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Abstract 

Background  Treatment switching in randomized clinical trials introduces challenges in performing causal inference. 
Intention To Treat (ITT) analyses often fail to fully capture the causal effect of treatment in the presence of treatment 
switching. Consequently, decision makers may instead be interested in causal effects of hypothetical treatment strate-
gies that do not allow for treatment switching. For example, the phase 3 ALTA-1L trial showed that brigatinib may 
have improved Overall Survival (OS) compared to crizotinib if treatment switching had not occurred. Their sensitivity 
analysis using Inverse Probability of Censoring Weights (IPCW), reported a Hazard Ratio (HR) of 0.50 (95% CI, 0.28-0.87), 
while their initial ITT analysis estimated an HR of 0.81 (0.53-1.22).

Methods  We used a directed acyclic graph to depict the clinical setting of the ALTA-1L trial in the presence of treat-
ment switching, illustrating the concept of treatment-confounder feedback and highlighting the need for g-methods. 
In a re-analysis of the ALTA-1L trial data, we used IPCW and the parametric g-formula to adjust for baseline and time-
varying covariates to estimate the effect of two hypothetical treatment strategies on OS: “always treat with brigatinib” 
versus “always treat with crizotinib”. We conducted various sensitivity analyses using different model specifications 
and weight truncation approaches.

Results  Applying the IPCW approach in a series of sensitivity analyses yielded Cumulative HRs (cHRs) rang-
ing between 0.38 (0.12, 0.98) and 0.73 (0.45,1.22) and Risk Ratios (RRs) ranging between 0.52 (0.32, 0.98) and 0.79 
(0.54,1.17). Applying the parametric g-formula resulted in cHRs ranging between 0.61 (0.38,0.91) and 0.72 (0.43,1.07) 
and RRs ranging between 0.71 (0.48,0.94) and 0.79 (0.54,1.05).

Conclusion  Our results consistently indicated that our estimated ITT effect estimate (cHR: 0.82 (0.51,1.22) may have 
underestimated brigatinib’s benefit by around 10-45 percentage points (using IPCW) and 10-20 percentage points 
(using the parametric g-formula) across a wide range of model choices. Our analyses underscore the importance 
of performing sensitivity analyses, as the result from a single analysis could potentially stand as an outlier in a whole 
range of sensitivity analyses.

Trial registration  Clinicaltrials.gov Identifier: NCT02737501 on April 14, 2016.
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Background
Treatment switching
Despite common misconception, Randomized Con-
trolled Trials (RCTs) are still susceptible to confounding 
and selection bias [1]. Although randomization protects 
against baseline confounding, RCTs can still experience 
post-randomization confounding and selection bias 
resulting from various factors such as non-compliance 
with protocols, differential use of concomitant thera-
pies, treatment switching or differential Loss To Follow-
Up (LTFU) [1, 2]. In oncology, long-term RCTs aim to 
investigate the effect of sustained clinical interventions 
in typical care settings. This brings along a greater risk 
of post-randomization confounding and attrition bias, 
potentially compromising the validity of study findings.

Treatment switching typically happens in oncology tri-
als where control group patients are often permitted to 
crossover to the experimental treatment after disease 
progression [3–5] when initial analysis indicates that 
clinical equipoise is no longer maintained. Consequently, 
clinical trials typically conduct an Intention To Treat 
(ITT) analysis as their primary analysis. This approach 
does not necessitate adjusting for post-randomization 
factors (in the absence of informative LTFU) because 
it aims to estimate the effect of treatment assigned at 
baseline. However, when the experimental treatment is 
superior to the control, the potential benefits received 
by those who switched to the experimental treatment 
are not properly accounted for, typically resulting in an 
underestimation of the treatment effect [6, 7].

Per‑protocol effects and g‑methods
Decision makers may instead be interested in the causal 
effect of the treatment on the outcome had all indi-
viduals adhered to their assigned treatment. Estimat-
ing causal effects of sustained treatment interventions 
in the presence of treatment switching and differential 
LTFU typically requires accounting for time-dependent 
confounding [8]. Despite their widespread use, standard 
regression methods that aim to adjust for time-depend-
ent confounding, such as time-dependent Cox Propor-
tional Hazards (CoxPH) models, Generalized Estimating 
Equations (GEEs) or random-effects models, are typically 
inadequate for estimating causal effects when time-var-
ying confounders are affected by prior treatment [9]: a 
phenomenon known as treatment-confounder feedback.

G-methods are a family of methods to estimate 
causal effects in the presence of treatment-confounder 
feedback [10]. G-methods include the g-formula [11], 
Inverse Probability Weighting (IPW) [12], and g-esti-
mation [13]. As such, g-methods may provide more 
accurate estimates of survival differences had control 

group subjects not switched treatment and all partici-
pants remained under follow-up.

Motivating example: ALTA‑1L trial
Study design
The ALK (anaplastic lymphoma kinase) in Lung Cancer 
Trial of Brigatinib in 1st Line (ALTA-1L) [14] was a ran-
domized, open-label, controlled, phase 3 study evaluat-
ing the efficacy of brigatinib (experimental arm) versus 
crizotinib (control arm) on Progression-Free Survival 
(PFS). The study population consisted of ALK-positive 
Non-Small Cell Lung Cancer (NSCLC) patients who 
had not received prior treatment with an ALK inhibi-
tor. Detailed descriptions of the study design have been 
previously reported in Camidge 2018 [14].

Reported study results
A total of 275 patients were enrolled and randomized 
to receive either brigatinib ( n = 137 ) or crizotinib 
( n = 138 ). The primary endpoint was PFS, as assessed 
by the Blinded Independent Review Committee (BIRC), 
per Response Evaluation Criteria in Solid Tumors 
(RECIST v1.1). The ITT results from the ALTA-1L 
trial based on a stratified CoxPH regression analysis 
demonstrated a statistically significant delay in PFS 
for patients in the brigatinib arm (Hazard Ratio (HR)= 
0.48 (95% Confidence Interval (CI), 0.35–0.66)). How-
ever, ALTA-1L has failed to show a significant differ-
ence in Overall Survival (OS) – a secondary endpoint 
– between the two study arms (HR= 0.81 (0.53–1.22)). 
Detailed findings from this study have been previously 
reported in Camidge 2021 [15].

In the ALTA-1L trial, a one-sided cross-over from the 
control treatment to the experimental treatment was 
endorsed by the protocol. Patients assigned to receive 
crizotinib were permitted to crossover to the brigatinib 
arm after experiencing disease progression. Notably, 47% 
of participants who were randomized to crizotinib (65 
out of 138) crossed over to brigatinib. The lack of a sig-
nificant survival advantage for brigatinib, despite promis-
ing PFS results, may be attributed to treatment crossover, 
which may have reduced the statistical power of the usual 
ITT analysis [12, 13] and underestimated the benefits 
of brigatinib. Two sensitivity analyses that adjusted for 
confounding from crossover [15] suggested that brig-
atinib may have improved OS compared to crizotinib if 
crossover had not been allowed. Results from such analy-
ses reported an HR of 0.50 (0.28–0.87) by the Inverse 
Probability of Censoring Weights (IPCW) method and 
0.54 (0.31–0.92) by a Marginal Structural Model (MSM) 
method.
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Choosing a causal estimand
Our re-analysis estimates the causal effect of brigatinib 
versus crizotinib on OS in advanced NSCLC patients, 
had control group patients not switched treatment and 
all trial participants remained under follow-up. Specifi-
cally, in our analyses we apply the IPCW approach [9, 12, 
16, 17] to reproduce the ALTA-1L OS results and explore 
the sensitivity of this approach to different model specifi-
cations. We also apply Robins’ parametric g-formula [11, 
18, 19] as a sensitivity analysis.

Our paper is structured as follows. In the Methods sec-
tion, we motivate the need for the use of IPCW and the 
parametric g-formula to address treatment switching in 
the ALTA-1L trial using a Directed Acyclic Graph (DAG). 
We then describe the methods employed and their 
assumptions. In the Results section, we present and com-
pare our findings across different methods, supported by 
various sensitivity analyses. In the Discussion section, we 
evaluate and compare the different approaches employed 
in our analysis, the plausibility of assumptions and the 
trade-offs addressing their interpretation in the context 
of the ALTA-1L trial. We also highlight the limitations 
inherent in our analysis, acknowledging the challenges 
and potential sources of bias associated with the meth-
ods utilized. We then conclude our paper by offering a 
road map for the use of IPCW and g-formula in similar 
research settings.

Methods
Data structure and notation
The ALTA-1L trial data consists of regular measurements 
of the following treatment, covariates, and outcome. The 
Treatment variable (A) in Time Interval (k), denoted as 
Ak , is an indicator of receiving brigatinib (versus cri-
zotinib). Additional columns in the data set index a set 
of Time-Varying Covariates (TVCs) with values 0 or 1 
indicating the less and more severe states respectively 
for Disease Progression (DP) and Intracranial Disease 
Progression (ICP). The categorized Eastern Cooperative 
Oncology Group (ECOG) score (ECOG) and continu-
ous Target-Lesion Size (TLS) were also measured over 
time. Variables of interest changed at 30-day intervals 
reflecting the Follow-Up Visits (FUT). The Randomized 
Treatment Assignment (Z) and the following time-fixed 
baseline covariates are also available: Age (AGE), ECOG 
score (ECOG), Measurable Intracranial Central Nervous 
System (CNS) disease (ICS), Race (RACE), Sex (SEX), 
Smoking History (SM), Strata at randomization (base-
line brain metastases and previous chemotherapy) (ST), 
Initial Diagnosis Stage (IDS), Lung Involvement at Study 
Entry (LI), and Prior Radiation Therapy (RT). We denote 
all TVCs as Lk , where L0 includes baseline covariates. 

The outcome Yk+1 is an indicator of death by the end of 
interval k + 1 . The variable Ck+1 is an indicator of cen-
soring due to LTFU or Administrative Censoring (AC) by 
the end of the interval k + 1 . We use overbars to denote 
the history of the variable (i.e., Āk = (A0,A1, . . . ,Ak)).

