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Neural reward system reflects individual
value comparison strategy in cost-benefit
decisions
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Zarah Le Houcq Corbi & Alexander Soutschek

A core assumption in decision neuroscience is that individuals decide between options by comparing
option-specific subjective reward values. Psychological accounts challenge this view and suggest
that decisions are better explained by comparisons between choice attributes than by comparisons
between option-specific values, casting doubts on the interpretation of activation in the neural reward
system as subjective value signals. Here, we provide neuroimaging and pharmacological evidence
that value-related neural activity follows the value comparison strategy employed by an individual on
the psychological level. Neural model comparisons reveal that activation in the striatum, rather than
generally reflecting attribute-wise or option-wise value comparisons, reflects the value comparison
strategy that provides thebest explanation for an individual’s choicebehavior. Strikingly,manipulating
activation in the dopaminergic reward system reveals that dopamine antagonism counteracts the
engagement in an individual’s dominant value comparison strategy. Together, our findings provide
evidence for the biological plausibility of psychological accounts of decision making and emphasize
the importance of neural model comparisons to prevent misinterpretations of brain activation.

Many decisions require humans to trade off the benefits against the costs of
actions1. Examples of this range from choosing between immediately
available smaller rewards versus more valuable long-term outcomes
(intertemporal decisions) to deciding whether to benefit others via sacrifi-
cing one’s own resources (interpersonal decisions). Prominent accounts of
cost-benefit decisions assume that humans decide between reward options
by comparing the subjective values of the options2–5. In both intertemporal
and interpersonal decisions, the subjective value of an option is thought to
integrate rewardmagnitudes and costs according tohyperbolic functions: In
intertemporal decisions, the subjective value of a reward declines hyper-
bolically with increasing time of reward delivery6,7, whereas the value of
sharing money with others is hyperbolically reduced with increasing social
distance of the benefitted person8–10. A large body of evidence suggests that
the subjective values of delayed and shared rewards correlatewith activation
in the neural reward system, including the striatum and ventromedial
prefrontal cortex (VMPFC)4,9,11–14. These neural findings are often inter-
preted as evidence for the biological plausibility of economic discount
models of decision-making4. However, past studies did not investigate
whether activation in the reward system might better be explained by
alternative models of decision making.

Recent evidence from the psychological literature suggests that eco-
nomicdiscountmodelsmaynot correctly reflect howhumans actuallymake
cost–benefit decisions. Instead of comparing the discounted subjective

values of reward options (option-wise comparisons), many humans may
make intertemporal decisions by comparing the weighted differences in
reward magnitudes and delay costs of the choice options (attribute-wise
comparisons)15–18. Previous evidence suggests that individuals strongly vary
in the extent to which they employ attribute-wise relative to option-wise
decision strategies15,16, such that it might be misleading to assign the same
utility function to all individuals in a given sample. However, ifmany agents
do not rely on option-wise comparisons when making cost-benefit deci-
sions, it seems implausible to assume that the neural reward system encodes
option-wise value comparisons in these agents. This challenges the widely
held assumption in decision neuroscience where activation in the reward
system is thought to represent the subjective values of reward options19,20.
Interestingly, indirect support for the hypothesis that the brain might
encode attribute-wise utility comparisons stems from the dopamine lit-
erature, where dissociable striatal pathways (direct versus indirect
path) are thought to process reward magnitudes and costs in decision-
making21–23. This suggests that striatal activitymay reflect the relativeweight
assigned to reward and cost attributes rather than an integrated subjective
value signal.

Here, we tested the hypothesis (inspired by psychological findings for
intertemporal decisions) that activation in the neural reward system is better
explained by attribute-wise rather than by option-wise utility comparisons
during individual and social decisions in two separate experiments. On the
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behavioral level, we expected to replicate previous findings that cost-benefit
decisions are better explained by attribute-wise than by option-wise value
comparisons (hypothesis 1). On the neural level, we tested in a neuroima-
ging study whether activation in the neural reward system (including
VMPFC and striatum) is better explained by attribute-wise compared with
option-wise decision strategies when making cost–benefit choices
(hypothesis 2). Moreover, to provide evidence for a causal relationship
between neural activation and value comparison strategies, we assessed
whether pharmacological manipulation of dopaminergic activation chan-
ged the balance between attribute-wise and option-wise value comparisons
(hypothesis 3).While the neuroimaging data provided no evidence that the
reward system generally encoded attribute-wise or option-wise utility
computations on the group level, we observed activation in the reward
system to reflect value computations according to the decision strategy
employed by individuals. In line with this, pharmacologically blocking
activity in the dopaminergic reward system reduced the engagement in the
decision strategy preferred by an individual. Together, this challenges the
widespread assumption in decision neuroscience according to which the
neural reward system encodes option-specific discounted subjective values
and demonstrates that the reward system reflects the individually employed
utility computation strategy.

