was almost 40 years later when Gross,
Oliveira and Kohn [21] further extended Theo-
rem 1 to ensembles with arbitrary weights:

Theorem 2 (Gross, Oliveira, Kohn (1988)). For
any Hamiltonian (1) and any probability distri-
bution w € RP (w; > 0 and 2 w; = 1), the
inequality

D—1
w_ZwET<Trpw Zwk (U H|Ty) .
k=0
(5)
holds f07: any ensemble state Py =
Z,?:_Ol wi | Vi) (Y| with spectrum w. — More-

over, as long as the energy spectrum E of H
is non-degenerate, equality in (5) is attained if
and only if py and py, = ZkD;Ol wt|‘lik)(\lik|, and
thus their spectral decompositions, coincide.

A couple of comments are in order here con-
cerning this GOK variational principle. First, the
weighted energy average is nothing else than the
energy expectation value of the exact w-ensemble
state pw, Le., By = Zk o wkE,I = Tr[pwH] =
S "o Wk (Uy| H|¥;) and thus (5) could be re-
cast as Tr[(pw — pw)H] > 0 for all w-ensemble
states pq.,. Second, the predictive power of the
GOK variational principle depends on how de-
generate the energy spectrum E is. To explain
this, let us consider the (practically less inter-
estlng) case of a fully degenerate spectrum, i.e.,
H = Eyl. Any w-ensemble state would then
saturate inequality (5). Accordingly, the infor-
mation that a given p,, saturates (5) would not
tell us anything about this ensemble state. On
the contrary, for a non-degenerate spectrum FEy <
Ey < ... < Ep_1, the saturation of (5) by some
pw would imply that its eigenbasis {|U)}2 =} co-
incides (up to irrelevant phase factors) with the
eigenbasis {|Wy) - of H and p,, respectively.
Given the goal of our paper, namely to elabo-
rate on and confirm the predictive power of the
GOK variational principle, this comment would
suggest at first sight to study all scenarios of dif-
ferent energy multiplicities. Yet, there are good
reasons to restrict our work to non-degenerate en-
ergy spectra only: In practice, degeneracies typ-
ically emerge from symmetries of the Hamilto-
nian, which translates into a block-diagonal struc-
ture, H = @QHQ, with respect to the different
symmetry sectors. One could then apply the en-
tire reasoning of our work to each non-degenerate
block /symmetry sector separately. Moreover, as
our main results in Sec. 3 will confirm, the case of
degeneracies is often either already covered as a
suitable limit of the non-degenerate case, or alter-
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natively it just does not make sense anymore to
elaborate on the predictive power of GOK (as the
example H = Ey1 above illustrated). Third, in
applications of the GOK variational principle to
realistic quantum-many body systems one is typ-
ically interested only in the lowest few (K) eigen-
states in the exponentially large Hilbert space.
Hence, one then considers only w-vectors with K
non-vanishing weights, wg > wy > -+ > wg_1 >
wg = -+ =wp_1 = 0. Of course, this in turn
implies that the predictive power of the GOK
variational principle then restricts to the lowest
K eigenenergies and eigenstates, and that possi-
ble degeneracies of the higher energy levels Ej,
k > K, will not affect our derivation and results
anymore. Fourth, while a brute-force proof of
Theorem 2 was given in Ref. [21], we will provide
a particularly compact and simple one in Sec. 2.3,
after having introduced some effective tools from
convex analysis.

According to Theorem 2, the ensemble energy
Ey of any py = S5 wt]\i/k><\f/k| is an upper
bound to the true minimum F,,. This, however,
does not establish yet a sound basis for a varia-
tional principle that can be used for calculating
individual eigenstates and their energies. Indeed,
when the minimum FE,, is not exactly attained,
Theorem 2 does not make any predictions about
the meaning or quality of the individual states
|¥;,). That is quite in contrast to ground state
calculations through the RR variational principle:
It is well understood that for any pure trial state
| W) (¥|, its Hilbert-Schmidt distance to the exact

ground state |Wo)(Uo| (||Allas = / Tr[AtA]),

1 2
AWy = || @H(T] = [@o) (Lo 15 = 1= [{T[To) [,
(6)
is linearly bounded from below and above by the
variational error AEy = (V|H|V) — Ey > 0 ac-
cording to (see, e.g., Ref. [20])

q- AEy < AV < g4 AE)p, (7)

where ¢_ = 1/(Ep_1—FEy) and ¢ = 1/(E1—Ey).
This means nothing else than that the variational
state is exact if and only if the energy is fully con-
verged and otherwise the errors AFEy, AUy are
related through linear bounds. It is exactly this
predictive power that makes the RR variational
principle an effective and meaningful variational
principle. It is therefore the ultimate goal of our
work to elaborate on and eventually confirm such

predictive power also for the GOK variational
principle. This means to understand in quantita-
tive terms whether, when and how the ensemble
error AFE,, bounds the errors of (i) the ensemble
state py, (ii) the individual eigenstates |¥y), and
(iii) the individual eigenenergies Ej. This cen-
tral task of our work can become quite delicate
— in contrast to the context of the RR varia-
tional principle — as the following basic example
illustrates:

An instructive example

Consider a three-level system with Hamil-
tonian H = —[0)(0| + |2)(2| and choose
the ensemble weights w = (1/2,1/2,0).
In this case both density operators p,, =
310)(0] + 3[1)(1] and pw = gl+)(+| +
%|—><—|, where |£) = 1/4/2(|0) £ |1)), are
minimizers of the ensemble energy (both
states are actually the same). However,
the states |+) are quite different from the
first two eigenstates |0),[1) of H and ac-
cordingly have large errors in their ener-
gies.

While the negative consequences of a degener-
ate weight vector w were actually rather obvious,
this basic example clearly reveals the depth of the
scientific problem at hand: the anticipated error
bounds must depend in a non-trivial way on (the
gaps between) the weights wy, and in particu-
lar whenever two weights become identical some
bounds must become meaningless.

2.2 The scientific problem

In this section, we formulate our scientific prob-
lem in concise terms. For this, we first assume
a fixed non-degenerate Hamiltonian H on a D-
dimensional complex Hilbert space H according
to (1) and denote its vector of increasingly or-
dered energy eigenvalues by E = E'. For each
choice of a spectral weight vector w = wt, we
then define the corresponding manifold of den-
sity operators with spectrum w to which GOK’s
variational principle, Theorem 2, refers to:

D—-1

Dy = {ﬁw = > wp|Tp) (Vg

k=0

(G [y) = 5kl}.
(®)

It is worth noticing that the manifold D,, is iden-
tical to the set of all unitary conjugations of the
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exact ensemble state p,, = ZkD;Ol W | Vi) (Y|,
ie.,

D = {UppU' | U a unitary on H}  (9)

and accordingly every element g, can be ex-
pressed as
pw(U) = UpyUT (10)

for some unitary U. To each quantum state Pw
in Dy, we can associate the corresponding vec-
tor B = (Ek)sz_Ol of energy expectation values
Ey = (U H|¥;) with respect to fy,’s eigenbasis
2y

Elaborating on the predictive power of the
GOK variational principle means nothing else
than to predict the errors of physical properties
of variational states Py, € D, as function of their
ensemble energy error

A

AEy(pw) = Tr[(pw — pw)H]. (11)

Due to its relevance for numerical calculations
in practice, a particular emphasis will lie on the
regime where the ensemble energy error becomes
small. With these definitions at hand, we can now
formulate in concise terms the scientific problem
that we are going to solve:

Scientific Problem: Predictive Power of GOK

Consider the GOK variational principle
(Theorem 2) for a setting (H, H,w). De-
termine for any relevant quantity Q@ =
Q(pw) the range

D (6,w, ) < AQ(pw) < d¥ (6, w, ),
(12)

of its possible errors AQ(pw) = Q(pw) —

Q(pw) provided p,, has a (sufficiently

small) energy error AE,(pyw) = § > 0.

The relevant quantities are

(i) the ensemble state pq,

(ii) all individual eigenstates |Uy)

(iii) all individual eigenenergies Ej,

A couple of comments are in order. First, the
sought-after optimal bounds are given by

d90w A) = min AQ(fw)
Pw € Doy :
AEW(ﬁw) =9
dP 6w H) = max  AQ(fw)(13)
ﬁw € Dw :
AEy (pw) =0

Hence, it will be the challenge in the following to
execute by analytical means the respective con-
strained minimization and maximization in (13)
for all three relevant physical quantities. More-
over, it will become clear below what ‘¢ suffi-
ciently small’ will mean. Finally, the crucial ques-
tion will be how the bounds d (8, w, H) depend
on d. To anticipate our results, we are actually
going to find that the bounds for all three rele-
vant quantities depend linearly on the ensemble
error AFE,, = 6. This in turn will confirm the
predictive power of the GOK variational princi-
ple.