The data obtained from the ALTA-1L trial includes 
protected health information, and is therefore only acces-
sible under controlled access procedures. To illustrate the 
data structure, we have constructed a synthetic version of 
individual-level data that reflects the relationships among 
a selected group of variables. The R code used to create 
the synthetic data set and implement the different analy-
sis methods (IPCW and g-formula) is available in the fol-
lowing GitHu​b repos​itory. A data dictionary can also be 
found in the Electronic Supplementary Material (ESM) 1.

Treatment strategies and causal estimands
For the ITT analysis, we define the two treatment strate-
gies as follows:

•	 “Assign to crizotinib” ( Z = 0, C̄ = 0̄ ): This strategy 
assigns crizotinib at baseline and enforces no LTFU.

•	 “Assign to brigatinib” ( Z = 1, C̄ = 0̄ ): This strategy 
assigns brigatinib at baseline and enforces no LTFU.

Our analyses focus on the following two hypothetical 
treatment strategies concerning drug intake:

•	 “Always treat with crizotinib” ( Ā = 0̄, C̄ = 0̄ ): This 
strategy administers crizotinib at each time point and 
enforces no LTFU.

•	 “Always treat with brigatinib” ( Ā = 1̄, C̄ = 0̄ ): This 
strategy administers brigatinib at each time point and 
enforces no LTFU.

For the purpose of this paper, we refer to the analyses 
under the latter treatment strategies as Per-Protocol (PP) 
analyses.

For the PP analyses, we aim to estimate the causal effect 
of “always treat with brigatinib” versus “always treat with 
crizotinib” on OS in advanced NSCLC patients, had con-
trol group patients not switched treatment and all trial 
participants remained under follow-up. To express our 
estimand, we utilize superscripts to represent counter-
factual variables in our study. Specifically, Y ā,c̄=0̄

k+1
 signifies 

the outcome for an individual at time k + 1 if they had 
followed treatment strategy ā assigned to them at base-
line and censoring was eliminated. The counterfactual 
risk Pr Y

ā,c̄=0̄

k+1
= 1  denotes the risk (cumulative inci-

dence) at time k + 1 under a joint intervention where 
treatment is set to ā and censoring is eliminated. Our 
estimands include the counterfactual risks at each month 

https://github.com/amanialtawil/treatment-switching.git
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of follow-up and relative risk at month 48 under the two 
intervention strategies.

Drawing the directed acyclic graph (DAG)
Prior to discussing our applied methods, we visually 
depict the clinical setting of the ALTA-1L trial and moti-
vate the use of g-methods in Fig.  1 using a DAG. For 
simplicity, we restrict our DAG to the post-progression 
period for patients in the crizotinib arm and consider two 
follow-up time points. Arrows between variables were 
placed based on domain knowledge and expert opinions 
as documented in Camidge et  al [15]. Our DAG serves 
as a structural tool for better visualisation of the rela-
tionships between the following variables involved in the 
causal relationship of interest: baseline and TVCs ( Lk ), 
treatment intake ( Ak ) and outcome (Y). Additionally, we 
include in our DAG a vector of unmeasured covariates 
(U), which influences both the outcome and treatment. 
However, we rely on the strong and untestable assump-
tion, that the effects of all unmeasured confounders (U) 
are adequately captured through the measured covari-
ates ( Lk ). We deem this assumption reasonable for the 
ALTA-1L trial, given the availability of rich data on meas-
ured covariates at progression and throughout follow-
up. Failure to account for L1 in the analysis results in L1 
confounding the association between A1 and Y. Adjust-
ment methods that condition on L1 may introduce two 
biases as follows: (i) Over-adjustment bias where the 
causal path A0 → L1 → Y  becomes blocked and (ii) Col-
lider bias where the blocked path A0 → L1 ← U → Y  by 
the collider L1 is opened. While the former bias removes 
part of the effect of the previous intake of treatment ( A0 ) 

on the outcome (Y) that is mediated by covariates at the 
following visit ( L1 ), the latter opens an initially blocked 
path and introduces an association between A0 and Y. 
To address this dilemma, we employ g-methods that are 
capable of handling time-varying confounding affected 
by past exposure to estimate the treatment effect in the 
absence of LTFU and treatment switching.

Survival analysis from discrete‑time data
Recall that our data is structured in discrete-time format, 
where we define a time-varying indicator for death by 
the end of month k, Yk . The discretization facilitates the 
modelling of complex relationships between time-vary-
ing variables and survival, while, for small intervals, the 
discrete-time format and corresponding analyses provide 
a close approximation to the event-process in continuous 
time. Here, we briefly review some foundations in sur-
vival analyses from discrete-time data and refer readers 
to Chapter  1.2 in the book Modeling Discrete Time-to-
Event Data by Tutz and Schmid [20], and Chapter 17 of 
the What If book by Hernán [21] for further details.

Our analyses focus on estimating survival curves from 
discrete-time data. The discrete-time hazard at month k 
is defined as Pr[Yk = 1 | Yk−1 = 0] . The survival proba-
bility at the end of month k, Pr[Yk = 0] , can be expressed 
in terms of the discrete-time hazards by:

One can then estimate the discrete-time hazard at month 
k by dividing the number of deaths during month k 

Pr[Yk = 0] =

k
∏

m=1

Pr[Ym = 0|Ym−1 = 0]

Fig. 1  Graphical representations of our research focus and the bias of naive methods for time-varying confounding in the presence 
of treatment-confounder feedback: This Directed acyclic graph (DAG) represents the post-progression period for patients in the control arm. 
Following disease progression, the decision as to whether or not a patient in the control group continues to take its treatment ( A0 ) or ( A1 ) depends 
on predictive factors measured at or before the time of disease progression ( L0 ). Again, we assume that treatment intake ( A0 ) affects outcome (Y) 
and influences a set of TVCs at a later time-point ( L1 ). These covariates are also assumed to impact the clinician’s decision as to whether or not a 
patient should subsequently change treatments ( A1 ) introducing time-varying confounding and treatment-confounder feedback through L1
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by the number at individuals alive at the end of month 
k − 1 . Plugging in this estimator of the discrete-time 
hazard results in the Kaplan-Meier estimator of the sur-
vival curve. Alternatively, one can use a logistic regres-
sion model to estimate the discrete-time hazard (e.g., 
including polynomial terms for time k). Many of the 
estimators we consider in this work involve estimating 
Pr[Yk = 1 | X = x] for a set of covariates X, and we con-
sider logistic regression models to estimate discrete-time 
hazards Pr[Yk = 1 | Yk−1 = 0,X = x].

Apart from survival probabilities, we also consider the 
so-called hazard ratio (HR), discrete hazard ratio (dHR) 
and cumulative hazard ratio (cHR), which are discussed 
in detail in ESM 2.

Methods used to estimate the causal estimands
In Table  1 we present a high-level summary of the dif-
ferent approaches we employ in our analyses. With the 
exception of the parametric g-formula approach, we 
applied the following methods to estimate the differ-
ent causal estimands: (i) Non-parametric Kaplan Meier 
(KM) estimator to estimate counterfactual risks, Cumu-
lative Hazard Ratios (cHRs) and Risk Ratios (RRs) (ii) 
Pooled logistic regression model to estimate counter-
factual risks, Discrete Hazard Ratios (dHRs), cHRs and 
RRs and (iii) CoxPH regression model to estimate HRs. 
For pooled logistic regression analysis we used the whole 
dataset and included time (numbered from 0 to 48 and 
occurred every one month) as a covariate to specify a 
functional form for the baseline hazard. To allow time to 
be included in a more flexible manner, we have included 
time as a quadratic polynomial. Reported CIs across the 
different approaches were calculated using a non-para-
metric bootstrap procedure based on 1000 samples.

The cumulative incidence at each visit is calculated as 
1 minus the estimated survival function under that treat-
ment strategy.

Intention to treat analysis
Recall that conventional ITT analyses under the treat-
ment strategy estimate the causal effect of treatment 
assignment on the outcome. In this type of analysis, cen-
soring is employed for patients who are lost to follow-up.

In our first set of approaches, we assume non-informa-
tive censoring. Specifically, we did not adjust for any con-
founders. We also included an approach that accounted 
for strata at randomization, as well as adjusting for base-
line confounders [22] where we considered the same 
set of baseline covariates previously described in Data 
structure and notation  section. We also estimated mar-
ginal causal estimands (cHR and RR) under the treat-
ment strategy standardized over baseline covariates after 
estimating the baseline hazard using a pooled logistic 

regression [23]. This was done by creating two new data-
sets each including a copy of every person at baseline and 
forcing everyone to be assigned to crizotinib in one data 
set and to brigatinib in the other.

To relax the assumption of non-informative censoring, 
we apply the IPCW approach to adjust for LTFU/AC. 
Since our IPCW approach in the PP analyses includes 
weighting to adjust for LTFU/AC, we refer readers to 
Per protocol analysis section for additional details on our 
implementation of this approach. In Tables S1 and S2 in 
ESM 3 we present details about the different model spec-
ifications for LTFU/AC.

Per protocol analysis
Naive adjustment methods: Excluding or censoring patients 
at switching
In the existing literature [1, 6, 24–26], a range of 
approaches has been described to address situations 
where participants deviate from their assigned treat-
ments. Approaches, commonly referred to as naive 
methods [27], typically involve minor modifications 
to standard survival techniques. In this section, we will 
concentrate on two methods: excluding patients who 
switch treatments and censoring patients at the time of 
switching.

Here we performed two distinct analyses where 
patients initially randomized to the control arm but 
later received the experimental treatment were either 
(i) entirely excluded from the analysis or (ii) their data 
censored at the time of switching. In these analyses, 
we assume that patients remain comparable irrespec-
tive of switching or LTFU. Although this assumption 
is straightforward, recall that it does not align with our 
assumptions depicted in Fig.  1 due to the presence of 
treatment-confounder feedback. We conduct such analy-
ses (with and without adjustment for baseline covariates) 
to illustrate the inherent risk of selection bias and con-
founding. For the baseline adjusted analyses, we consid-
ered the same set of covariates previously described in 
Data structure and notation section.