Results
To test our hypotheses, 35 healthy young participants performed inter-
temporal and interpersonal decisions in the functional magnetic resonance
imaging (fMRI) scanner. In the intertemporal decision task, participants
decided between smaller-sooner and larger-later rewards (e.g., “3 euro in 0
days” versus “5 euro in 90 days”). In the interpersonal decision task, we first
asked participants to imagine individuals at various social distances ranging
on a scale from 1 (closest other) to 100 (a person they never met before). In
the scanner, they then decided between a smaller reward for a close person
(including themselves) and a larger reward split equally between the close
other and a more distant other (e.g., “7.5 euro for self” versus “10 euro split
equally between self and person at social distance 20”) (Fig. 1A).

To replicate and extend previous findings that choice behavior is better
explained by attribute-wise rather than option-wise comparisons, we fitted
drift-diffusion models (DDMs) to individual choice data24. We fitted the
models on the individual rather than hierarchical level as this approach
allows investigating individual variation in model fit between competing
models. DDMs simulate decisions as an evidence accumulation process
starting after a non-decision time τ until a decision boundary α is reached
(where the upper boundary is associated with choices of larger and tem-
porally or sociallymore distant rewards, the lower boundary with choices of
smaller-closer rewards; Fig. 1B). The speed of the evidence accumulation
process (drift rate ν) depends on the preference strength for one option over
the other and was modeled based on either attribute-wise or option-wise
value comparisons (Fig. 1C). More specifically, in the attribute-wise DDM
(DDMattribute) the drift rate was given by the following equation:

ν ¼ βintercept þ βreward ×Rewarddiff þ βdistance ×Distancediff ð1Þ

Rewarddiff and Distancediff indicate the differences in reward magni-
tude and distance, respectively, between the more distant and the closer
option. βreward and βdistance represent the individual weights assigned to
differences in rewardmagnitude and distance, respectively, during evidence
accumulation, whereas βintercept is a participant-specific intercept reflecting
the general speed of the evidence accumulation process (independently of
the specific reward magnitudes and distances in a given trial) towards
decision boundaries.Wenote thatDDMs including the intercept parameter
explained the data better (intertemporal: widely applicable information
criterion (WAIC) = 206.1; interpersonal: WAIC = 225.0) than DDMs
without intercept (intertemporal: WAIC = 223.3; interpersonal: WAIC =
235.7). Parameters were fit separately for the intertemporal and the inter-
personal decision tasks. In analogy, in the option-wise DDM (DDMoption),
the drift rate was given by

ν0 ¼ βtemperature × ðSVdistant � SVcloseÞ ð2Þ

Fig. 1 | Task design and computational modeling
approach. A Example trials for the intertemporal
and interpersonal decision tasks. In the inter-
temporal decision task, participants made choices
between temporally closer, smaller rewards (e.g., 3
euro today) and temporally distant, larger rewards
(e.g., 5 euro in 90 days). The interpersonal decision
task required choices between variable monetary
rewards for a socially close person (including the
participant, who was defined as social distance = 0;
e.g., 7.5 euro for self) and 5 euro for both the socially
close and a distant person (e.g., 5 euro for self and the
person at social distance 20). B In both tasks, we
fitted Bayesian drift-diffusion models (DDMs) to
the behavioral data that assumed that decision-
makers accumulate evidence with the velocity ν
(drift rate) from a starting point ζ until the accu-
mulated evidence reaches the decision boundary α
for either the (temporally or socially) closer or more
distant option (lower and upper boundaries,
respectively). C In separate DDMs, we assumed that
the drift rate reflects either attribute-wise or option-
wise utility comparisons of choice alternatives.
D Intertemporal choices were better explained
(indicated by lower WAIC values) by DDMattribute

than by DDMoption, whereas in the interpersonal
decision task, we found no significant differences
between DDMattribute and DDMoption. Boxes indi-
cate inter-quartile range, red lines indicate the
median, and black dots represent individual data
points (N = 35 participants).
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SV ¼ reward magnitude=ð1þ βdiscount × distanceÞ ð3Þ