To execute analytically the optimizations in
(13) we first need to understand how various
relevant error quantities depend on p,, and U
in (10), respectively. By using pw = puw(U),
X = (|Uul®)iisor Un = (WelU[W1) = (U] 0),
w = Xw and E = XTE, rather straightforward
calculations yield (one just needs to evaluate var-
ious traces in the eigenbasis of either p,, or py
and H, respectively)

A

ABy(pw) = Tr[(pw — pw)H]
= w-(X"-1)E
= w- (E —E)
= (W—w)-E (14)
Apw(pw) = ||pw — Pw||2HS
= Tr[(pw — pw)g]
= 2w- (w— Xw)
= 2w (w—w), (15)
A (pu) = o ) (] — ) (3
= 1 — (W)
= 1— X (16)
ABy(pw) = Tr[(|9) (0k| — |04 )(Wy] ) H]
= (XTE), - E,
= E,— Ey, (17)

The far-reaching observation here is that all
relevant quantities (14)-(17) can be expressed
as linear functions of either the matrix X =
(|Ugi ’2)1?,;_:107 or the even simpler vectors w = Xw
and E = XTE, respectively. Accordingly, in or-
der to exploit this simplifying structure we need
to understand better the sets of such matrices X
and such vectors @ and E. This is accomplished
in the following section.
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2.3 Birkhoff polytopes and permutohedra

In the spirit of the last comment in the previous
section, the problem (13) of ensemble minimiza-
tion and maximization can be conveniently cast
in the language of Birkhoff polytopes (and their
projections, permutohedra). Birkhoff polytopes
are central mathematical objects that have been
widely employed in various fields of physics (see
[66] and references therein). The rich mathemat-
ical structures of these polytopes will turn out
to be instrumental for the derivation of our main
results and the comprehensive solution of the sci-
entific problem (see p. 4).

The so-called Birkhoff polytope Bp of order
D is a convex polytope consisting of D-by-D
doubly stochastic matrices [67]. A matrix X is
called doubly stochastic (or bistochastic) if its
columns and rows consist of real, non-negative
entries which for each row and column sum to 1,

D—

[y
[y

X =
= =

Xu=1 Vk=0,1,...,D—1.

(18)
Additionally, if there exists a unitary matrix U
such that Xj; = |Uyl?, then X is called unis-
tochastic. We denote the set of unistochastic ma-
trices as Up which according to Egs. (14)-(17)
will play a key role in the solution of the scien-
tific problem. For D > 3, it turns out that the
set Up is no longer convex [66-68]. In particu-
lar, there exist doubly stochastic matrices that
are not unistochastic, and therefore Up is then a
strict subset of Bp.

In order to develop a better intuition for the
Birkhoff polytope, we recall in particular the
Birkhoff-von Neumann theorem [69, 70]: The
Birkhoff polytope Bp is a convex polytope in
RP*D of dimension (D — 1)? whose extremal
points are the permutation matrices [67, 71]. The
latter are precisely those matrices which contain
in each row and column one ‘1’ and D — 1 ‘0’-
entries, and together they form a discrete set with
D! elements denoted by Sp. Accordingly, by def-
inition, Bp follows as the convex hull Conv(Sp).
Moreover, two extremal points (vertices) of Bp
are connected by an edge if and only if they dif-
fer by a single cycle [72]. Since all permuta-
tion matrices are unistochastic, the convex hull
Conv(Up) is precisely Bp. The relations among
Bp, Up and Sp are depicted in the left panel of

Figure 2. They can be summarized as
Sp CUp C Bp, (19)

and
Bp = Conv(Up) = Conv(Sp). (20)

Since we need to minimize and maximize the
linear functions (15)-(17) over a compact convex
set according to Eq. (13), we discuss in the follow-
ing some basics of linear optimization. We focus
on minimization, yet analogous conclusions can
be drawn also for maximization. First, we recall
the general fact that real-valued linear functions
L(X) on compact sets attain their minima at ex-
tremal points. In particular, in our context this
implies

Join L(X) = min L(X) = min L(P). (1)
This becomes obvious in the geometric picture as
it is illustrated in the left panel of Figure 2: to
minimize L(X) one needs to shift the blue hyper-
plane defined by L(X) = const in the direction of
its normal vector until the boundary of the un-
derlying set is reached. If we restrict, however,
the minimization of L(X) in (21) by one (or sev-
eral) linear constraint A(X) = ¢ € R (in our case
AE,(X) = 0), in general only the following in-
equality holds

min L(X) > min

L(X).
Xelp, A(X)=c = XeBp, A(X)=c (X)- (22)

This crucial distinction between unconstrained
and constrained minimization is illustrated in
Figure 2. We can see that in the latter case (right
panel), the minimizers of L(X) over Bp and Up
do not necessarily coincide anymore.

In the particular case where L(X) = [(Xw)
with some potential constraint A(X) = a(Xw) =
¢ for some vector w € RP, the minimization of
L(X) over Up and Bp, respectively, can be sim-
plified to a minimization of [(@) over the simpler
permutohedron P(w) of w?’, given by [73]

Pw)={w cR?|3IX € Bp : ® = Xw}. (23)

The set P(w) inherits the convex properties of
Bp, but its dimensionality is much lower. We

"When w contains repeated elements, as in some of
our cases where some entries of w can be zero, P(w) is
not in a strict sense a permutohedron. When w contains
repeated elements, P(w) no longer has the correct number
of vertices and edges.
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Figure 2: Schematic illustration of unconstrained (left)
versus constrained minimization (right) of a linear func-
tion L(X) (blue line) over the ‘grey’ Birkhoff polytope
Bp. The ‘orange’ subset Up of unistochastic matrices
and the discrete ‘red’ set Sp of extremal elements of Bp
(permutation matrices) are also presented.

513w

S321W

823W

Iw

Figure 3: Schematic illustration of the four-dimensional
Birkhoff polytope Bjs (left) and the two-dimensional per-
mutohedron P(w) of a generic vector w € R? (right).
Vertices are presented as red dots and cyclic notation
for the six permutations is used. Edges are depicted by
solid or dashed lines. On the left panel, solid and dashed
lines are used to indicate different lengths of edges.

present in Figure 3 a comparison between the
Birkhoff polytope Bjs, and the permutohedron of
a vector w € R3. Since the extremal points of B3
are permutation matrices, the extremal elements
of P(w) follow as the permutations of the vec-
tor w. Since all permutations of the entries of a
vector in three dimension are cyclic, all vertices
of Bs are connected by an edge. However, in
general, two extremal points (vertices) of P(w)
are connected if and only if they can be trans-
formed into one another by an adjacent transpo-
sition S; ;41 [73]. Consequently, all edges of P(w)
consist of vectors of the form w = X'w, where
X' are unistochastic, and the following convex re-
laxation is exact

min L(X) = min

= L(X)
XeUp, A(X)=c XeBp, A(X)=c

(@) 2

= min
wWeP(w), a(w)=c

We conclude this section by providing a proof
of the GOK variational principle, Theorem 2. Its

simplicity, also compared to the original proof in
Ref. [21], already demonstrates how effective the
tools from convex analysis are that we have in-
troduced in this section.

Proof. We know that Tr[j,H] = wTXTE is lin-
ear in X, where X = (]<Wk]@l>\2)£;0 € Up.
Therefore, according to Eq. (21) and since Up =
U is invariant under transposition, we can relax
the problem of minimizing Tr[ﬁwfl | over the set
Up of unistochastic matrices X to the set Sp of
permutation matrices P. This yields

T%EUHTT[ﬁwH] = ){Iég}j wIX'E

= min w' PE (25)
PeSp

=w' E.

In the last step we applied the rearrangement in-
equality [74]. O

3 Error Bounds on quantum states and
eigenenergies

In this section, we present our main results,
namely according to the ‘Scientific Problem’ on
p. 4 the lower and upper bounds (12) on the errors
of the ensemble state, and the individual eigen-
states and eigenenergies as function of the ensem-
ble error (11).

First, we notice that the condition of a fixed er-
ror AF,, = ¢ > 0 in the ensemble energy defines
a linear constraint, which is geometrically repre-
sented as an hyperplane A(J) in Bp, P(w), and
P(E). Consequently, there is a straightforward
strategy for determining the lower and upper
bounds of the linear functions (15)-(17) accord-
ing to (13): Following Sec. 2.3, one just needs to
evaluate these functions at the vertices of the con-
vex polytope obtained by intersecting A(J) with
the corresponding original polytope Bp, P(w),
and P(E), respectively. The lowest/highest value
that is found is nothing else than the sought-after
bound diQ)(é, w, H ) for the corresponding quan-
tity Q.