Inverse probability of censoring weights
IPCW [12] can properly adjust for confounding and 
selection bias in the presence of treatment-confounder 
feedback [16]. Under the five different assumptions of no 
unmeasured confounding, positivity, consistency, cor-
rect model specification, and no measurement error [16], 
IPCW reconstructs a “representative sample” of the orig-
inal cohort, often referred to as a “pseudo-population”, 
wherein censoring events become independent of any 
measured covariates [16]. Referring to our DAG in Fig. 1 
and to account for treatment switching in the ALTA-1L, 
this means removing all arrows from Lk to Ak . This is 
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achieved by deferentially assigning to each individual at 
each time interval a weight that is inversely proportional 
to the individual’s probability of remaining unswitched 
up to a given time point. This probability is unknown and 
needs to be estimated from the data depending on some 
of the participants’ baseline and TVCs.

We describe the process of IPCW that accounts for 
treatment switching in the ALTA-1L trial as follows: 
Every time a control patient crosses over to the brigatinib 
treatment following disease progression, this patient is 
censored at that time and the remaining similar control 
patients (in terms of specified baseline and TVCs) count 
for more patients to represent that patient. Technically, 
the remaining control patients are up-weighted to effi-
ciently construct a pseudo-population that has the same 
definite characteristics as the original population but did 
not cross over [28]. Adequate variability in the cross-over 
pattern should exist where everyone could be possibly 
exposed within levels of the time-varying and baseline 
covariates, otherwise, the weights cannot be defined 
[28]. For example, IPCW would not have been applicable 
in our analysis if all participants who developed disease 
progression crossed over to brigatinib.

Similarly, when accounting for LTFU/AC, the pro-
cess is repeated. Each time a patient is lost to follow-up/
administratively censored, that patient is censored, and 
the remaining patients who exhibit similar characteris-
tics are up-weighted to construct a pseudo-population 
that mirrors the definitive characteristics of the original 
population but has remained under follow-up[28].

In our analysis, we focus on a joint intervention 
where both censoring events (switching and LTFU) are 
eliminated. To account for these two distinct events, 
we construct two separate weights. The resulting final 
pseudo-population is a result of the product of these two 
weights. In such a pseudo population, we then regress 
the outcome on the exposure using a standard regression 
model that does not include the measured confounders 
as covariates.

Weighting model  Following Robins and Finkelstein’s 
work [12], we estimated the weights for treatment 
switching and LTFU/AC separately in each treatment 
arm. Starting with switching weights, we leveraged our 
deterministic understanding of the known relationships 
between the randomized group, disease progression and 
switching status over time. Specifically, for all patients 
in the brigatinib arm, as well as patients who did not 
progress or before having progression in the crizotinib 
arm, a weight of 1 for switching was assigned to them 
at all time points. To estimate the probability of switch-
ing in the crizotinib arm after progression and derive 
the corresponding weights, we employed two distinct 

weighting models. The first pooled regression model for 
the denominator of the weights estimates the probability 
of switching at each time point, accounting for baseline 
and time-varying confounders. The second pooled logis-
tic regression model estimates the probability of switch-
ing based on time alone (linear or splines) which is used 
for the numerator to stabilize the weights.

We performed eight analyses to adjust for treatment 
switching. Below, we outline the eight specifications for 
calculating the weights in the crizotinib arm. The weight-
ing model for the denominator was fitted to the data after 
disease progression. We only considered variables in the 
weighting model that were potential confounders based 
on domain knowledge and expert opinions as docu-
mented in Camidge et  al. 2021 [15]. Due to the limited 
number of patients in the trial, we performed variable 
selection amongst these potential confounders using cri-
teria based on Akaike information criteria, a p-value of 
0.20 or lower, or an HR or Odds Ratio (OR) less than 0.75 
or greater than 1.33 for death or switching. This selection 
process was only used to define specifications 1 and 2, 
which we detail next. The remaining specifications aim to 
either relax the linearity assumption or explore the influ-
ence of potential residual confounding within categories 
of the confounders. In describing the specifications, we 
adopt the notation that numerical variables are labeled 
as variablenamen , where n indicates the type of trans-
formation (1: linear term, 2: quadratic term, S: spline 
transformation), and categorical variables are labelled as 
variablenamen , where n represents the number of cate-
gories (see Table S3 in ESM 4 for a summary).

•	 Specification 1: The weighting model for the denom-
inator included variables that are prognostic of sur-
vival (full model) and incorporated the following var-
iables: Linear terms for Follow-Up Time (FUT) and 
Target Lesion Size (TLS), linear and quadratic terms 
for Time-to-Disease Progression (TDP, TDP2) and 
a step function with 3 categories for time-varying 
ECOG (ECOG3). Baseline variables included a lin-
ear term for Age (AGE) and a step function with 2 
categories for Measurable Intracranial CNS Disease 
Status (ICS2) and Smoking History (SM2), as well as 
a step function with 4 categories for Initial Diagno-
sis Stage (IDS4), Lung Involvement at Study Entry 
(LI4) and Strata at Randomization (ST4). In Table S4 
in ESM 3 we provide the results from a multivariate 
pooled logistic regression analysis - full model - for 
the probability of switching conditional on baseline 
and TVCs in the control arm using post-progression 
data only. To estimate the numerator of the weights, 
we employed another pooled logistic model, for the 



Page 8 of 22Al Tawil et al. BMC Medical Research Methodology          (2024) 24:314 

probability of switching based on a linear term for 
time.

•	 Specification 2: The weighting model for the denom-
inator included variables that jointly predict switch-
ing and survival (restricted model). These variables 
were selected from the list of covariates included in 
specification 1. The model included the following 
TVCs: FUT, TLS, TDP, and TDP2. Baseline variables 
included AGE, IDS4, and ST4. In Table S5 in ESM 3 
we provide the results from a multivariate pooled 
logistic regression analysis - restricted model - for 
the probability of switching conditional on baseline 
and TVCs in the control arm using post-progression 
data only. To estimate the numerator of the weights, 
we employed another pooled logistic model, for the 
probability of switching based on a linear term for 
time.

•	 Specification 3: Similar to specification 1, this speci-
fication included the same variables but with 5 knots 
splines for time (FUTS), time to disease progression 
(TDPS), target lesion size (TLSS) and baseline age 
(AGES). This approach helps mitigate potential bias 
stemming from strong linearity assumptions in the 
model.

•	 Specification 4: Similar to specification 1, but 
replaces ECOG3 with 2 categories ECOG2. This 
allows us to explore the influence of potential resid-
ual confounding within categories of the confound-
ers.

•	 Specification 5: Similar to specification 2, but 
replaces the linear and quadratic terms with FUTS, 
TDPS, TLSS and AGES.

•	 Specification 6: Similar to specification 2, but 
excluding IDS4 as it weakly correlates with switching.

•	 Specification 7: Similar to specification 1, but 
excluding TDP and TDP2.

•	 Specification 8: Similar to specification 2, but 
excluding TDP and TDP2.

By employing these models, we generated predicted 
probabilities for each individual at each time point, which 
were subsequently used to calculate the inverse prob-
ability of switching weights. Unstabilized weights were 
constructed as the inverse of the denominator, while sta-
bilized weights were calculated as the ratio of the numer-
ator over the denominator.

The same process was repeated to adjust for LTFU/
AC by fitting pooled logistic regression models sepa-
rately for each treatment arm to estimate the probability 
of LTFU/AC and derive the corresponding weights. For 
details about each specification, we present in Tables S1 
and S2 in ESM 3 the results from a multivariate pooled 
logistic regression analysis - full and restricted model 

respectively - for the probability of LTFU/AC conditional 
on baseline and TVCs by randomized arm. LTFU/AC 
probabilities derived from this analysis are used to calcu-
late the denominator of LTFU/AC weights.

Outcome model  To estimate the causal effect of “always 
treat with brigatinib” versus “always treat with crizo-
tinib” on OS, we employed a weighted pooled logistic 
regression –with randomized treatment arm and linear 
and quadratic terms for time as predictors– to estimate 
dHRs, RRs and cHRs and a time-dependent CoxPH 
outcome model to estimate HRs. The dataset provided 
included all observations up to the minimum time of 
switching and/or LTFU/AC weighted by the product of 
the inverse probability of switching weights and LTFU/
AC weights. The respective 95% CIs were estimated using 
bootstrapping based on 1000 samples to account for cor-
related data and the weight estimation process. cHRs and 
RRs from a KM estimator were also estimated. We also 
created weighted KM survival curves using the “survfit” 
function from the survival package in R and using the 
“weights” argument to apply the weights. The R code for 
implementing the IPCW analysis on the synthetic data is 
provided in the following GitHu​b repos​itory.

Parametric g‑formula
The (noniterative conditional expectation) parametric 
g-formula is another approach to estimate the effect of 
sustained treatment strategies from observational data 
[11, 29, 30]. Similar to IPCW, the parametric g-formula 
relies on the assumptions of no unmeasured confound-
ing, positivity, consistency, correct model specification, 
and no measurement error. Initially introduced by Robins 
in 1986 [11], the parametric g-formula extends the con-
cept of standardization to account for time-varying treat-
ments. This approach involves fitting parametric models 
for the conditional discrete-time hazards of the outcome 
and joint conditional density of the confounders at each 
time point given prior treatment and covariates history. 
The counterfactual risk of the treatment strategy at each 
time point is estimated by performing Monte Carlo simu-
lation based on the fitted models, which can be thought 
of as simulating the distribution of covariates, treatment, 
and outcome in a population of patients undergoing the 
given treatment strategy.

Here, we apply the parametric g-formula to the 2-arm 
ALTA-1L RCT to estimate the counterfactual mortal-
ity risk at each follow-up time point under the “always 
treat with brigatinib” strategy and “always treat with 
crizotinib” strategy. Each arm of the RCT was ana-
lysed and interpreted as a separate observational study, 
as trial participants who do not comply with their 

https://github.com/amanialtawil/treatment-switching.git
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assigned treatment and are lost to follow-up may dif-
fer systematically from those who comply and remain 
under follow-up [31].