Here, βdiscount represents a task- and participant-specific discount
factor quantifying the degree to which temporal or social distance reduces
the subjective value (SV) of delayed or shared rewards. The drift rate v’was
moreover passed through a sigmoid function with the upper and lower
border vlim (which also ensured that DDMattribute and DDMoption entailed
equal numbers of free parameters):

v ¼ 2× vlim=ð1þ expð�v0ÞÞ � vlim ð4Þ

In line with previous evidence25, DDMsoption including this sigmoidal
transformation (intertemporal: WAIC = 216.7; interpersonal: WAIC =
225.7) explained the data better than DDMs without this transformation
(intertemporal: WAIC = 217.8; interpersonal: WAIC = 246.4). However,
adding a sigmoidal transformation to DDMattribute did not improve model
fit (intertemporal with sigmoidal: WAIC = 208.6; intertemporal without
sigmoidal: WAIC = 206.1; interpersonal with sigmoidal: WAIC= 227.7;
interpersonal without sigmoidal: WAIC = 225.0). Model comparisons
between DDMattribute and DDMoption revealed that attribute-wise compar-
isons explained choice behavior better than option-wise comparisons in the
intertemporal decision task, Wilcoxon signed-rank test between
WAICattribute andWAICoption:W = 155, p = 0.008. In contrast, we observed
no significant difference between WAICattribute and WAICoption in the
interpersonal decision task, Wilcoxon signed-rank test: W = 232, p = 0.20,
thus providing only partial support for our first hypothesis. However, as

indicated by Fig. 1D and consistent with previous findings15,16, in both tasks,
there was substantial variation in the extent to which individuals employed
attribute-wise relative to option-wise decision strategies.

Posterior predictive checks revealed that decision times simulated
based on model parameters from both DDMattribute and DDMoption closely
matched the decision times observed in the intertemporal and interpersonal
decision tasks (Fig. 2A, B). Moreover, DDMattribute explained 83% of all
intertemporal decisions and 81% of all interpersonal decisions, DDMoption

correctly predicted 79% of all intertemporal decisions and 81% of all
interpersonal decisions. This suggests that the models provide reasonable
accounts of the empirical data, though theywere still distinguishable as they
predicted different choices in 24% of all intertemporal decision trials and in
20% of all interpersonal decision trials. To more thoroughly compare pre-
diction accuracies between the models, we fitted the DDMs on 90% of the
trials and tested the prediction accuracy in the remaining 10% of trials. This
procedurewas repeated 10 times to determine themeanprediction accuracy
of the DDMs for each participant and decision task. In the intertemporal
decision task, cross-validated prediction accuracy was significantly higher
for DDMattribute (80%) compared with DDMoption (76%), t(34) = 2.47,
p = 0.02, whereas in the interpersonal decision task, prediction accuracy did
not differ between DDMattribute (80%) and DDMoption (81%), t(34) = 0.26,
p = 0.81. This is consistent with the WAIC results according to which
attribute-wise comparisons explain intertemporal decisions better than
option-wise comparisons. Lastly, model recovery assessments showed that
both intertemporal and interpersonal data simulated based on parameters
from DDMattribute could better be explained by DDMattribute than
DDMoption, both p < 0.001, whereas data created based on DDMoption

Fig. 2 | Behavioral results. A,B Posterior predictive
checks revealed that decision times simulated based
on parameter estimates from DDMattribute and
DDMoption showed strong overlap with the empiri-
cally observed decision times in both the inter-
temporal (A) and interpersonal (B) decision tasks.
Negative and positive decision times indicate choi-
ces of the closer and more distant reward options,
respectively. C–F Individual differences in the pro-
pensity to choose temporally or sociallymore distant
over closer rewards were correlated with drift rates
from C, D DDMattribute as well as log-transformed
discount parameters from E, F DDMoption, sug-
gesting that DDMattribute and DDMoption captured
essential aspects of time and social preferences
(N = 35 participants).
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parameters were better explained by DDMoption than DDMattribute in the
intertemporal, p < 0.001, but not the interpersonal decision task, p = 0.80.
On balance, this suggests that the models capture dissociable aspects of
choice behavior.