In Figure 4 we illustrate our strategy for deter-
mining the bounds (12) according to (13). The
hyperplane A(¢6) defined by AE,, = ¢ > 0 inter-
sects with the underlying polytope at the orange
region. Since according to the GOK variational
principle the ensemble error AF,, is always non-
negative we can distinguish the vertices of of Bp
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Figure 4: Linear constrained optimization on a poly-
tope. Reference vertices (AE,, = 0) are represented as
squares. The convex constraint domain (AE,, = ¢) is
shown as the orange area, whose vertices are red circles.
On the left panel there is only one reference vertex. On
the right panel we show the case when there are multiple
reference vertices.

and P(w) and P(E), respectively, into two cate-
gories: The so-called reference vertices character-
ized by a vanishing error, AFE,, = 0, and the other
ones whose error is finite, AF,, > 0. Since poly-
topes have finitely many vertices, we can always
find a § sufficiently small such that only reference
vertices obey AF,, < 6. When all entries in w
are distinct, there will always be just one refer-
ence vertex: In the Birkhoff polytope Bp it is the
identity matrix and in the permutohedra P(w)
and P(E) the untransformed vectors w and E,
respectively. When only K < D entries of w are
positive and distinct (and the rest are zero), there
will be several reference vertices. To understand
this, we point out that permuting the energy lev-
els above the K-th eigenstate does not change the
ensemble energy.

By anticipating some insights from the follow-
ing derivations, the criterion of § sufficiently small
can be made precise. For this, and for later pur-
poses we introduce two auxiliary functions:

_ - I 1 T
JwE = kngHil (wk_wk+1>(Ek+1_Ek)
W >Wh+1
Gur = (wi—wp_)(Ep_—Ej).  (26)

The quantities g, g and Gy, g are precisely the
minimal and maximal errors in the ensemble en-
ergy F,, when two eigenstates in the exact en-
semble p,, are swapped. Moreover, our assump-
tion of § sufficiently small translates into the con-
dition 6 < gy E. In that practically relevant
regime, the derived bounds (13) will simplify to
dth)((S, w, ﬁ) = d;Q)(w, H) 6, as a consequence of
the linearity of the constraint function (14) and
target functions (15)-(17).

The procedure for determining diQ) (w, H) con-

sists of three steps: (i) Identification of all edges
of the underlying polytope Bp, P(w) or P(E)
that intersects with A(¢), (ii) computation of the
vertices of the intersection (red vertices in Fig-
ure 4), and (iii) evaluation of the target func-
tion on all vertices of the intersection polytope
and identification of its minimal and maximal
value. In the following sections, we will deter-
mine dS_LQ) (w, H) for two important classes of w:
(a) w with wg>w; >--->wp_1 > 0 which can
be employed in practice only for smaller systems
in order to compute the entire energy spectrum,
and for larger systems (b) w with wy>w;>--->
Wg = W41 = --- =wp—1 = 0 for targeting the
lowest K eigenstates.

3.1 Targeting the ensemble state

Acting in accordance with the ‘Scientific Prob-
lem’ on p. 4, the first quantity whose error range
we quantify as function of the ensemble error
AF,, is the ensemble state p,,. This leads to the
GOK-analogue of the well-known estimate (7) for
the Rayleigh-Ritz principle:

Theorem 3. Consider the ‘Scientific Problem’
for a setting (H,H,w) and recall (14), (15).
The errors Apw(pw) of the ensemble state and
AFEw(pw) of the ensemble energy are universally
related for all w-ensembles Py, according to

a_(w,E)AEy, < Apy < ay(w,E)AE,,, (27)

where for wog>wi > >wp_q

. WE —Wk+1
_ E) = 2 —_
“ (w’ ) kgll%gl Ek+1_Ek
_ Wg—Wk+1
E) = 2 —_— 28
a-‘r(wa ) kglg)fl Ek—}—l*Ek’ ( )
and for wg >wy >+ >wg=---=wp_1 = 0
(K<D-1)
a,(w,E)EQmin{kinIyil %,
WK -1 }
Ep 1—Fk
Wg —Wk+1

E)=2 .

a+(w, E) (253 Eji1—Ej
Sketch of proof. As explained in Sec. 2.3, the
specific linear form of (14) and (15) allows us to
transform the underlying optimization problem
(13) into one on the permutohedron P(w). In
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Figure 5: Permutohedron P(w) of w = (0.5,0.3,0.2).
The face color encodes the value of Ap,, (W) according
o (15). The red line is the intersection between P(w)
and the hyperplane defined by AE,,(w) = § = 0.1
where E = (—1,0,2).

the regime where AE,, = 0 < guw,E, there is only
one reference vertex, namely w. If w is strictly
decreasing (K = D), then we know from Sec. 2.3
that the only neighboring vertices are S;;yi1w,
and the connecting edges are convex combina-
tions between w and S;;yjw. This is why the
lower and upper bounds involve only differences
between neighboring entries in w and E. From
here one can easily work out the intersection be-
tween AFE,, = 6 and P(w). If w instead fulfills
the second requirement (K < D —1), then neigh-
boring vertices to w include not only S; ; 1w, but
also Sk p+1w where k > K. The detailed proof
of Theorem 3 is reserved to the Appendix.

We illustrate in Figure 5 the proof of Theo-
rem 3 with an example Hamiltonian in three di-
mensions. For the concrete plot, we chose the
energy spectrum E = (—1,0,2) and the ensem-
ble weights w = (0.5,0.3,0.2). The hexagonal
region in Figure 5 is the permutohedron P(w)
with elements w. The red solid segment rep-
resents the intersection between P(w) and the
constraint AFE,, = d = 0.1. The error of the en-
semble state Ap,,, which is encoded in color, has
a global minimum at the reference vertex w (bot-
tom left corner). The minimum and maximum of
Apy within the red segment are obtained at the
two end points, and the inequalities provided by

Theorem 3 are explicitly saturated.

Knowing the accuracy of the ensemble state is

of central importance, as it allows us to make
reliable prediction on the accuracy of the expec-
tation value of any observable A with respect to
the optimized state.

A

Corollary 1. The error AAyw = Tr[(pw — pw)A]
of the expectation of an observable A satisfies for
all w-ensemble states poy

IAAy| < || Allasy/ay (w, E)AE,,. (29)

Proof. Since (X,Y)ss = Tr[X'Y] defines an
inner product, the Cauchy-Schwarz inequality
applies and yields |Tr[XTY]| < [|X|us|Y]us,
where | X|us = /X, X)us. With X = A and
Y = pw — pw, (29) then follows directly from
Theorem 3. O

3.2 Targeting the eigenstates

Next, we quantify the range of the errors of the
individual eigenstates. We remark that for £ > K
the error AW cannot be estimated by AFE,, any-
more since |¥;,) does not enter the ensemble jy,
as a consequence of wip>g = 0. For example,
AV g can take any value between 0 and 1 even if
AF, = 0, as the energy of the K-th eigenstate
does not contribute to the ensemble energy. Con-
versely, in order to extract accurate information
about the target excited states, the correspond-
ing weights must be non-zero and distinct from
others.

Theorem 4. Consider the ‘Scientific Problem’
for a setting (H,H,w) and recall (14), (16).
For any k with non-degenerate wg, the error
AV (py) of the k-th eigenstate and AEy(puw)
of the ensemble energy are universally related for
all w-ensembles Py, according to

0 < AT, < b (w, B)AE,, (30)

where

(k) — (wo—w1)1(E1—Eo)’ k=0
b+ (w,E) = 1 k > 831)

min{tg_1,tx} ’
and ty, = (W —wit1)(Egr1—Ex).

Theorem 4 would directly yield a lower and
upper bound on the sum AV = ZkK:_Ol AV, of
various individual errors AWy, yet they will not
be tight. Instead, the optimal bounds on AWV is
given by the following theorem. To formulate it
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in a compact way and for subsequent considera-
tions we recall the Heaviside step function ©(x)
defined as

1, x>0
O(x) =<1/2, x=0. (32)
0, z <0

Theorem 5. Consider the ‘Scientific Problem’
for a setting (H, H,w) and recall (14), (16).
Then, the sum of the errors of the targeted eigen-
states and the error AEy(pw) of the ensemble
energy are universally related for all w-ensembles
Pw in the following way: When wg > wy > -+ >
wp_1, one has

By N~ g, < PDFu g
Gw,E k=0 Jw E

where gy E and Gy g are defined in (26). When
wo>wy > >wrg =---=wp_1 = 0 for some
K <D-1 one has

AE,

w,E

K1
< ZA\I/k
k=0
<max{ 20(K—k—1)
~ k<K ((wr—wgs1)(Epy1—Ey)

bar,,
(34)

Since the error of an eigenstate given by (16)
cannot be interpreted as a function of Xw or
XTE, the proofs of Theorems 4 and 5 will refer
to the more involved Birkhoff polytope Bp rather
than the simple permutohedron. Yet, both proofs
are conceptually still quite similar to the proof of
Theorem 3, and can be found in the Appendix.