We considered the same baseline and post-randomiza-
tion determinants of switching and LTFU as previously 
described. The baseline covariates include: age, ECOG 
score, measurable intracranial CNS disease, race, sex, 
smoking history, strata at randomization and prior radia-
tion therapy. The two categorical baseline variables, ini-
tial diagnosis stage and lung involvement at study entry, 
were excluded from this analysis. These variables caused 
some of the bootstrap replicates to fail when construct-
ing the CIs due to the limited number of observations 
within certain categories of these variables. However, the 
exclusion of these variables did not materially change the 
effect estimates (cHR and RR). We also considered the 
following TVCs: disease progression (binary), intrac-
ranial disease progression (binary), ECOG (binary and 
categorical), and target-lesion size (continuous). We used 
pooled over time logistic regression to model the binary 
and categorical TVCs and used pooled over time linear 
regression to model the continuous TVCs. We also used 
a pooled over time logistic regression model for the dis-
crete hazard of death.

We incorporated deterministic knowledge of some 
of the variables in the parametric g-formula algorithm 
to help mitigate bias from model misspecification. Spe-
cifically, we incorporated the knowledge that the disease 
progression and intracranial disease progression varia-
bles will take on a value of 1 at all subsequent time points 
after initially taking on a value of 1. The fitted models are 
therefore limited to observations where the value of the 
covariate at the previous time point is 0. We also incor-
porated the restriction that the probability of death is 0 
for individuals who have not yet progressed.

We performed five different analyses with different 
model specifications for the TVCs and outcome. These 
five analyses broadly explore how more richly parameter-
izing the models can affect the causal effect estimates. 
In specification 1, for each fitted covariate and outcome 
model, we included all predictors with a P-value <0.2. 
Further refinements were applied in specifications 2 and 
3, narrowing the selection to covariates with P-values 
<0.1 and 0.05, respectively. Specification 4 mirrored 1 but 
introduced three levels for the ECOG variable as opposed 
to the two levels. In specification 5, we removed time to 
progression from the outcome model. Specifications 4 
and 5 were included to enable meaningful comparisons 
with the IPCW approach. A detailed description of the 
covariates included in each analysis is available in Tables 
S6 to S8 in ESM 5.

In each of our analyses, we estimated the counterfac-
tual risk of each treatment strategy at each time point. 

We also estimated the RR and cHRs comparing the two 
treatment strategies. We constructed 95% CIs around the 
counterfactual risks, RRs, and cHRs using a non-para-
metric bootstrap procedure based on 500 samples.

We used the publicly available software in R (gfoR-
mula) [19] to perform the parametric g-formula analyses. 
The R code for performing the g-formula analysis on the 
synthetic data is provided in the following GitHu​b repos​
itory.

Results
Study population
The baseline characteristics of the intention-to-treat 
study population, comparing brigatinib to the crizotinib 
arm, were previously documented in Camidge 2018 [14]. 
Table  2 compares the baseline characteristics between 
switchers and non-switchers in the control group. 
Switchers seem younger and have higher target lesion 
sizes than non-switchers, but the remaining baseline var-
iables seem very similar across the two groups.

Outcomes
Previous reports [14, 15] have already provided detailed 
results for the primary endpoint (PFS) from the ALTA-1L 
trial and other secondary endpoints. Our analysis focuses 
on OS as the endpoint of interest. The resulting data set 
includes 8624 person-months (4345 in the crizotinib 
arm and 4279 in the brigatinib arm). The total number of 
individuals in the ALTA-1L is 275 with 138 randomized 
to crizotinib and 137 randomized to brigatinib. For our 
switching adjusted analysis, we explored five different 
approaches: ITT, “naive methods” (excluding switchers 
and censoring at switching) and “g-methods” (IPCW and 
parametric g-formula).

In Tables 3, 4, 5, 6, and 7, we present the results of all 
OS analyses. Table  3 offers a comprehensive summary 
across all approaches and reports HRs from a CoxPH, 
dHR, cHR and RR from a pooled logistic regression, 
and cHR and RR from a non-parametric KM estimator. 
Reported (95%CIs) were calculated using a non-paramet-
ric bootstrap procedure based on 500 or 1000 samples. 
In Table S9 in ESM 6, we outline the number of replicate 
failures observed in each analysis. Findings from Table 3 
are also visualized through a forest plot as shown in Fig. 2 
and Figure S1 in ESM 7.

Results from the ITT analysis
A total of 92 deaths occurred (41 of 137 patients [30%] 
in the brigatinib arm and 51 of 138 patients [37%] 
in the crizotinib group). Using a KM estimator, the 
cumulative survival probability at 48 months was 60% 
in the crizotinib arm and 65% in the brigatinib arm. 
Figure S2a in ESM 7 displays the KM curve. The KM 

https://github.com/amanialtawil/treatment-switching.git
https://github.com/amanialtawil/treatment-switching.git
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estimator yielded a cHR of 0.83 (0.51,1.28) and RR of 
0.86 (0.59,1.21). Using a pooled logistic regression 
model, the reported cHR was 0.82 (0.51,1.22) and RR 
was 0.86 (0.59,1.17). A CoxPH regression analysis, con-
sidering only the treatment assignment as a dichoto-
mous covariate, yielded an HR of 0.82 (0.52, 1.22). HRs 
from the CoxPH model were similar to the reported 
dHR from a pooled logistic regression.

ITT adjusted analysis by strata at randomization 
yielded a cHR of 0.89 (0.56, 1.37) and an RR of 0.91 
(0.63,1.29) from a pooled logistic regression. When 
adjusting for all baseline covariates, the cHR and RR 
from a pooled logistic regression were 0.72 (0.30,1.76) 
and 0.76 (0.35,1.65). HRs from a CoxPH regression 

analysis and dHR from a pooled logistic regression did 
not materially change across the different analyses.

A marginal effect analysis, based on a pooled logistic 
regression adjusted for all baseline covariates, resulted in 
a cHR of 0.84 (0.54, 1.25), and an RR of 0.86 (0.59, 1.22). 
We also provide the KM curve in Figure S2b in ESM 7 for 
the probability of OS over time standardized for baseline 
covariate distribution.

Results from our IPCW analyses that adjust for LTFU/
AC (Table 4), resulted in cHRs that ranged between 0.81 
(0.50,1.21) and 0.84 (0.53,1.27) using a weighted pooled 
logistic regression model. The estimated weights were 
relatively stable, with a mean of 0.99 and Standard Devia-
tion (SD) between 0.15 and 0.18. Findings from Table 4 

Table 2  Distribution of baseline patient characteristics among switchers and non-switchers in the control group, ALTA-1L trial

Abbreviations: ECOG Eastern cooperative oncology group, CNS Central nervous system

 aDifferences in baseline characteristics between switchers and non-switchers were evaluated using a two-sample t-test for continuous data and a chi-square test for 
categorical data

Characteristics Control, switchers Control, non-switchers P-valuea

No. (% of patients in the control arm) 65 (47.1) 73 (52.9)

Age in yr - Median (range) 56 (30.0,79.0) 62 (29.0,89.0 ) 0.028

Female sex - No. (%) 34 (52.3) 47 (64.4) 0.206

Race - No. (%) Non-Asian 38 (58.5) 51 (69.9) 0.223

Asian 27 (41.5) 22 (30.1)

ECOG performance-status score - No. (%) 0 25 (38.5) 28 (38.4) 0.593

1 38 (58.5) 40 (54.8)

2 2 (3.1) 5 (6.8)

History of tobacco use - No. (%) Never smoked 36 (55.4) 39 (53.4) 0.601

Former Smoker 27 (41.5) 29 (39.7)

Current Smoker 2 (3.1) 5 (6.8)

Initial cancer diagnosis stage - No. (%) IA 1 (1.5) 2 (2.7) 0.533

IB 0 (0) 2 (2.7)

IIA 2 (3.1) 4 (5.5)

IIIA 5 (7.7) 9 (12.3)

IIIB 5 (7.7) 7 (9.6)

IV 52 (80.0) 49 (67.1)

Histologic type - No. (%) Adenocarcinoma 64 (98.5) 73 (100) 0.954

Adenosquamous carcinoma 1 (1.5) 0

Squamous-cell carcinoma 0 0

Large-cell carcinoma 0 0

Measurable intracranial CNS disease - No. (%) 10 (15.4) 13 (17.8) 0.879

Previous intake of anti-cancer therapy - No. (%) 20 (30.8) 23 (31.5) 1

Previous radiation therapy - No. (%) 18 (27.7) 22 (30.1) 0.898

Lung involvement at study entry - No. (%) 13 (20) 22 (30.1) 0.574

22 (33.8) 21 (28.8)

25 (38.5) 24 (32.9)

5 (7.7) 6 (8.2)

Target lesion size - Median (range) 51 (9.0,170.0) 38 (7.0,214.0 ) 0.029

Brain metastasis - No.(%) 18 (27.7) 22 (30.1) 0.898

Previous chemotherapy - No.(%) 20 (30.8) 17 (23.3) 0.425
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are also visualized through a forest plot in Fig. 3 and Fig-
ure S3 in ESM 7. In Table S10 in ESM 8 we report the 
summary statistics of unstabilized weights and corre-
sponding effect estimates.

Results from the PP analysis
Results from the naive adjusted analysis
In the approach where switchers were censored at the 
point of switching, a relatively high level of censoring was 
observed. Over 12, 24, 36, and 48 months, the number 
of individuals remaining in the control arm decreased 
from 137 to 84, 53, 42, and 2, respectively. In the remain-
ing uncensored, a total of 70 deaths occurred (29 in the 
crizotinib group and 41 in the brigatinib group). Using a 
KM estimator, the cumulative survival probability at 48 
months was 67% in the crizotinib arm and 65% in the bri-
gatinib arm. The total follow-up time, while participants 
adhered to their assigned treatment in terms of switch-
ing, was 2865 person-months (66%) in the crizotinib 
arm and 4279 person-months (100%) in the brigatinib 
arm. Figure S4a in ESM 7 displays the KM curve of OS 
adjusted for treatment switching and Table 3 shows the 
reported KM results. The estimated cHR and RR for OS 

based on a pooled logistic regression comparing brig-
atinib to crizotinib when switchers were censored were 
1.03 (0.64,1.74) and 1.02 (0.69,1.58) respectively with no 
adjustment for baseline covariates and 0.62 (0.20,2.67) 
and 0.67 (0.25,2.43) after adjusting for baseline covariates.