Further sanity checks revealed that the sum of the weighted
influences of rewards and costs on the drift rate in DDMattribute

(βintercept+ βreward+ βdistance) significantly predicted mean choices of
larger-later rewards, Kendall’s tau = 0.67, p < 0.001, and prosocial rewards,
Kendall’s tau = 0.76, p < 0.001 (Fig. 2C,D). Likewise,mean choiceswere also
negatively correlated with log-transformed hyperbolic discount parameters
from DDMoption in the intertemporal, Kendall’s tau = -0.53, p < 0.001, and
interpersonal decision task, Kendall’s tau =−0.61, p < 0.001 (Fig. 2E, F).
Thus, our process models capture essential aspects of preferences for
delayed and shared rewards and replicate previous findings according to
which attribute-wise utility comparisons explain intertemporal choices
better than option-wise comparisons15,16,26, and extend these findings to the
social domain.

Note that in the current study, we cannot determine whether differ-
ences in model fit between DDMattribute and DDMoption relate to partici-
pants’ information search behavior due to the lack of eye-tracking data. To
address this issue, we fitted our DDMs to a previously published data set
where eye tracking had been used to determine whether participants made
attribute-wise or option-wise gaze transitions when searching for infor-
mation (expressed via thePayne index27) in an intertemporal decision task15.
The significant correlation between the Payne index and the WAICattribute

minus WAICoption difference score, r = 0.21, p = 0.03, suggests that our
model-based index indeed captures variation in participants’ information
search behavior.

Next, we assessed whether the individual variation between attribute-
wise and option-wise value comparisons on the psychological level is also
reflected on the neural level. For this purpose, we computed two general
linear models (GLMs) on the fMRI data: GLMattribute assessed the neural
correlates of the unsigned trial-varying drift rates (which reflect the strength
of the preference for one option over the other) in intertemporal and
interpersonal decisions as given by individual model parameters from
DDMattribute. Analogically, GLMoption modeled preference strengths
between reward options via individual parameters from DDMoption.
Unsigned drift rates in GLMattribute and GLMoption showed mean correla-
tions (correlations were computed separately for each participant) of
r = 0.66 in the intertemporal decision task and r = 0.47 in the interpersonal
decision task. Because in DDMoption drift rates depended on hyperbolically
discounted subjective reward values, GLMoption is equivalent to previous
studies investigating the neural correlates of value differences based on
discounted subjective values4,9,14,28. Consistent with these previous findings,
unsigned differences between discounted reward values in GLMoption were
encoded in the striatum as part of the neural reward system (with the cluster
extending into VMPFC), peak coordinates: x = 2, y = 12, z =−9, whole-
brain family-wise error (FWE) corrected at the cluster level, p = 0.04
(Supplementary Table 1). Importantly, we found the striatum to be active
also when modeling value differences between reward options via the drift
rates from the attribute-wise DDMs; peak coordinates: x =−4, y = 15,

z = 15, whole-brain FWE corrected at cluster level, p < 0.001 (Supplemen-
tary Table 2). A conjunction analysis revealed that the striatum clusters
related to attribute-wise and option-wise utility computations strongly
overlapped (Fig. 3A). When we extracted parameter estimates from this
overlapping cluster separately for the interpersonal and intertemporal
decision task, striatal activation in both tasks correlated with attribute-wise,
both t(34) > 3.59, bothp < 0.003, andoption-wise utility computations, both
t(34) > 3.34, both p < 0.002 (Fig. 3B). This result was robust to extracting
parameter estimates from a meta-analysis-based striatum ROI, all
t(34) > 2.74, allp < 0.02, Bonferroni-corrected,whereas aVMPFCROI from
this meta-analysis revealed significant effects only for attribute-wise com-
parisons in the intertemporal decision task, t(34) = 3.71, p = 0.002, Bon-
ferroni-corrected, all other effects t(34) < 1.19, p > 0.48. We, therefore,
restricted our further analyses to the striatum ROIs. In both tasks there was
no evidence that activity within the striatum ROIs significantly differed
between GLMattribute and GLMoption, all p > 0.28. Thus, the striatum corre-
latedwith the strengthof individual and social preferencesaccording toboth
option-wise and attribute-wise value computations.