3.3 Target Eigenenergies

Finally, we investigate the bounds for the error
AFE; of the individual energies. Unlike other
types of errors we have seen before, AFE}, can be
negative, if k > 0. The reason for this also reflects
the fact that there is no variational principle for
individual excited states. Nonetheless, accord-
ing to (17), AE}, is a linear function of E on the
permutohedron P(E). This means that we can
use the same strategies as above to determine its
lower and upper bounds.

Theorem 6. Consider the ‘Scientific Problem’
for a setting (H,H,w) and recall (14), (17).
For any k with non-degenerate wg, the error

AFEy(pw) of the k-th eigenenergy and AEy(puw)
of the ensemble energy are universally related for
all w-ensembles Py, according to

) (w, B)AE, < A < ) (w, E)AE,, (35)

where
C_ (w, E) = 1 (36)
{wk_wkl, k>0
k 1
cgr)(w, E) = R (37)

The interpretation of these bounds is also clear.
The lower bound, which is negative, is saturated
when the (k—1)-th and k-th energy levels mix
with one another, and the positive upper bound
is realized by mixing the k-th and (k+1)-th levels.

The lack of a variational principle for individual
excited states results in a potential error cancel-
lation which could affect the accumulated error of
all eigenenergies of interest: If one naively sums
up all AFg, the collective error would be grossly
underestimated. To circumvent such a mislead-
ing error cancellation, one should consider instead
the absolute sum Zsz_ol |AE}| of various individ-
ual errors AFE,. By directly applying Theorem
6 D times, we obtain (while assuming a strictly
decreasing w)

D-1 D
0< ) |AE| < — AE,.
= ming.<p—1 (W = wk+1)
(38)

However, much tighter bounds can be derived
without invoking Theorem 6, or the polytope ar-
gument.

Theorem 7. Consider the ‘Scientific Problem’
for a setting (H,H,w) and recall (14), (17).
Then, the sum of the errors of the targeted
eigenenergies and the error AEy,(pyw) of the en-
semble energy are universally related for all w-
ensembles Py in the following way. When wq >
wy>- - >wp_1, one has

2AFE .
—— <) AR
Wo—Wp-1 k=0 (39)
2
< max {} INo»
k<D—1 Wk — W41
When wo >wy > -+ >wg =---=wp_1 = 0 for
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some K <D—1, one has

K-1
B <> |AE
Yo k=0 (40)
< max{m—k’—l)} AE,.
k<K WE —Wk+1

Theorem 7 explicitly demonstrated that the ab-
solute sum of the errors of all targeted eigenener-
gies is bounded from below and above by the error
of the ensemble energy. Remarkably, the pref-
actors of various bounds involve only the weight
vector w, and are independent of the spectrum E
of the target Hamiltonian. The proof of Theorem
7 can also be found in the Appendix.

4  Saturation of Inequalities and Opti-
mal choice of ensemble weights

In this section we first confirm both analytically
and numerically that various error bounds pro-
vided by Theorems 3 - 7 are optimal, in the sense
that they can be saturated for any choice of w,

provided AEy, < gw g. Then, based on the ex-

plicit form dy = d(iQ) (w,E) of the prefactors of

various bounds, we determine how the ensemble
weights w need to be chosen in order to mini-
mize the error range of the quantum states and
energies targeted through the GOK variational
principle. In that context, we also explain how
these insights can be used in practice to improve
numerical approaches in terms of the accuracy of
their predictions.

4.1 Tightness of error bounds

In the following, we demonstrate by analytical
means that the error bounds provided by Theo-
rems 3 - 7 are optimal, i.e., they cannot be re-
placed by more restrictive bounds. We already
know that such tightness is given for the bounds
in Theorems 3, 6, 7 as a direct mathematical con-
sequence of their derivation. Quite in contrast,
the derivation of the bounds in Theorem 4 and
5 involved a relaxation of the optimization (13)
from the underlying set U, to the larger Birkhoff
polytope By according to (22).

The strategy for confirming tightness is
straightforward since we just need to provide for
any valid w a corresponding p,, which saturates
the corresponding inequality between the errors.

In order to illustrate this, we consider as an ex-
ample the upper bound in Theorem 7 (despite
the fact that its tightness is already known). Let
w be the underlying non-degenerate weight vec-
tor and k the index for which 2/(w; —wiqq) is
maximized, i.e.,

2

k = arg max {} (41)
I<D-1 (W) — W41

Then, according to Theorem 7, the sum of the ab-

solute errors of various eigenenergies is bounded

from above by

D—1 2
Y IAE|< AE,.  (42)
=0 Wk —Wk+1

To confirm that this bound can be attained, we
construct a trial state p,, for which this inequality
is saturated. Our p,, is obtained from the exact
state py, by applying the following Jacobi rotation
Jrrt1(0)

| W) — cos(0)|Pg) + sin(0)[Vgy1),

|Wit1) —> —sin(0)|¥g) + cos(0)|¥ii1), (43)

while keeping all other states unchanged. This
leads directly to (recall Eq. (14))

AE,, = sin?(0)(w, —wi11)(Exr1—Er), (44)

and

D1
|AE)| = 25in*(0) (g1 — Ey). (45)
=

Comparing these two equations leads to

D—1
> |AE| =
=0

i.e., the absolute sum of the individual energy
errors is proportional to the ensemble error, ex-
actly by the prefactor stated in Theorem 7. More-
over, based on (44) and by recalling (26) we con-
clude that w-ensemble states p,, saturating the
bound in Theorem 7 exist at least as long as
AFEy < (wg—wkt1)(Eg+1—FEk). It is worth notic-
ing that the right-hand side is never smaller than
gw.E in (26). Last but not least, it is not difficult
to see that such specific ‘saturating’ Jacobi ro-
tations (43) also exist for various other bounds,
in particular for those of Theorem 4 and 5 and
also for the second case of weight vectors with

2AE,,

o Pw 46
Wk — W41 ( )

Accepted in { Yuantum 2024-11-09, click title to verify. Published under CC-BY 4.0. 11



w x (5,4,3) w x (2,1,0) w o (16,4,1) w x (64,8,1)
1.5 1.5 1.5 1.5
s 1 1 1 1
QL
g 05 0.5 0.5 0.5
0 0 0 0
0 1 2 3 0 1 2 0 1 2 3 0 1 2 3
1 1 1 1
205 0.5 0.5 0.5
0 0 0 0
0 1 2 3 0 1 2 0 1 2 3 0 1 2 3
s03 3 3 3
) 2 2 2
ad 1 1 1 1
0 0 0 0
0 1 2 3 0 1 2 0 1 2 3 0 1 2 3
2 ‘ 2 2 2 : ‘
B
g 0 0 0
2 -2 -2 -2
0 1 2 3 0 1 2 0 1 2 3 0 1 2 3
= 8 8 : : 8 : 8
<
- 4 4 4 4
ol
0 0 0 0
0 1 2 3 0 1 2 0 1 2 3 0 1 2 3
AE,, AF,, AFE, AE,

Figure 6: Numerical demonstration of the error bounds predicted by Theorems 3 - 7 and their tightness. For an
energy spectrum E = (—1,0,2) and four exemplary weight vectors w, the relations between various errors and the
ensemble error AE,, are presented for 10° randomly sampled w-ensemble states p,, = UpwU‘L (orange points).
Theoretical bounds (black solid lines) turn out to coincide with the actual bounds given by the sampled data (red

dashed lines).

wy > ... > wWg_1 > W = ...wp_1 = 0. This
eventually confirms that all our error bounds are
optimal in the sense that they are mathemati-
cally tight, provided the ensemble error AFE,, is
small enough, i.e., AEy, < gy . The numerical
analysis in the subsequent section and the ana-
lytical example above reveals that for some error
bounds, the range of AF,, for which the linear
bounds are tight extends even beyond g, . Yet,
from a practical point of view it does not make
sense to elaborate more on that point since the
relevant regime is the one of reasonably good con-
vergence, i.e., AFE,, sufficiently small.