The estimated cHR and RR based on a pooled logis-
tic regression model were 0.70 (0.35,1.17) and 0.76 
(0.43,1.13) respectively when switchers were entirely 
excluded from the analysis. The estimated cHR and 
RR after adjusting for baseline covariates were 0.49 
(0.11,2.17) and 0.55 (0.15,2.74) respectively. The cumu-
lative survival probability at 48 months was 58% in the 
control arm and 65% in the treatment arm using KM esti-
mator. Figure S4b in ESM 7 displays the KM curve of OS 
adjusted for treatment switching.

Additional results across different approaches and esti-
mators are provided in Table 3.

Results from the IPCW analysis
In Table  5 we present the results of our analyses with 
IPCW that adjust for treatment switching only. In 
specifications 1 to 8, we report the summary statistics 
of stabilized weights as well as cHRs (95% CI) and RRs 

Table 3  Summary of results: Effect of brigatinib versus crizotinib on Overall Survival (OS) investigated through various approaches; 
ALTA-1L trial

Abbreviations: CoxPH Cox proportional hazard, CI Confidence interval, NE Not estimated, NA Not applicable
a  HR: Hazard ratio estimated based on a Cox proportional hazard model
b  dHR: Discrete hazard ratio estimated based on a pooled logistic regression model (refer to Electronic Supplementary Material (ESM) 2 for more details)
c  cHR: Cumulative hazard ratio by month 48 (equation (5) in ESM 2)
d  RR: Risk ratio formulated as the ratio of the cumulative risks by month 48
e  95% CI calculated using a non-parametric bootstrap procedure based on 1000 samples
f  Reported CI calculated using a non-parametric bootstrap procedure based on 500 samples
g Strata at randomization: presence or absence of baseline brain metastases and completion of at least one full cycle of chemotherapy for locally advanced or 
metastatic disease (yes or no)

 hBaseline covariates: age, ECOG score, measurable intracranial CNS disease, race, sex, smoking history, strata at randomization, initial diagnosis stage, lung 
involvement at study entry and prior radiation therapy
i Inverse probability of censoring weight: Estimates for the IPCW approach were estimated using a weighted pooled logistic regression model using the product of the 
two weights for LTFU/AC (specification 4 in Table 4) and switching (specification 4 in Table 6)

Approach CoxPH Model Pooled Logistic Regression Model Kaplan-Meier Estimator

HRa (95% CI)e dHRb (95% CI)e cHRc (95% CI)e RRd (95% CI)e cHRc (95% CI)e RRd (95% CI)e

Intention to Treat Unadjusted for baseline 
covariates

0.82 (0.52,1.22) 0.82 (0.51,1.22) 0.82 (0.51,1.22) 0.86 (0.59,1.17) 0.83(0.51,1.28) 0.86 (0.59,1.21)

Adjusted for strata 
at randomizationg

0.80 (0.50,1.21) 0.79 (0.49,1.21) 0.89 (0.56,1.37) 0.91 (0.63,1.29) NA NA

Adjusted for baseline 
covariatesh

0.79 (0.44,1.32) 0.79 (0.44,1.33) 0.72 (0.30,1.76) 0.76 (0.35,1.65) NA NA

Marginal effect adjusted 
for baseline covariates

NE NE 0.84 (0.54,1.25) 0.86 (0.59,1.22) NA NA

Per Protocol Excluding switchers 0.70 (0.36,1.17) 0.70 (0.35,1.17) 0.70 (0.35,1.17) 0.76 (0.43,1.13) 0.77 (0.37,1.27) 0.82 (0.46,1.21)

Censoring at switching 1.03 (0.64,1.73) 1.03 (0.64,1.74) 1.03 (0.64,1.74) 1.02 (0.69,1.58) 1.07 (0.64,1.96) 1.06 (0.70,1.73)

Inverse probability of cen-
soring weightsi

0.71 (0.42,1.21) 0.70 (0.41,1.20) 0.70 (0.42,1.20) 0.77 (0.52,1.16) 0.70 (0.39,1.31) 0.76 (0.50,1.23)

Parametric g-formula NE NE 0.63 (0.38,0.97)f 0.72 (0.50,0.98)f NE NE
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Table 4  Causal effect of “assign to brigatinib” versus “assign to crizotinib” on Overall survival (OS) investigated through various models 
(specifications 1 to 6) for the construction of inverse probability of censoring weights for Lost to follow-up (LTFU)/administrative 
censoring (AC); Death censored by LTFU/AC only; 92 deaths, ALTA-1L trial

a Details about the full and restricted model are available in Tables S1 and S2 in the Electronic Supplementary Material (ESM) 3). Refer to Table S3 in ESM 
4 for a full list of variable abbreviations used in this figure. Spec1control : AGE, AGE

2, IDS4, ICS2, LI4, ST4, SM2, FUT, FUT
2, ECOG3, TLS, DP2, A2 . Spec1exp : 

AGE, AGE2, SEX2, RACE2, IDS4, ICS2, LI4, ECOG2, ST4, SM2, RT2, FUT, FUT
2, ECOG3, TLS, IDP2, DP2 . Spec2control : AGE, AGE

2, IDS4, ST4, FUT, FUT
2, TLS, DP2 . 

Spec2exp : AGE1, AGE2, SEX2, IDS4, ECOG2, SM2, FUT, FUT
2, ECOG3, IDP2, DP2 . Spec 3: Same as Specification 1, but with FUTS , TLSS , AGES instead of linear terms. 

Spec 4: Same as Specification 1, but with ECOG2 instead of ECOG3 . Spec 5: Same as Specification 2, but with FUTS , TLSS , AGES instead of linear terms. Spec 6: Same as 
Specification 2, but without SEX2, ECOG2, IDS4 in calculating the denominator of the experimental arm
b  cHR: Cumulative hazard ratio by month 48 (equation (5) in ESM 2)
c  RR: Risk ratio formulated as the ratio of the cumulative risks by month 48
d  Reported 95% Confidence Interval (CI) estimated using a non-parametric bootstrap procedure based on 1000 samples

Specification Description Estimated stabilized weights Difference in OS

Mean (SD) Min (Max) cHRb (95% CI)d RRc (95% CI)d

1 Full model a 0.99 (0.15) 0.11 (6.45) 0.84 (0.53,1.26) 0.87 (0.61,1.20)

2 Restricted model a 0.99 (0.15) 0.15 (6.66) 0.82 (0.52,1.23) 0.86 (0.60,1.17)

3 Same as specification 1, but replace the linear terms of time, target lesion size and age with 5 knots 
splines

0.99 (0.18) 0.09 (10.61) 0.83 (0.52,1.24) 0.87 (0.61,1.18)

4 Same as specification 1, but replace the step function (3 categories) for time-varying ECOG with 2 
categories

0.99 (0.16) 0.11 (6.53) 0.83 (0.52,1.25) 0.87 (0.61,1.19)

5 Same as specification 2, but replace the linear terms of time, target lesion size and age with 5 knots 
splines

0.99 (0.18) 0.10 (10.30) 0.81 (0.50,1.21) 0.85 (0.59,1.15)

6 Same as specification 2, but remove baseline covariates: sex, baseline ECOG and initial diagnosis 
stage in calculating the denominator of the experimental arm

0.99 (0.17) 0.16 (10.27) 0.84 (0.53,1.27) 0.88 (0.62,1.20)

Table 5  Causal effect of “always treat with brigatinib” versus “always treat with crizotinib” on Overall Survival (OS) investigated through 
various models (specifications 1 to 8) for the construction of the inverse probability of censoring weights for switching; Lost to 
follow-up (LTFU) assumed at random; Death censored by a minimum of treatment switching and LTFU/administrative censoring; 72 
deaths, ALTA-1L trial

a Details about the full and restricted model are available in Tables S4 and S5 in the Electronic Supplementary Material (ESM) 3. Refer to Table S3 in ESM 4 for a full list 
of variable abbreviations used in this figure. Spec 1: AGE, IDS4, ICS2, LI4, ST4, SM2, FUT, ECOG3, TLS, TDP, TDP

2 . Spec 2: AGE, IDS4, ST4, FUT, TLS, TDP, TDP
2 . Spec 

3: Same as Spec 1 but with FUTS , TLSS , AgeS , TDPS instead of their linear terms. Spec 4: Same as Spec 1 but with ECOG2 instead of ECOG3 . Spec 5: Same as Spec 2 but 
with FUTS , TLSS , AgeS , and TDPS instead of their linear terms. Spec 6: Same as Spec 2 but without IDS4 . Spec 7: Same as Spec 1 but without TDP and TDP2 . Spec 8: 
Same as Spec 2 but without TDP and TDP2

b  cHR: Cumulative hazard ratio by month 48 (equation (5) in ESM 2)
c  RR: Risk ratio formulated as the ratio of the cumulative risks by month 48
d  Reported 95% Confidence Interval (CI) estimated using a non-parametric bootstrap procedure based on 1000 samples

Specification Description Estimated stabilized 
weights

Difference in OS

Mean (SD) Min (Max) cHRb (95% CI)d RRc (95% CI)d

1 Full Model a 0.96 (0.25) 0.43 (5.15) 0.69 (0.39,1.21) 0.75 (0.49,1.16)

2 Restricted Model a 0.97 (0.25) 0.43 (5.73) 0.69 (0.41,1.21) 0.75 (0.51,1.16)

3 Same as specification 1, but with 5 knots splines for time, time to disease 
progression, target lesion size and baseline age

0.95 (0.27) 0.44 (6.05) 0.67 (0.38,1.26) 0.74 (0.49,1.20)