As a control analysis, we assessed whether value-related activation in
the neural reward system might better be explained by models fitted to
binary choice data rather than DDMs (which are fitted to both choices and
decision times). We, therefore, estimated parameters for the attribute-wise
and option-wise models by fitting them to binary choices (using the dbern
function in JAGS), following previous procedures in imaging research4,9,28.
Attribute-wise models explained the binary choice data better (indicated by
lowerWAICvalues) thanoption-wisemodels both in the intertemporal and
interpersonal decision tasks, both p < 0.001. To compare how well the two
modeling approaches explained the neural data, we re-computed
GLMattribute and GLMoption based on parameters from the choice-only
models. Value-related activation in the striatum and VMPFC ROIs was
slightly better explained (i.e., lower BIC values) by the DDM-based
(GLMattribute: BICVMPFC = 7516.2, BICstriatum = 7317.0; GLMoption:
BICVMPFC = 7516.9, BICstriatum = 7318.1) than by the binary choice-based
imaging analyses (GLMattribute: BICVMPFC = 7516.9, BICstriatum = 7317.2;
GLMoption: BICVMPFC = 7518.4, BICstriatum = 7318.1). This justifies our
approach of analyzing neural value correlates based on DDM parameters.

Although on the group level, both attribute-wise and option-wise value
comparisons correlated with striatal activity, it seems implausible that one
brain region indeed encodes both value comparison strategies simulta-
neously. The question of whether striatal value signals are better explained
by attribute-wise or option-wise comparisons can be answered via model
comparisons on the neural level. When comparing model fits between
GLMattribute andGLMoption with theMACS toolbox29, Bayesian information
criteria (BIC) values extracted from the striatum ROI based on overlapping
value representations did not significantly differ between GLMattribute and
GLMoption both in the intertemporal, t(34) = 0.32, p = 0.73, and the inter-
personal decision task, t(34) = 1.57, p = 0.12. This does not support our
second hypothesis that the neural reward system more strongly represents
attribute-wise than option-wise value comparisons. However, given the
substantial inter-individual variation in the extent to which participants’
choice behavior was better explained by either DDMattribute or DDMoption,

Fig. 3 | Neural correlates of attribute- and option-
wise utility comparisons. A Value comparisons
according to attribute-wise and option-wise deci-
sion strategies were encoded in overlapping regions
(displayed in green) of the neural reward system,
particularly in the striatum. B Separate analyses for
the intertemporal and interpersonal decision tasks
revealed that the striatum (ROI based on conjunc-
tion analysis) significantly encoded attribute- and
option-wise utility comparisons in both individual
and social decisions (N = 35 participants).
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we assessed whether model comparisons at the neural level (BICattribute

minus BICoption from the neural analyses) reflected the employed decision
strategy in behavior (WAICattribute minus WAICoption from the DDM
analyses). In fact, in the data-driven striatum ROI we observed significant
correlations between model fits on the behavioral and the neural level both
in the intertemporal, r = 0.39, p = 0.02, and the interpersonal decision task,
r = 0.44, p = 0.008 (Fig. 4). These correlations were robust to extracting
neural BICs from the alternative striatum ROI based on a meta-analysis on
neural value coding19, intertemporal: r = 0.40, p = 0.02, interpersonal:
r = 0.39, p = 0.02. Taken together, rather than generally encoding attribute-
wise or option-wise value comparisons, the striatum appears to reflect the
decision strategy employed by an individual.