4.2 Numerical illustration of error bounds

To directly showcase the universality and the
tightness of our bounds, we present in Figure 6
and 7 various errors in the quantum states and
eigenenergies, of randomly sampled eigenbases
encoded as unitary matrices. The unitaries are
parameterized as exponentials of antisymmetric
matrices, whose elements are sampled uniformly
in the interval [—m,7]. Additionally, all possi-
ble permutation matrices are included into the

samples. We test two different scenarios: (a) a
Hilbert space of dimension D = 3 where all three
eigenstates are targeted (Figure 6), and (b) a
Hilbert space of dimension D = 5 where the low-
est three eigenstates are targeted (Figure 7). For
both scenarios, we choose four exemplary weight
vectors w: One that has nearly equal entries,
the one given by (52) and (53) which turns out
to minimize the accumulated energy error AFE,
and those characterized by w;/w;y1 = 4, and
w; /wit+1 = 8, respectively (excluding zeros).

As the results shown in Figures 6 and 7 clearly
reveal, our analytic error bounds are satisfied and
can be well saturated for both scenarios. The
latter is evident by the fact that the theoreti-
cal bounds (black solid lines) and the statistical
bound based on the sampled data (red dashed
line) coincide. Yet, we also see that already for
the relatively small dimension D = 5, the sam-
pling of 107 trial states p,, = U pwU tis not suf-
ficient anymore to fill out the entire area of ad-
missible pairs (AQ(pw), AFEw(pw)). This is due
to the increase of the dimension of the manifold
of unitaries as D?, which in turn highlights the
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Figure 7: Numerical demonstration of the error bounds predicted by Theorems 3 - 7 and their tightness. For an
energy spectrum E = (—1,0,2,5,8) and four exemplary weight vectors w, the relations between various errors and
the ensemble error AE,, are presented for 107 randomly sampled w-ensemble states j,, = UpwUT (orange points).
Theoretical bounds (black solid lines) turn out to coincide with the actual bounds given by the sampled data (red

dashed lines).

value of our analytical analysis in the previous
and subsequent section. Moreover, by compar-
ing the numerical results for the four exemplary
weight vectors w, we observe the following trends.
First, the range of possible errors Apy,, AV, AE
defined by the respective lower and upper bounds
is, the narrower the more equal various weights
wy are. In contrast, for AV, AE) the range gets
narrower as the weight gaps |wy — wy11| get big-
ger. In practical applications, however, the ideal
selection criteria for w would not refer to the
narrowness of the error range but instead to the
‘flatness’ of the upper bound, i.e., the value of
the corresponding prefactor. Indeed, the smaller
the upper bound is, the smaller must be the er-
ror of the quantity of interest and thus the more
accurate are the predictions made by the numer-
ical approach. In that regard, for all quantities
except the ensemble state, the w of the second
column, namely an equally spaced w, seems to
be superior. Since the latter observation might
be subject to the specific energy spectra chosen
here, we will elaborate in the next section more
on the crucial point of weight selection. In partic-

ular, we will succeed in determining by analytical
means the optimal weight vectors for each quan-
tity of interest, and their potential dependence on
the underlying energy spectrum E.

4.3 Optimal choice of weights

The main results of our work, the explicit ex-
pressions of the linear error bounds in Theorems
3 - 7 allow us to determine in the following the
optimal auxiliary weights w,, for practical appli-
cations. Since we know from the theoretical and
numerical analyses in the previous sections that
various error bounds are tight, we just need to
minimize for each quantity @ of interest the pref-
actor d(f)(’w,E) of its upper bound. In that
way, we will identify the optimal vectors w for
which the predictive power of any numerical ap-
proach based on the GOK variational principle is
maximized: given an error AFE,, of the ensem-
ble energy, these are exactly those w for which
the largest possible error AQ that @) may have is
minimal.

Before we derive the optimal weight vectors,
two crucial comments are in order here concern-
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Quantity Error Theorem Lowest Upper Bound Optimal w
[Pg) AUy 4 k(r—+ry)+ry wox (r—+rq,...,r—+ry,r4,0,...,0)
——
k—1 D—k
- D—1 D—1 _ D—1 _\D-1
A D) =0 DV 5 pe1 2K(Ep—Ep_1)~" wO(( 1=k41(E1=Ei-1) l)k:O
_ K—1 K _ D—1 _ D—-1
(! o AV 5 S i 2k(By—Er_1)T'O(K—k) | w o (Zl:kH(El—El_l) 1®(K—Z))k:0
o |AEy| 6 2k + 1 w (2,...,2,1,0,...,0)
—— =
k D—k—1
(EP) | S AR 7 D(D—1) wo (D—1,D-2,...,1,0)
(B ) A 7 K2 wo (2K—1,2K-3,...,1,0,...,0)

Table 1: The lowest upper bounds and the corresponding optimal choice of w (normalized to 1) for various errors of
the quantum states and eigenenergies. We defined 71 = |E) — Ex+1|™!, ©(z) denotes the Heaviside step function

(32), and K satisfies K <D—1.

ing the practical relevance of the anticipated re-
sults and our error bounds in general. At first
sight, one may wonder how our results can be
applied in practice, given that they necessitate
the approximate knowledge of AFE,, and for some
quantities () even E. First, as far as AFE,, is
concerned, we recall that in numerous variational
optimization methods systematic extrapolation
techniques are available for determining good es-
timates of the exact variational energies. Exactly
the same schemes could be used in the context of
the GOK variational principle. Prime examples
would be the schemes in the density matrix renor-
malization group (DMRG) ansatz for extrapo-
lating to the results of infinite bond-dimension
[75-82] and in the selected configuration interac-
tion approach for extrapolating to the full con-
figuration interaction ansatz involving all elec-
tron configurations [83, 84]. Second, for those
quantities () whose optimal w will depend on the
energy spectrum E, one could get a reasonable
estimate of E through a low-level method such
as the Hartree-Fock ansatz or any cheaper post
Hartree-Fock approach. Most importantly, this
initial estimate of E and resulting w can further
be improved during the course of the variational
minimization of the ensemble energy. We explain
this exemplarily for the state-average CASSCF
approach [50-52, 54|. There, one first optimizes
the active orbitals via a gradient step in order to
minimize the ensemble energy F,,. Then, in a
second step, one determines the targeted eigen-
states and their energies within the active space
of the updated orbitals through some exact or ap-

proximate diagonalization technique. This two-
step procedure is repeated numerous times until
convergence is reached. Apparently, one obtains
more and more accurate estimates of the energy
spectrum E during the optimization and could
therefore constantly update w in order to maxi-
mize the predictive power of the final results.

In the following we present and discuss the
optimal weight vectors which reduce the error
ranges of AEy, AE, AV, and AW, respectively.
We remark that the underlying reasoning, how-
ever, would not make any sense for the error Ap,,
of the ensemble state, since p,, itself explicitly de-
pends on w. In particular the upper error bound
in Theorem 3 vanishes for w « (1,1,...,1) be-
cause there exists only one quantum state p,, =
pw = 1/D for that specific weight vector. We
commence with the practically most important
case of targeting individual energies Fj. Since
the error AE};, can be also negative, we first merge
both bounds in Theorem 6 to a single one,

0 < |AE| < max {M,;il,,u,;l} AE,. (47)
Here, we introduced the more instructive param-
eters

P =wp—wiy, [ <D-1

UD—1 = Wp-1,

(48)

where obviously p; > 0 for all [ since w = wt.
Additionally, the normalization condition trans-
lates to

D—

—_
[y

w= 3+ Dm=1,  (49)
0

= =
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which implies in particular g < 1/(1+ 1).
Throughout this section, any p is assumed to re-
spect these conditions such that the correspond-
ing w is indeed a probability distribution. Min-
imizing then the prefactor of the right-hand side
in (47) over all admissible p yields in a straight-
forward manner

| o
=2k+1
i mas (it = 2k 41 (50)

realized by pr = pgpr1 = (2k+1)"%. This trans-
lates to the optimal weight vector given by

1
=—(2,...,2,1,0,...,0). ol
w 2]€+1(’ 3 “y Ly Yy 7) ( )
k D—k—1

In this vector, the gaps between those consecutive
weights which involve the target eigenstate (k)
are maximized, while all other gaps are minimized
to 0. The corresponding lowest upper bound for
AEy/AE,, is 2k + 1, which increases linearly in
k. Remarkably, this rationalizes in quantitative
terms the common expectation that the higher an
excitation lies, the larger can be the error of the
corresponding energy Ej.