4 Same as specification 1, but replace the step function (3 categories) 
for time-varying ECOG with 2 categories

0.96 (0.24) 0.43 (5.32) 0.69 (0.39,1.21) 0.75 (0.49,1.16)

5 Same as specification 2, but with 5 knots splines for time, time to disease 
progression, target lesion size and baseline age

0.96 (0.30) 0.44 (7.90) 0.65 (0.32,1.22) 0.72 (0.43,1.17)

6 Same as specification 2, but without step function (4 categories) for initial 
diagnosis stage

0.97 (0.24) 0.43 (3.39) 0.73 (0.45,1.22) 0.79 (0.54,1.17)

7 Same as specification 1, but without linear and quadratic terms for time 
to disease progression

1.09 (1.19) 0.43 (27.27) 0.40 (0.11,1.20) 0.53 (0.32,1.16)

8 Same as specification 2, but without linear and quadratic terms for time 
to disease progression

1.09 (1.06) 0.43 (25.86) 0.38 (0.12,0.98) 0.52 (0.32,0.98)
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Table 6  Causal effect of “always treat with brigatinib” versus “always treat with crizotinib” on Overall Survival (OS) investigated 
through specification 7 from Table 5 for the construction of the inverse probability of censoring weights for switching; Weights under 
progressive truncation; Lost to follow-up (LTFU) assumed at random; Death censored by a minimum of treatment switching and LTFU/
administrative censoring; 72 deaths, ALTA-1L trial

a  cHR: Cumulative hazard ratio by month 48 (equation (5) in ESM 2)
b  RR: Risk ratio formulated as the ratio of the cumulative risks by month 48
c  95% Confidence Intervals (CIs) estimated using a non-parametric bootstrap procedure based on 1000 samples
d  Truncating weights to the 50th percentile corresponds to an unadjusted model

Truncation Percentile Estimated stabilized weights Difference in OS

Truncation percentiles Mean (SD) Min (Max) cHRa (95% CI)c RRb (95% CI)c

0,100 1.09 (1.19) 0.43 (27.27) 0.40 (0.11,1.20) 0.53 (0.32,1.16)

1,99 1.05 (0.72) 0.43 (6.71) 0.57 (0.39,1.16) 0.66 (0.49,1.13)

5,95 0.94 (0.20) 0.43 (1.43) 0.77 (0.52,1.35) 0.81 (0.59,1.28)

10,90 0.92 (0.15) 0.43 (1) 0.84 (0.53,1.40) 0.87 (0.61,1.32)

25,75 0.92 (0.15) 0.43 (1) 0.84 (0.53,1.40) 0.87 (0.61,1.32)

50,50d 0.92 (0.15) 0.43 (1) 0.84 (0.53,1.40) 0.87 (0.61,1.32)

Table 7  Causal effect of “always treat with brigatinib” versus “always treat with crizotinib” on Overall Survival (OS) investigated through 
specifications 1 to 5 using the parametric g-formula, ALTA-1L trial

a Details about Specifications 1, 2 and 3 are available in Tables S6, S7 and S8 in the Electronic Supplementary Material (ESM) 5. Specifications 4 and 5 are the same as 
Specification 1 but replacing 2 categories of ECOG with 3 categories for Specification 4 and without progression time for Specification 5
b cHR: Cumulative hazard ratio by month 48 based on a pooled logistic regression model (equation (5) in the ESM 2)
c RR: Risk ratio formulated as the ratio of the counterfactual risks by month 48
d 95% CIs estimated using a non-parametric bootstrap procedure based on 500 samples
e 95% CIs estimated using a non-parametric bootstrap procedure based on 500 samples with 60 replicate failures

Specificationa Risk (95% CI) in control Risk (95% CI) in 
experimental

cHRb (95% CI)d textbfRRc (95% CI)d

1 0.56 (0.41,0.67) 0.41 (0.29,0.49) 0.63 (0.38,0.97) 0.72 (0.50,0.98)

2 0.56 (0.41,0.68) 0.39 (0.29,0.49) 0.61 (0.38,0.91) 0.71 (0.49,0.93)

3 0.52 (0.40,0.63) 0.39 (0.27,0.48) 0.68 (0.40,0.97) 0.75 (0.50,0.98)

4 0.53 (0.39,0.65) 0.42 (0.30,0.50) 0.72 (0.43,1.07)e 0.79 (0.54,1.05)e

5 0.55 (0.40,0.68) 0.39 (0.27,0.48) 0.62 (0.36,0.92) 0.71 (0.48,0.94)

Fig. 2  Forest plot of cHR and their 95% CI for the effect of brigatinib versus crizotinib on OS investigated through various modelling approaches. 
cHRs for the ITT, exclude switchers and censor at switching analyses were estimated from a pooled logistic regression model. cHR for the IPCW 
approach was estimated using a weighted pooled logistic regression model using the product of the two weights for LTFU/AC (specification 4 
in Table 4) and switching (specification 4 in Table 5). cHR from the parametric g-formula were estimated from specification 1 in Table 7. 95% CIs were 
estimated using a non-parametric bootstrap procedure based on 1000 samples for all approaches and 500 samples for the parametric g-formula. 
cHR, cumulative hazard ratio; CI, confidence interval; OS, overall survival, IPCW, inverse probability of censoring weights; LTFU, loss to follow up; AC, 
administrative censoring
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(95% CI) from a weighted pooled logistic regression for 
the difference in OS between the two treatment groups 
adjusted for switching. The distribution of stabilized 
weights was similar across specifications 1 to 6, with 
means ranging between 0.95 to 0.97 and SDs between 
0.24 to 0.30. The reported cHRs and RRs were relatively 
similar across the six model specifications ranging 
between 0.65 (0.32,1.22) and 0.73 (0.45,1.22) for cHR 
and 0.72 (0.43,1.17) to 0.79 (0.54,1.17) for RR. In speci-
fications 7 and 8, we explored the effect of removing the 
linear and quadratic terms for time to disease progres-
sion from specifications 1 and 2 respectively. Although 
we did observe a mean closer to 1, the SDs for the 
weights became notably larger ( > 1 ) and the result-
ing cHR and RR dropped down to 0.40 (0.11,1.20) and 
0.53 (0.32,1.16) respectively in specification 7 and 0.38 
(0.12,0.98) and 0.52 (0.32,0.98) in specification 8. To 
explore the impact of truncating extreme weights, we 
progressively truncated the weights from specification 
7 as detailed in Table 6. Despite the increase in preci-
sion as weights become more truncated, we observed 
potential bias introduced when truncating beyond the 
5th and 95th percentiles. Analysis with the different 
truncated weights resulted in an RR of 0.66 (0.49,1.13), 
0.81 (0.59,1.28), 0.87 (0.61,1.32) and 0.87 (0.61,1.32) 
with increasing levels of truncations. A similar trend 
was observed with cHR. Findings from Table 5 are also 
visualized through a forest plot in Fig. 4 and Figure S5 
in ESM 7. In Table S11 in ESM 8 we report the sum-
mary statistics of unstabilized weights and correspond-
ing effect estimates.

In our analysis that adjusts for both LFTU/AC and 
treatment switching, we chose specification 4 for the 
LTFU/AC and treatment switching models. This decision 
was a result of a thoughtful balance between including an 
adequate number of flexibly modelled confounders in the 
weighting model and generating well-behaved weights. 
Although the results from specification 1 did not differ 
from that of specification 4, we settled on 4 as it closely 
compares to the parametric g-formula analysis in terms 
of the number of ECOG levels. The resulting cHR and RR 
with their corresponding (95%C) were 0.70 (0.42,1.20) 
and 0.77 (0.52,1.16) respectively. This result is based on 
a weighted pooled logistic regression model using stabi-
lized weights for treatment switching and LTFU. Results 
from a CoxPH reported a similar HR of 0.71 (0.42, 
1.21). Using the KM estimator resulted in a cHR of 0.70 
(0.39,1.31) and an RR of 0.76 (0.50,1.23). Figure 5a and b 
display the KM curves from this analysis and the sensi-
tivity analysis that replaces specification 4 for switching 
adjustment with specifications 7.

Results from the parametric g‑formula analysis
In Table 7, we present the results of our analyses with 
the parametric g-formula. In specification 1, the esti-
mated 48-month risk was 0.56 (0.41,0.67) for “always 
treat with crizotinib” and 0.41 (0.29,0.49) for “always 
treat with brigatinib”. The 48-month RR was 0.72 
(0.50,0.98). The cHR for crizotinib versus brigatinib 
was 0.63 (0.38,0.97). With the exception of specifica-
tion 4, which uses 3 categories of ECOG and reports 
a cHR of 0.72 (0.43,1.07) and an RR of 0.79 (0.54,1.05), 

Fig. 3  Forest plot of cHR and 95% CI for the causal effect of “assign to brigatinib” versus “assign to crizotinib” on OS investigated 
through specifications 1 to 6 using IPCW. Death is censored by LTFU/AC. Details about Specifications 1 (full model) 
and 2 (restricted model) are also available in Tables S1 and S2 in ESM 3. Refer to Table S3 in ESM 4 for a full list of variable 
abbreviations used in this figure. Spec1control : AGE, AGE

2, IDS4, ICS2, LI4, ST4, SM2, FUT, FUT
2, ECOG3, TLS, DP2, A2 . Spec1exp : 

AGE, AGE2, SEX2, RACE2, IDS4, ICS2, LI4, ECOG2, ST4, SM2, RT2, FUT, FUT
2, ECOG3, TLS, IDP2, DP2 . Spec2control : AGE, AGE

2, IDS4, ST4, FUT, FUT
2, TLS, DP2 . 

Spec2exp : AGE
1, AGE2, SEX2, IDS4, ECOG2, SM2, FUT, FUT

2, ECOG3, IDP2, DP2 . Spec 3: Same as Specification 1, but with FUTS , TLSS , AGES instead 
of linear terms. Spec 4: Same as Specification 1, but with ECOG2 instead of ECOG3 . Spec 5: Same as Specification 2, but with FUTS , TLSS , AGES instead 
of linear terms. Spec 6: Same as Specification 2, but without SEX2, ECOG2, IDS4 in calculating the denominator of the experimental arm. cHRs 
were estimated from a weighted pooled logistic regression using weights for LTFU/AC and formulated based on equation (5) provided in ESM 2. 
Reported CIs were estimated using a non-parametric bootstrap procedure based on 1000 samples. cHR, cumulative hazard ratio; CI, confidence 
interval; OS, overall survival, IPCW, inverse probability of censoring weights; LTFU, loss to follow up; AC, administrative censoring; ESM: electronic 
supplementary material
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the results did not materially change across the 
remaining sensitivity analyses. Findings from Table  7 
are also visualized through a forest plot as shown 
in Fig.  6 and Figure S6 in ESM 7. The counterfactual 
survival curves from specification 1 and the previous 
IPCW analysis are shown in Fig. 7.

Discussion
Research problem and key findings
In the ALTA-1L trial, nearly half of the patients in the cri-
zotinib arm switched to brigatinib after disease progres-
sion. Treatment switching (following disease progression) 
and LTFU/AC at each visit may have been influenced by 

Fig. 4  Forest plot of cHR and 95% CI for the causal effect of “always treat with brigatinib” versus “always treat with crizotinib” on OS investigated 
through specifications 1 to 8 using IPCW. LTFU is assumed at random; Death is censored by a minimum of treatment switching and LTFU/
AC. Details about Specifications 1 (full model) and 2 (restricted model) are also available in Tables S4 and S5 in ESM 3. Refer to Table S3 
in ESM 4 for a full list of variable abbreviations used in this figure. Spec 1: AGE, IDS4, ICS2, LI4, ST4, SM2, FUT, ECOG3, TLS, TDP, TDP

2 . Spec 2: 
AGE, IDS4, ST4, FUT, TLS, TDP, TDP

2 . Spec 3: Same as Spec 1 but with FUTS , TLSS , AgeS , TDPS instead of their linear terms. Spec 4: Same as Spec 1 
but with ECOG2 instead of ECOG3 . Spec 5: Same as Spec 2 but with FUTS , TLSS , AgeS , and TDPS instead of their linear terms. Spec 6: Same as Spec 
2 but without IDS4 . Spec 7: Same as Spec 1 but without TDP and TDP2 . Spec 8: Same as Spec 2 but without TDP and TDP2 . cHRs were estimated 
from a weighted pooled logistic regression using weights for treatment switching and formulated based on equation (5) provided in ESM 2. 
Reported CIs were estimated using a non-parametric bootstrap procedure based on 1000 samples. cHR, cumulative hazard ratio; CI, confidence 
interval; OS, overall survival, IPCW, inverse probability of censoring weights; ESM: electronic supplementary material

Fig. 5  Counterfactual weighted Kaplan-Meier (KM) survival curves comparing overall survival between “always treat with brigatinib” and “always 
treat with crizotinib”; Survival probabilities are derived from the KM estimator, Cumulative Hazard Ratios (cHRs) and Risk Ratios (RRs) are estimated 
from a weighted pooled logistic regression model; cHR is formulated based on equation (5) provided in the Electronic Supplementary Material 
(ESM) 2; RR is formulated as the ratio of the cumulative risks by month 48; Estimates are weighted by the product of inverse probability of censoring 
weights for lost to follow-up/administrative censoring and switching; In panel (a) weight estimates are derived from specification 4 in Table 4 
and specification 4 in Table 5. In panel (b) weight estimates are derived from specification 4 in Table 4 and specification 7 in Table 5
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various time-varying and baseline covariates, introducing 
causal inference and statistical challenges in estimating 
overall survival (OS) in clinical trials. Beyond its clinical 
relevance, OS is also a critical outcome in health tech-
nology assessments, informing the cost-effectiveness of 
introducing new treatments to the existing standard of 
care. These policy assessments often require estimates of 
treatment effects that reflect real-world scenarios where 
switching to an experimental treatment is not yet an 
option. Our analysis has therefore focused on estimat-
ing the effect on OS under the strategies “always treat 
with brigatinib” versus “always treat with crizotinib”, 

eliminating switching and LTFU/AC events. To achieve 
this, we utilized g-methods, which address the limita-
tions of conventional regression methods that introduce 
selection bias and over-adjustment in the presence of 
treatment-confounder feedback.

The published findings from the sensitivity analysis 
carried out by the ALTA-1L study team, applying the 
IPCW approach to account for treatment switching, have 
shown a substantial reduction in the HR of death (HR for 
death: 0.50 (0.28–0.87)) as compared to the ITT results. 
Our first objective was to apply the IPCW method to 
reproduce the results from the ALTA-1L based on the 

Fig. 6  Forest plot of cHR and their 95% CI for the causal effect of “always treat with brigatinib” versus “always treat with crizotinib” on OS investigated 
through specifications 1 to 5 using the parametric g-formula. Details about Specifications 1, 2 and 3 are available in Tables S6, S7 and S8 
in the Electronic Supplementary Material (ESM) 5. Specifications 4 and 5 are the same as Specification 1 but replacing 2 categories of ECOG with 3 
categories for Specification 4 and without progression time for Specification 5. Reported CIs were calculated using a non-parametric bootstrap 
procedure based on 500 samples (with 60 replicate failures observed for specification 4). cHR, cumulative hazard ratio; CI, confidence interval; OS, 
overall survival

Fig. 7  Counterfactual parametric survival curves comparing overall survival between “always treat with brigatinib” and “always treat with Crizotinib”; 
Cumulative Hazard Ratios (cHRs), Risk Ratios (RRs) and survival probabilities are estimated from a pooled logistic regression model; cHR is formulated 
based on equation (5) provided in the Electronic Supplementary Material (ESM) 2; RR is formulated as the ratio of the cumulative risks by month 
48. In panel (a) estimates are weighted by the product of the inverse probability of censoring weights for LTFU and switching from specification 4 
in Table 4 and specification 4 in Table 5. In panel (b) estimates are derived from the parametric g-formula from specification 1 in Table 7. Reported 
CIs are calculated using a non-parametric bootstrap procedure based on 1000 samples for panel (a) and 500 samples for panel (b)
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information provided. While our attempts to reproduce 
this result were generally successful (HR: 0.51 (0.28–
0.93)), we did encounter slight numerical differences. 
These differences may be attributed to differences in the 
definition of time intervals when structuring the data, 
differences in the approach to limit extreme weights and 
limitations in the level of detail available in the provided 
Statistical Analysis Plan (SAP). However, our re-analyses 
with the IPCW and parametric g-formula approaches – 
that additionally consider progression status and time to 
progression as potential confounders – have shown dis-
tinct results from the published ones, and demonstrated 
greater robustness across a range of sensitivity analyses. 
Overall, our results consistently revealed that the survival 
benefit of brigatinib is likely to be higher than what was 
observed in the ITT analysis when accounting for the 
effect of switching from crizotinib to brigatinib.

Our analyses with g-methods required a number of 
modelling choices that strongly affected our results. 
This complexity was compounded by our decision to 
report an extensive range of sensitivity analyses. Hid-
ing the potential consequences of the different choices 
within this “garden of forking paths” [32] could have 
significant implications, especially in clinical applica-
tions. It was therefore important to us to extensively and 
clearly report our sensitivity analyses, and publicly share 
our analysis R script. In light of our application of these 
methods, we also foresee a rather overlooked challenge 
in the process of drafting an SAP following the Interna-
tional Council for Harmonisation of Technical Require-
ments for Pharmaceuticals for Human Use (ICH)-E9 
guidance with a specified set of models that both set the 
course for an entire analysis. Different data patterns and 
unforeseen challenges might significantly impact the 
applicability of such methods where researchers might 
find themselves in a dilemma trading off between provid-
ing a complete, predefined analysis plan and allowing for 
flexibility to adapt to unanticipated complexities that may 
emerge later in the analysis.

Interpretation of the IPCW results
When estimating the weights in our IPCW analyses, we 
considered a set of predictors that were either prognos-
tic of survival [33] or were jointly predicting switching 
and survival [9]. Through our analysis, we have noticed 
that including variables that only affect the probability 
of survival (without considering switching) compared 
to a rather restricted model that includes variables that 
are jointly predictive of switching and death did not yield 
different results. This suggests that including predictors 
that affect survival only did not meaningfully improve 
efficiency in our estimates. Additional sensitivity analyses 

that either aimed to relax the linearity assumption or 
explore the influence of potential residual confounding 
within categories of the confounders have shown to be 
relatively consistent across the aforementioned sensitiv-
ity analysis with results.

Two additional IPCW sensitivity analyses have shown 
diverging results further away from the null with misbe-
haved weights when one single covariate (time to disease 
progression) was excluded from the analysis. Referring 
to the DAG presented in Fig.  1 and our multi-variate 
analysis reported in Tables S4 and S5 in ESM 3, time to 
progression in ( L1 ) has shown a notable proportional 
relationship with treatment intake ( A1 ). Upon examina-
tion of the respective individual-level data, we noticed 
that observations with extreme weights were those who 
experienced earlier disease progression. Within this sub-
group of data, we identified three instances of patient 
deaths that were associated with disproportionately high 
weights behaving as leverage points. This has probably 
contributed to an overestimation of deaths within the 
control group and a perceived advantage for the experi-
mental group on survival. Adjusting the weights of these 
three leverage points to the average value of the maxi-
mum weights from the first six specifications has notably 
shifted the cHR from their initial value of 0.40 (0.11,1.20) 
to 0.68 (0.38,1.49). This underscores the considerable 
importance of addressing extreme weights in the inter-
pretation of our findings.

In our study, nearly half the patients (53%) in the cri-
zotinib arm did not switch to brigatinib. These patients 
formed the basis of the IPCW survival estimates in the 
control arm. A simulation study [34–36] has shown that 
high levels of bias can be produced when switching pro-
portions exceeded 85%, we therefore did not consider 
the size of the remaining non-switchers as a substan-
tial source of uncertainty associated with our results. 
To relax the assumption of differential censoring due to 
LTFU, we combined the weights of switching with LTFU/
AC weights in the outcome model to estimate the causal 
effect of our previously defined hypothetical treatment 
strategies on OS.