In the following we present and discuss the op-
timal w and the corresponding lowest upper er-
ror bounds also for the other relevant quantities.
These additional key results of our work can be
derived similarly to those for Ej. Due to the tech-
nical character of their derivations we refer the
reader to Appendix B for various details.

If we are interested in calculating all D eigenen-
ergies accurately, the optimal w is determined by
minimizing the upper bound of ZkD;Ol |AF)| in
Theorem 7. By recalling the optimal w for an in-
dividual energy FEj in (51), it is less surprisingly
that the optimal w follows here as

2

w—D(D_l)(D—l,D—Q,...,l,O). (52)
This means that all gaps between consecutive
weights are equal and thus equally maximal. The
corresponding lowest upper bound in Theorem 7
follows as D(D —1). If we are interested in calcu-
lating just the lowest K (0 < K < D—1) eigenen-
ergies, which is the more sensible setting for real-
istic quantum systems with exceedingly large D,
the following w turns out to be optimal

w 2K—1,2K-3,...,3,1,0,...,0). (53)

:ﬁ(

This result makes sense as well from an intuitive
point of view: for the lowest K energies, the
weights between consecutive energies are maxi-
mally distinct which is achieved also by assign-
ing the weight 0 to all higher energy levels. The
corresponding lowest upper bound for the ratio
S| AER|/AE,y, follows directly from (53) and
Theorem 7 as K2, which grows quadratically as
function of K.

To discuss the case of the k-th eigenstate |¥y),
we recast the upper bound in Theorem 4 as

AU, gmax{ = ,”}, (54)
HK—-1 Mk
where r4 = |Ey — Ex+1|™'. The lowest upper

bound then follows as

min max{ = ,”}:k(r_ +ry) g,
Mipg 1 >0 Hk—1 Mk
(55)

with pp—1 = r—/lk(r— +ry)+ry] and py, =
ry/lk(r—+ry)+r4y]. This leads to the optimal
weight vector given by

1
= X
k(r—+ry)+ry .
(r—4ry,...,r—+ry,ry,0,...,0). (56)
——

k D—k—-1

In contrast to the optimal weights for AFE; and
AFE, which are independent of the energy spec-
trum E, the optimal gaps p; between consecu-
tive weights are now balanced by the correspond-
ing energy gaps. It are not the gaps that are
maximized by the optimal weight vector but the
product of the weight and energy gaps. In a sim-
ilar fashion we find also the optimal weights for
targeting multiple eigenstates. When all D eigen-
states are considered, the optimal w for achieving
the lowest upper bound for ZkD:_Ol AW, follows as

D1 D—-1
w ( > (B - Ej—l)l) : (57)

J=k+1 k=0

whereas when only the lowest K < D —1 eigen-
states are considered, the optimal w for achieving
the lowest upper bound for Zf:_ol AW, follows as

D1 D—1
w o ( S (B - Bia) 'K j)) .

(58)
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We summarize the optimal weight vectors and
lowest upper bounds for all relevant quantities in
Table 1. It is worth recalling here that this second
key accomplishment of our work was only possi-
ble as we succeeded in the first place in deriving
the universal and optimal error bounds presented
in Theorems 37. With the ‘instruction manual’
Table 1 at hand, the optimal w can be chosen
for any quantity @ of interest. This will then
maximize the accuracy of any numerical approach
based on the GOK variational principle such as
GOK-DFT [25-37], w-RDMFT [42-46], specific
quantum Monte Carlo techniques [47-49], tra-
ditional quantum chemical methods [50-54] and
quantum computing [55-63].

5 lllustration:
Eigensolver

Variational Quantum

To showcase the practical relevance of our re-
sults, we apply our theorems within the frame-
work of variational quantum eigensolvers (VQE)
[85], used to solve the transverse Ising model

A N A A A

H=Y aXi+ Y.  JijZiZ;, (59)

i=1 1<i<j<N

where X'Z-, Z; denote the Pauli operators for the -
th spin. For this proof of concept, it is sufficient
to chose N = 2, resulting in a Hilbert space of
dimension D = 22. The coefficients a; and Ji; are
fixed random numbers uniformly sampled from
the interval [0,1). In our work they are given by
J12 = 0.09000, a; = 0.32696, a2 = 0.80430 which
results in the following eigenenergies

Eo = —1.13483,
E; = —0.48575,

' (60)
FEs = 0.48575,
F3 = 1.13483.

The quantum simulations were conducted us-
ing Pennylane [86], a quantum machine learn-
ing and simulation library. To diagonalize the
Hamiltonian (59) in virtue of the ensemble varia-
tional principle through a unitary transformation
U , we resort to the parametric ansatz proposed
in Ref. [87]. By increasing the circuit depth, the
ansatz for U is then capable of diagonalizing the
Hamiltonian (59) with arbitrary precision. Three
different weight vectors w are employed,

w™ x (47,37 2" 1"), n=1,2,3  (61)

to demonstrate the effect of the choice of w in
the error of the quantum states and eigenenergies
during the optimization of the circuit parameters
using the Adam algorithm [88].

In Figure 8, with present the errors of the
ensemble state (Ap,), the first excited state
(AW¥;) and eigenenergy (AFE7), as well as
the accumulated errors of various eigenstates
(AU = S23_ AU,) and eigenenergies (AE =
S 3 _o|AEyL|), against the error AE,, of the en-
semble energy. The red data points record the
evolution of the errors during the optimization of
the circuit parameters, while the upper and lower
bounds of the errors given by Theorems 3 - 7 are
shown as black lines. In contrast to Figure 6 and
7, we opted here for a double-logarithmic scale for
various error types except for AFE; (which can be
negative), in order to resolve the behavior of the
errors in the important regime where AE,, is ar-
bitrarily small (regime of convergence).

By following in each plot from the right side
the red data points we observe that during the
course of the optimization the variational en-
semble energy F,, gets more and more accurate.
Since the individual and accumulated errors AQ
of the eigenenergies and eigenstates are linearly
bounded from above by AF,, according to Theo-
rems 3 - 7, the excellent convergence of the latter
enforces an equally excellent (or even better) con-
vergence of the former. In particular, for the er-
ror quantities which are bounded from above and
below by positive bounds (first, third and fifth
row), the corresponding black lines form “chan-
nels” which “guides” the respective errors AQ to
the regime of excellence convergence. Note here,
that the linear positive bounds d_AF,, < AQ <
d+AF, in Theorems 3, 5, 7 translate here to

log(d-) + log(AEw) < log(AQ)
< log(d4) + log(AEy).
(62)

Accordingly, the vertical arrangement of any
black line is defined by an offset log(dsy) and
the width of each “channel” follows as log(dy) —
log(d_). The other two error quantities (second
and fourth row) are also bounded from above by
the ensemble error but they do not have a pos-
itive lower bound. This means that they may
vanish even if the ensemble energy has an error
AFE,, > 0. Indeed, this occasionally happens dur-
ing the course of the optimization for the error
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AFE¢ which changes signs from time to time.

Comparison of the three columns confirms
again that the choice of the weights can have
a strong impact on the narrowness of the error
“channels” of Apy,, AV, AE and the vertical ar-
rangements of various black lines. For instance,
according to the bounds in Theorem 3, the “chan-
nel” of Ap,, could become arbitrarily narrow by
making various weights more and more equal.
Even changing the weights from those of the last
two columns to just an equally spaced w (first
column) has already a huge effect on the narrow-
ness. Yet, in that context one must not forget
that changing w even further to a constant weight
vector w o (1,...,1) would trivialise the search
space underlying the GOK variational principle
(as explained above) and thus the latter would
loose its predictive power entirely. Moreover, we
observe in agreement with the predictions made
by Table 1 that the first weight vector, which is
close to the optimal one for the accumulated en-
ergy error AFE, lowers indeed the upper bound
compared to the other two w, yet the effect is
not that drastic. At the same time, this equally
spaced w is far from being the optimal choice for
the other error quantities (c.f Table 1). For in-
stance, in the fourth row a wider error range fol-
lows compared to the second and third column.
That is not surprising since the tightest bounds
on AF; are those obtained by maximizing either
wy —wa (upper bound) or wy —w; (lower bound)
with the effect of sacrificing the accuracy of all
other eigenstates and eigenenergies. This empha-
sizes the conceptual difference between the errors
of individual excited states and the error of the
ensemble state. This in turn suggests a potential
for error cancellation due to the absence of a vari-
ational principle for individual excited states. All
these effects will be even more well-pronounced in
bigger systems with larger Hilbert spaces.