Interpretation of parametric g‑formula results
The results from our parametric g-formula analyses sug-
gest that the treatment effects (cHRs and RRs) after 4 
years are lower than the reported ITT results. Since the 
parametric g-formula relies on specifying a number of 
parametric models, we conducted several sensitivity 
analyses to assess the robustness of our results to dif-
ferent modelling decisions. We found that the estimates 
(e.g., counterfactual risks, RRs, cHRs) were similar across 
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the five different analyses. Interestingly, omitting the 
“time to progression” variable from the outcome model 
did not strongly affect the g-formula estimates, contrary 
to our IPCW analyses.

The parametric g-formula has seen relatively limited 
applications compared to IPW approaches, particularly 
when estimating PP effects in 2-arm RCTs. One practi-
cal barrier to applying this method is its complexity to 
implement. In fact, the analyses conducted in this project 
involved a nonstandard application of the relatively new 
gfoRmula R package and required a number of updates to 
the package.

Comparability between methods
Results from a relevant RCT (ALEX study) [37] compar-
ing alectinib (also a next-generation ALK tyrosine kinase 
inhibitor) to crizotinib in ALK-positive NSCLC, however 
unaffected by treatment switching, have shown an HR 
of 0.67 (0.46–0.98), a result that is relatively close to the 
ones we report in our analysis. While acknowledging that 
the two trials have differences in patient characteristics 
and background treatment, we believe that the compara-
ble findings from the ALEX study offer valuable support-
ing evidence that reinforces our results especially that the 
PFS results from the ALEX trial were relatively similar to 
those reported in the ALTA-1L.

Plausibility of assumptions
The IPCW and parametric g-formula methods oper-
ate under five key assumptions. We considered con-
sistency (where treatment and LTFU/AC variables are 
well-defined) and no measurement errors as plausible 
assumptions given the controlled experimental design 
of the ALTA-1L trial. The application of both IPCW and 
g-formula also requires the assumption that all baseline 
and TVCs that jointly predict the outcome and switch-
ing are observed. While it is advised to adjust for as 
many confounding variables as possible to satisfy this 
exchangeability assumption, it can be challenging to do 
so in small-medium-sized trials. The exchangeability 
assumption may be violated to some extent in our analy-
ses, as we performed variable selection (among a set of 
possible confounders based on expert domain knowl-
edge) in the nuisance function models due to the limited 
sample size of the trial.

To help address this, we provided the reader with a 
clear description of the covariates considered in our 
analysis and presented a series of sensitivity analyses to 
provide more comprehensive results. For the positivity 
assumption (where there is adequate variability in the 

crossover and LTFU patterns) we did not observe any 
obvious violation of positivity in most of our analyses.

All models need to be correctly specified to obtain valid 
estimates. While g-formula makes relatively stronger 
model assumptions in the sense that multiple models 
need to be fitted (outcome and time-varying confound-
ing variables), we took proactive steps in this regard by 
adopting a series of sensitivity analyses. In regards to 
the correct model specification of the weighting model 
within the IPCW approach, we carefully examined the 
resulting weights in Tables  4 and 5, particularly focus-
ing on identifying any potential extreme values. With the 
exception of specifications 7 and 8 from Table 5, we have 
noticed a rather stable behaviour without instances of 
extreme values. We have also noticed that addressing the 
large weights with a range of truncations has a bias-var-
iance trade-off where the bias increases and the variance 
decreases as the weights become more truncated. Similar 
observations have been made in applied and methodo-
logical studies [5].

Alternative methods
There are a number of alternative approaches to esti-
mate PP effects each relying on different assumptions 
than the g-methods we used. One example we con-
sidered in this work, is the Rank Preserving Structural 
Failure Time Model (RPSFTM) approach proposed by 
Robins [13]. Unlike IPCW and parametric g-formula, 
this approach does not require the “no unmeasured 
confounding” assumption, however assumes a common 
treatment effect. We did not find it reasonable to assume 
that switchers in the control arm would attain the same 
benefit from treatment as those who initially received the 
experimental treatment at randomization.

Another approach is the Two-Stage Estimation (TSE) 
[26] proposed by Latimer in 2014 which assumes the 
absence of time-dependent confounding between the 
time of disease progression (taken as a secondary base-
line) and the time of treatment switch. The application 
of the two-stage method was not considered suitable, 
mainly because of the time lag between disease progres-
sion and treatment switching for many patients. By using 
such a method, differences between switchers and non-
switchers may not be adequately accounted for within 
this framework.

The application of an “improved TSE”, a methodology 
recently introduced by Latimer in 2020 [8] which uses 
structural nested models and g-estimation to account 
for time-dependent confounding seems to be a viable 
approach for future work.
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Open science and reproducible research
Despite our successful attempt to reproduce the pub-
lished results, the various methodological options and 
“forks in the road” encountered through our analyses 
underscore a rather challenging task that researchers 
would probably encounter while attempting to replicate 

or even reproduce someone else’s work. This distinct 
topic is beyond the scope of our current work but calls 
for serious discussions on comprehensive and extensive 
documentation and collaborative efforts, to ensure that 
replicability work in complex domains like the use of 
causal methods in clinical trials yield reliable results.

Table 8  IPCW and parametric g-formula: a road map to handle treatment switching and attrition bias

a  Proportion of switching: High switching probability might be problematic
b  Possible violations of positivity assumptions: Is the Probability of switching equal to 1 within certain levels of the confounder?
c  Extreme weights can signal model misspecification

1. Recognize the different approaches to analyzing Randomized Controlled Trials (RCTs)
• ITT analysis - though does not necessitate adjusting for switching - might underestimate the treatment effect of interest

• Per-protocol analysis - though prone to selection bias - remains an important analysis in estimating the effectiveness of  
treatment in the decision-making process

• Explore the potential of an appropriately conducted PP analysis for more meaningful insights into treatment effects

2. Define your causal estimand(s)
• Facilitate a collaborative discussion based on the literature, clinical experience, and relevant guidelines to define your 
estimand(s)

3. Understand the methodological challenges and opportunities in estimating your causal estimand
• Directed acyclic graphs are helpful tools for understanding the structural relationship between the variables of interest

• Conventional regression methods are typically biased in the presence of treatment-confounder feedback

• G-methods such as IPCW and the parametric g-formula are potential methods to address treatment switching

4. Apply inverse probability of censoring weighting
• IPCW censors data at switching and creates a pseudo-population in which the distribution of confounding factors is the same 
across the treatment regimens

• Inspect your data for the proportion of switchinga and possible violations of positivity assumptionsb

• If applicable, incorporate deterministic knowledge of some of the variables to help mitigate bias from model misspecification

• Document the type of the model (e.g. pooled logistic regression) that is used to calculate stabilized and non-stabilized 
weights

• Inspect and clearly report the distribution of the estimated weightsc

• Carefully handle any truncation of weights and report the different levels of truncation

• Apply the multiplication of different inverse probability of censoring weights in the outcome model to adjust for both  
switching and lost to follow-up/administrative censoring

• Estimate the 95% CIs by bootstrapping the entire procedure (weighting and outcome estimation) to account for correlated 
data and the weight estimation process

• Perform a range of sensitivity analyses to explore the potential consequences of the different model choices

5. Apply the parametric g-formula
• Parametric g-formula estimates the counterfactual risks of the treatment regimens at each time point by performing a Monte 
Carlo simulation based on the fitted models of exposure, outcome and confounders

• If applicable, incorporate deterministic knowledge of some of the variables to help mitigate bias from model misspecification

• Inspect the simulated data set to check that the intervention, covariate simulation, and restrictions (if applicable) were applied 
correctly

• Inspect the estimated coefficients in the fitted models for any irregularities

• Compare the parametric g-formula estimates of the covariate means and outcome risks under the natural course estimates 
to the observed (or inverse probability weighted) covariate means and risks

6. Comparison between IPCW and the parametric g-formula
• IPCW and parametric g-formula both operate under the following five different assumptions: no unmeasured confounding, 
positivity, consistency, correct model specification, and no measurement error

• Compare the results from the IPCW and parametric g-formula. While large differences between the two approaches are  
alarming, smaller differences - though do not guarantee any absence of model misspecification - might still be reassuring

7. Address and report thoroughly all methodological challenges in your analyses
• Transparently report any divergent results from the conducted sensitivity analysis

• Acknowledge the strengths and limitations of the IPCW and parametric g-formula methods

• Communicate opportunities, uncertainties and sources of bias in your analysis
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Our efforts to demonstrate our analysis process and 
publicly share our analysis R script led us to create the 
synthetic data to overcome the limitation of sharing the 
real clinical trial data. For this, we generated a synthetic 
version of individual-level data that reflects the rela-
tionships among baseline and time-dependent covari-
ates from the ALTA-1L over 50 discrete time points. To 
achieve this, we utilised estimates of baseline and TVC 
derived from the summary of g-formula model fits, par-
ticularly in the control arm, to inform the distribution of 
treatment switching, outcome, censoring and other TVC. 
Our methodology further incorporated deterministic 
information in the form of restrictions to align our simu-
lation with the specific context of the ALTA-1L trial. Our 
synthetic data and shared R code should not be used to 
reproduce the published results or draw clinical conclu-
sions, but should only serve as a tool for gaining insights 
into our analysis process.

Conclusion
Applying an ITT approach likely underestimated the 
treatment effect of brigatinib versus crizotinib. While 
ITT analyses provide important information from rand-
omized clinical trials, appropriately adjusted PP analyses 
can provide decision makers with additional information 
about the effectiveness of treatment. We have seen that 
adjustment methods that account for treatment switch-
ing have various limitations and their suitability depends 
on the characteristics of the trial data under evaluation. 
Our analyses illustrated opportunities and challenges 
encountered when employing methods to estimate PP 
effects. Overall, our results have shown how these meth-
ods could be successfully implemented in a relatively 
small-sized trial and how different model specifications 
can lead to considerably different results. To help data 
analysts better understand key points in applying IPCW 
and parametric g-formula methods in similar settings, we 
conclude our paper by offering a road map as shown in 
Table 8.
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