Finally, we observe that many of the error
bounds in our example are occasionally (approxi-
mately) saturated during the optimization of the
circuit parameters. Such a saturation actually
occurs for all three weight vectors. This fur-
ther demonstrates the particular relevance of our
analytic error bounds which apparently can dic-
tate the behavior of the errors AQ as function of
AFE,,. The worst-case scenario where the error of
the eigenstates or eigenenergies is maximized for
a fixed AF,, could indeed occur during the op-

timization process. From this concrete example,
we therefore conclude that the weight vector w
of the ensemble state is more than an auxiliary
quantity, and that a carefully chosen w can lead
to drastic improvements in the errors of the indi-
vidual eigenstates and eigenenergies, and signifi-
cantly improve the predictive power of the GOK
variational principle.

6 Summary and Conclusions

We have provided a sound basis for the ensem-
ble variational principle [21] which has been pro-
posed by Gross, Oliveira and Kohn as a semi-
nal extension of the famous Rayleigh-Ritz vari-
ational principle. It minimizes the energy ex-
pectation value Tr[p,H] of a quantum system
over ensemble states py = Y1 g wi| Vi) (Pl
with fixed auxiliary spectrum w in order to tar-
get excited states by variational means. By em-
ploying elegant concepts from convex geometry
we confirmed by constructive means the predic-
tive power of this GOK variational principle and
proved the validity of the underlying critical hy-
pothesis: Whenever the ensemble energy is well-
converged, the same holds true for the individual
eigenstates and eigenenergies Ej, provided vari-
ous auxiliary weights wy were chosen differently.
To be more specific, as our main accomplishment,
we derived linear bounds

A9 (w,E) AE, < AQ < d¥(w, E) AE,

(63)
on the errors AQ of these sought-after quanti-
ties. A detailed analytical and numerical analy-
sis in Section 4 has confirmed the tightness and
practical significance of these error bounds. For
instance, in practical applications such as the
variational quantum eigensolver (Section 5), they
dictate the convergence rate of various physical
quantities as function of the error of the varia-
tional ensemble energy FE,,.

Moreover, a comprehensive analysis of the ex-
plicit form of the prefactors diQ)('w,E) allowed
us for each physical quantity of interest to deter-
mine the corresponding optimal auxiliary weights
w. The corresponding Table 1 which summarizes
these key results will serve as an ‘instruction man-
ual’” for practical applications. Following it will
then maximize the predictive power of the GOK
variational principle, and thus the accuracy of
any ensemble-based numerical approach, such as
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Figure 8: lllustration of the practical relevance of our main results, Theorems 3 - 7, in the context of a variational
quantum eigensolver applied to the transverse field Ising model: During the course of optimization (results depicted
as red points), our theoretical bounds shown as black solid lines guarantee convergence of various relevant quantities

as the ensemble error AFE,, gets arbitrarily small.

GOK-DFT [25-37], w-RDMFT [42-46], specific
quantum Monte Carlo techniques [47-49], tra-
ditional quantum chemical methods [50-54] and
quantum computing [55-63].

In summary, our work cemented the GOK
variational principle as the cornerstone for ex-
cited state methods in complete analogy to the
Rayleigh-Ritz variational principle for ground
state methods. From a practical point of view,
our analytical error bounds reveal the fundamen-
tal guiding principle for designing optimal weight
vectors w for computing excited states and ener-
gies in physics, chemistry and materials science.
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A Proofs of Theorems

In this section we provide the proofs to the theorems in the main text. Most of the proofs will resort
to the geometric picture of the Birkhoff polytope or permutohedron. To be more specific, we will
formulate the proofs in terms of a linear constrained optimization problem on a convex polytope. The
linear constraint is represented by a hyperplane A(J) (defined by the equality constraint AE,, = ¢)
that cuts through the polytope and intersects at various edges. Each intersected edges connects two
vertices on the polytope, one on the negative side of A(J) (AE, < d), which we will call a (—)-vertex
(in the main text this is called a reference vertex), and the other on the positive side (AFE,, > ), which
we will call a (+)-vertex. By identifying all (£)-vertices one effectively identifies all edges intersected
by the linear constraint. The linear constrained convex optimization problem is then reduced to the
convex optimization problem within the convex intersection between the constraint and the polytope.

A.1 Proof of Theorem 3

Proof. We first reformulate the statement in terms of the permutohedron P(w). Recall that

Apw(w) = 2w (w—w), (64)
AEy(w) = ('d)—w)TE, (65)

&

where w € P(w). We wish to determine the range of Ap,,(w), for a given value of AE,(w) = §
where 0 < d < guw,E-

In that case, one easily verifies that the only (—)-vertex is w. The type of neighboring vertices to
w (the (+)-vertices) depends on the number of unique elements in w. If w is such that wy > wy >
.-+ > wp_1, then there are D —1 neighboring vertices, namely the D — 1 adjacent transpositions of
w. If w is such that wg > wy > -+ > wg = -+ = wp_1 = 0 for some K < D—1, there are also
D—1 neighboring vertices, but they consist of K adjacent transpositions Sy, 41 where 0 < k < K, and
D — K non-adjacent transpositions Sk _j 41 where & > K. The index tuples (k,1) such that Sj jw is
a (+)-vertex is conveniently grouped by the set Z,,.

The linear plane A(d) defined by AE,,(w) = J intersects all edges connecting the vertex w, at
points

Vi = (1 = pr)w + prySraw, (k1) € Ty (66)

where py; = 0/[(wr,—w;)(E;—Ey)]. Since the intersection A(§) N P(w) is again convex with extremal
points being the vy ;’s with (k, 1) € Z,,, we can deduce that for any v € AN P(w)

whe, el < Bpulv) = Xy Aow(Vis) (67)

By substituting in the exact expression of the error of the ensemble state at the points vy ;’s

Wi — Wy

Apuw (Vi) = 25m, (68)
we arrive at both the lower and upper bounds. ]
A.2  Proof of Theorem 4
Proof. Recall that

APR(X) = 1 - X, (69)
AE,(X) = w'(XT-1)E, (70)

where Xj; = [(U|¥;)|? is an unistochastic matrix in the Birkhoff polytope Bp. We are interested in
the region where 0 < AE,, = < guw E-
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It is not difficult to see that the lower bound for AWy is zero, since a finite error in the ensemble
energy can be due to errors in other eigenenergies than Ej. For the upper bound, let us suppose w
contains K positive entries. Then the (—)-vertices on the Birkhoff polytope are 1 and permutations
S that act only non-trivially on the zeros elements of w. According to the property of the Birkhoff
polytope[72], (+)-vertices are permutations that differ by a single cycle from the (—)-vertices. Notice
that for any permutation S, the resulting error AW in the k-th eigenstate can only be 0 or 1.
Therefore, to find the upper bound of AWy, it suffices to find among the (4)-vertices involving the
k-th eigenstate, that realizes the smallest error in the ensemble energy (and thus maximizing the
ratio AUy /AE,,). Such smallest error is given by min{gy_1 x(w, E), gy x+1(w, E)}, for £ > 1, where
grl(w,E) = (wy, —w;)(E;— Eg). When k = 0, the smallest error is simply go1(w,E). We therefore
conclude that

osmg{gﬁ(m’m’ k=0 (71)
AEy max{g,;317k(w, E)a gl;,lchrl(w’ E)}’ k>1.

O

A.3 Proof of Theorem 5

Proof. The proof follows similarly to the proof of Theorem 4. We assume there are exactly K positive
elements in w. The (—)-vertices are still the identity matrix 1 and permutations S_ that acts only
non-trivially on the zero elements of w. And the (+)-vertices are permutations that differ by a single
cycle from the (—)-vertices.

A key difference is that for a (+)-vertex S, the corresponding error of the K lowest eigenstates is

K-1
1<) AY,(S4) < K. (72)
k=0

Notice that the error cannot be zero, as that can only be realized by one of the (—)-vertices. When
w is strictly decreasing (K = D), the lower bound is improved to 2, since the minimal number of
misplaced eigenstates is 2 in that case. The exact (integer) value of the error depends on the number
of non-zero elements of w that S non-trivially acts on. We define the following two helper quantities
N 4 Wt T
O E = Z{jng;((wi —wi)(E; — E;),
s@

: bt ot
wE — K%%K(wz - wj)(Ej - E}).

(73)

Lemma 1. Let S; = S,S_ be a (+)-vertex of the Birkhoff polytope with respect to the hyperplane
A defined by 0 < AEy, = 0 < gwg. Here, S_ is a (—)-vertex and Sy is a single L-cycle (L > 2)
denoted in cycle notation as n = (ny,ny,--- ,ny) where ezactly L many wy,, ’s are positive and distinct
(1 < L' < L), while the others are zero. Then we have

L
AEw(SL) < min (L/, \‘2J> Gw,E~ (74)
When 5$)E < 25£3?E and L' > 1, we have
(L' = 1)d )5 < Ay (SL), (75)
and when 58)13 > 2(5ng or L' =1, we have
(2L — 1)8\ < AEy(Sy). (76)
Specially, when L' = L, the inequalities become
L
(L - 1)gw,E < AE’w(SL) < LQJ Gw,E- (77)
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Proof. For the upper bound, we use the rearrangement inequality

|L/2]
AEw(Sp) < > (wp=w,s By =By

P L [0 ES] [ (78)

< min (L', V;J) GwE-

The lower bound can be proven by induction. When L = 2, the lower bounds for AE,,(Sz) are
trivially satisfied. Let Sp41 = SnS_ where Sy, is a (L + 1)-cycle with n = (ny,ne,...,nK,np+1)
and L > 2. Using the cyclic properties of the cycle notation, we can assume that ny; is the index
corresponding to the largest energy (or equivalently the smallest weight). By the assumption of the
induction, the L-cycle Sy, representing (n1,ne,...,ny) satisfies the lower bound. Then

wT(SL+1—]l)E

L—1
= Wn, (B, —En) +wn, (En, ., —FEn,)
lzzl l I+1 1 L L+1 L (79)

+ wnL+1 (Enl _EnL+1)

=w (S, —1)E + (wp, —wn,,, ) (En Ep,).

L+1

Each step of induction acquires an additional term. Notice that the additional term vanishes if and
only if both wy, and wy,, , are zero. When at least one of them is positive, we have the following
inequality

min(8y g, 84 s) < (W, ~ Wy ) (Eny s —Eny). (80)

Depending on the order of the additional index np41 at each step of the induction, which we call

a line-up, the above bound can be made tighter. Namely, if two consecutive elements ny, and np;

are positive, we can conclude the lower bound of the additional term is 68)]3 If only one of them is

(1)

positive, the lower bound becomes 5J7E. If we use 1 to represent a positive wy, and 0 for a vanishing
one, then the line-up that minimizes the accumulated sum in the induction is one of the following two
cases. When 5$)E > 251(3)]3 and L' > 1, the minimizing line-up is

1,1,...,1,0,0,...,0.
———
Ll

The accumulated sum in the induction is then
(L'~ 1)8) < AEw(SL). (81)
When 5$)E > 261(3?E or I’ = 1, the minimizing line-up is

1,0,1,0,...,1,0,0,...,0, L'<L/2,
2L

0,1,0,1,...,0,1,1,...,1, L' >L/2.
2(L—-L")

Straightforward algebra shows that the accumulated sum in the induction is then

(2L' —1)60)s < AEw(Sy). (82)
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From Lemma 1, we can derive that for a (4)-vertex Sy, acting non-trivially on L’ non-zeros elements
of w, the following lower bound on the error of the lowest K (K < D—1) eigenstates

Shoo Ak(SL) L' >_1 (83)
AEw(S)  ~ min (1, |4]) Gup ~ Cuwe

When K = D, we always have L' = L, which gives us a tighter lower bound

Yoo ATk(SL) 2
AEw(Sr)  — Guwr’

)

(84)

For the upper bound, we again separate the two cases. According to Lemma 1, when 6,8)]3 < 251(3)]3
and L' > 1

K-1 1
Sig AVk(SL) L 2 (85)
AEw(St) (- 1)y~ 60,

where equality is achieved when L' = 2. When 5$)E > 251(3,)13 or L' =1,

SR ATL(S)) L

< < ) 86
AW  u -1y 00, (86)

where equality is achieved when L’ = 1. Specially, when K = D, we always have L' = L > 2.
Therefore

D—1
AE’w(SL> (L - l)gw,E Jw,E
O
A.4  Proof of Theorem 7
Proof. Let us first rewrite the ensemble energy error as
-1 koo
ABy =Y (wp—wiy1) Y (Ej—Ej)
k=0 j=0
Do (88)
= ) (wp—wgy1) X,
k=0

where wp = 0 and F}, = Z?:O(Ej — Ej). Fj are non-negative thanks to Theorem 1, and specially
Fp_1 =Tr[H — H] = 0. If w is strictly decreasing, then (defining F_; = 0)

D-1 D-1 D-1
STIAEL =) |Fi—Fea| <2) Fi
k=0 k=0 k=0
5 D—2
< Z (wk—wk+1)Fk (89)

ming<p—1(Wk—wk+41) (=
2AEy,

ming<p_1 (Wg —Wpt1)
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For the lower bound, we first define the positive and negative parts (both as positive values) AE, of
the vector AE = (AEk)kDZ_OI, where the negative and positive entries are set to zero, respectively.

D1
AEy, =Y wi[(AEL), — (AE-)]
k=0
D-1 D-1
<wo Y (AEL)r —wp_1 Y (AEL) (90)
k=0 k=0
wo—w e
_ 0~ "Db-1 3 |AE.

2 k=0

In the last line we used the identity (recall that P~ (AFE ), — SP-HAE_ )y = Fp_1 = 0)
D-1
> (AE)
k=0

Ifwg_1 > wrg > wgy for some 0 < K < D — 1, then the total error of the lowest K eigenenergies
are bounded from above similarly as

D—
Z |AEL|. (91)

l\D\H

K—1 K-1 K-2
SIAE =Y |Fe—Fp1| <2 FutFr
k=0 k=0 k=0 (92)
20(K—k—1
< AE, max {@(’ﬂ)} .
k<K Wg — W41
For the lower bound, we simply observe that
B K—1 K—1
By <> wi| AEg| <wg Y |AE], (93)
k=0 k=0
which completes the proof. O

B Derivation for optimal weight vectors

Recall the p-notation for parameterizing a non-increasing weight vector w

Pk = Wi — wit1, k<D-—1.

(94)
UD-1 = WpD-1
where pg’s satisfy
0< < 1
PE=Frn
D—1 (95)
dDo(k+ D=1
k=0

Now we would like to solve the following minimization for the linear upper bound of the error of all
eigenenergies ZkD:_Ol |AE}|
min max i (96)
B k<D-1 U
Notice that up_1 does not enter the above expression. Therefore, we can reformulate the minimization
with only inequality constraints on (uk)kD;OQ. To be explicit, the minimization becomes

min max . 97
0<pne po1<1/(k+1) k<D= 1”’C (97)
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Figure 9: Pictorial illustration of the derivation for optimal weights. See text for more details.

In Figure 9 we illustrate how the minimum is obtained. The gray shaded area is the domain of
minimization of p. The equation maxg.p_1 ,u,;l = a is an L-shaped curve (in color red) with its
corner on the line defined by pug = w1 = --- = up_o. As the curve moves away from the origin
along the line g = 1 = --- = pp_s, the value of maxi.p_1 plzl decreases. It is then clear that
the minimum is obtained as the curve touches the slanted boundary of the gray domain, defined by
po+2u1 + -+ (D—1)up—2=1and up_1 = 0. Solving its intersection with the line pg = p3 =--- =
Wp—2, we obtain the optimal weight vector
= 2 D—-1,D-2 1 98
w—m( —-1,D-2,...,1). (98)
When we consider the upper bound for the error of the lowest K eigenstates, even more elements of
o are free and do not enter the minimization

O(K—-k—1
min max g (99)
0<pr<rx <1/(k+1) k<K 13
Following the same logic, in the optimal solution the elements px, px+1, ..., up—1 will be 0. This time,
the corner of the curve defined by maxy g ,ul;1®(K—k—1) = q lies on the line g = 1 = -+ = 2uK 1.
Combining these condition would then lead to the optimal weights
1

As for the optimal weights for the error of the eigenstates, the proof follows similarly. The only
difference is that weight gaps pp’s are modified by the according energy gaps. For example, for
targeting all eigenstates, the optimal weight vector is the minimizer of the following problem

. —1 —1
min ma E - F . 101
0<pnep o S1/(k1) k<Do1 1k (Bri1 = B (101

The solution is then given by the intersection of the following conditions

po +2p + (D = 1up-—2 =1,

UD—-1 = O, (102)
fo M ___ HKD2
E1—FEy Es—Ej Ep 1—FEp_»
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The first two conditions determine the boundary of the domain, whereas the last condition determines
the point on the boundary at which the corner of the curve defined by maxg.p_1 ,u,;l (Ex41 —Ek)*1 =a
touches. For targeting the lowest K eigenstates, we simply sent all wy>x to 0, and replace Ep_1—FEp_»
with (ED—I —ED_Q)/2.
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