Dopamine antagonism inhibits dominant value comparison
strategy
As the striatum is the target of the dopaminergic system, the findings for the
striatum reported above suggest that dopaminergic activity might encode
value comparisons according to the strategy pre-dominantly employed by
an individual rather than generally representing attribute-wise or option-
wise utility comparisons. In keeping with this, pharmacological manipula-
tions of dopamine levels were found to change the weights assigned to
rewards in attribute-wise utility comparisons21,26, whereas other studies
reported dopamine effects on option-specific hyperbolic discounting25,30,31.
To test whether dopamine is sensitive to the value comparison strategy
employed by an individual, we re-analyzed a previously published data set
assessing the impact of the D2 antagonist amisulpride (relative to placebo)
on intertemporal and interpersonal decision-making in 56 healthy young
volunteers (within-subject design)12,26. Using the same modeling approach
as in the imaging study, we fitted DDMattribute and DDMoption to each
participant’s intertemporal and interpersonal decision data, separately for
the amisulpride and placebo conditions. To measure the influence of ami-
sulpride on whether decision data are better explained by attribute-wise
(WAICattribute) versus option-wise (WAICoption) value processing, we sub-
tracted the differences in model fit (WAICattribute–WAICoption) under
amisulpride from the differences in model fit under placebo
(WAICdiff_amisulpride_placebo = (WAICattribute–WAICoption)amisulpride–(WAI-
Cattribute–WAICoption)placebo), separately for each task. We then regressed
individual differences in drug effects on value computation
(WAICdiff_amisulpride_placebo) on predictors for Task (intertemporal vs.
interpersonal), the dominant decision strategy under placebo
(WAICdiff_placebo = (WAICattribute–WAICoption)placebo), Session (amisul-
pride administered in session 1 vs. 2), and all interaction effects. The pre-
dictor Session allowed us to dissociate drug effects from a potential
regression to the mean (extreme values for WAICdiff in the first session
might tend towards the mean in the second session), whereas the predictor
WAICdiff_placebo indicated whether the influence of amisulpride depended
on the dominant value processing strategy (i.e., WAICattribute–WAICoption)
under placebo. A positive relationship between WAICdiff_placebo and
WAICdiff_amisulpride_placebo would indicate that dopamine receptor blockade

further strengthens an individuals’ dominant value comparison strategy,
while a negative relationship would suggest that reducing dopaminergic
activity attenuates the dominant value computation mode.

The main effect of the Task, beta = 3.90, t(81) = 2.99, p = 0.004, indi-
cated that amisulpride (relative to placebo) promoted option-wise over
attribute-wise value comparisonsmore strongly in the interpersonal than in
the intertemporal decision task. Importantly, we found that the strength of
the amisulpride effects on the balance between attribute-wise and option-
wise value computations dependedon thedominant decision strategyunder
placebo, the main effect of WAICdiff_placebo: beta =−9.61, t(104) = 6.11,
p < 0.001 (Supplementary Table 3). This is consistent with the hypothesis
that dopamine encodes value comparisons according to the strategy
employedby an individual. Separate post-hoc analyses for the intertemporal
and interpersonal decision task revealed significant main effects of
WAICdiff_placebo both in the intertemporal, beta =−4.07, t(54) = 3.88,
p < 0.001, and the interpersonal decision task, beta =−11.65, t(54) = 7.06,
p < 0.001 (Fig. 5). We observed no significant interaction between Session
and WAICdiff_placebo under placebo, beta = 1.03, t(104) = 0.65, p = 0.51,
providing no evidence for a regression to the mean (we note, however, that
for formally ruling out any influences of a regression to the mean it would
have been necessary to add a second placebo session to our experimental
design). Lastly, to rule out that the observed effects of amisulpride on
attribute- versus option-wise value processing can be explained by reduced
choice consistency, we assessed drug effects on inverse temperature para-
meters from the option-wise DDMs. While in the interpersonal decision
task inverse temperature parameters did not differ between amisulpride and
placebo, t(55) = 0.88, p = 0.38, in the intertemporal decision task, choice
consistency was increased (rather than reduced) under amisulpride,
t(55) = 2.57, p = 0.01. This does not support the alternative explanation
according to which the drug effects on value processing might be driven by
enhanced decision noise. Taken together, the blockade of dopaminergic D2
receptors impaired value computations according to the individually pre-
ferred decision strategy, mirroring the results of the model comparisons for
the neural reward system in the imaging study.

Discussion
Numerous studies on the neural basis of decision-making are based on the
(often implicit) assumption that people decide between different options by
comparing discounted subjective reward values4,9,14,28,32,33. Here, we show
that it may be too simplistic to assume the reward system to implement the
same utility function in all individuals and contexts. Instead, the dopami-
nergic reward system (and particularly the striatum) seems to reflect the
decision strategy employed by a decision maker on the psychological level.
While attribute-wise comparisons explained choice behavior better than
option-wise comparisons only in the intertemporal (replicating previous
findings15,16), but not interpersonal decision task (contrary to hypothesis 1),
in both tasks we observed substantial variation in the value comparison
strategy employed by decision makers. This heterogeneity in decision
behavior could be explained by model comparisons at the neural level:

Fig. 4 | Model comparisons at the neural level.
While activation in the striatum showed no sig-
nificant differences in model fit between attribute-
wise (GLMattribute) and option-wise (GLMoption)
utility comparisons on the group level (assessed with
the Bayesian information criterion, BIC), model
comparisons at the neural level significantly corre-
lated with differences in model fit at the behavioral
level (widely applicable information criterion,
WAIC) both in the A intertemporal and the
B interpersonal decision task (N = 35 participants).
Thus, the neural reward system reflected the deci-
sion strategy employed by an individual rather than
encoding attribute-wise or option-wise value com-
parisons per se.
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While we observed no evidence that the neural reward system generally
encodes economic preferences according to either attribute-wise or option-
wise value comparisons (contrary to hypothesis 2), individual differences in
model fit on the neural level reflected the dominant value comparison
strategy on the psychological level. However, we observed such brain-
behavior correlations only in the striatum, not in the VMPFC, suggesting
that striatal activation might be more sensitive to the employed decision
strategy. We also note that neural activation in the value coding ROIs was
slightly better explained when computing value differences based on DDM
parameters comparedwith purely choice-basedmodels.We emphasize that
these results were robust to different domains (individual versus social) of
economic decision-making as well as to defining the reward system with a
data-driven approach or based on a meta-analysis of value coding. Strik-
ingly, the pharmacological data suggest that lowering dopaminergic activity
attenuates the engagement in the value comparison strategy preferred by an
individual, providing causal evidence that the dopaminergic reward system
is sensitive to the decision strategy employed by an individual. While the
observed correspondence between the behavioral and the neural level may
appear intuitively plausible, it speaks against the implicit assumption of past
investigations relating the value system to option-specific value compar-
isons. The current data should not be misinterpreted as implying that the
neural reward system does not encode discounted subjective values at all;
instead, they highlight the importance of individual variation in decision-
making strategies, which influence how preferences are computed in the
brain. Besides inter-individual differences, there is also evidence for intra-
individual variation in the used decision strategy (i.e., an individual uses
different value comparison strategies for different choice problems) as well
as for the influence of contextual factors (e.g., time pressure leads to more
attribute-wise comparisons)16. The neural reward system may, therefore,
represent different utility functions for the same choice problem depending
on such internal and external determinants.

The assumption that individuals generally compute the subjective
values of rewards according to economic discount functions was already
challenged by recent findings in the psychological literature on inter-
temporal decisions15–18, and we generalize these findings to further domains
of decision-making like social preferences8. Still, these psychological
accounts lackedbiological plausibility, given that thedominant streamin the
neural literature assumed that the neural reward system encodes subjective
reward values, though without explicitly testing the alternative hypothesis
that the brain might encode a different decision strategy. Our finding that
activation in the reward system reflects the value comparison strategy
employed by an individual provides evidence for the biological plausibility
of these recentmodels of decision-making. By this, our findings also change
our conceptual understanding of the neural basis of intertemporal decisions
as they challenge the widely held assumption that the neural reward system
encodes hyperbolically discounted subjective reward values4,14,28, and also
past pharmacological studies on the role of dopamine on intertemporal
choice relied on this assumption25,30,31. We note that we replicated previous
findings that attribute-wise comparisons explain intertemporal choices
better than option-wise comparisons15,16, whereas we observed no

significant differences between value comparison strategies in the inter-
personal decision task. Surprisingly, we also found that dopamine antag-
onism biased option-wise comparisons more strongly in the interpersonal
than the intertemporal decision task. Decision makers may, therefore,
employ dissociable value computation strategies for different types of cost-
benefit decisions, and also, the role of the dopaminergic reward systemmay
potentially varybetweendecision tasks.We showthat it canbemisleading to
assume the reward system to encode the same value function in all indivi-
duals and contexts, given the influence of individual variation and con-
textual factors on the employed value computation strategy15,16.

From a broader perspective, our findings emphasize the importance of
testingmodels of decision-making at the neural level. Studies assuming that
the brain encodes discounted subjective reward values commonly did not
explore whether alternative models of decision-making provide a better
explanation for the observed brain activation. Past studies conducting such
model comparisons, in turn, compared only decision models that were
implicitly based on option-wise utility comparisons33. It is thus crucial to
explore a broad range of behavioral models to prevent misinterpretation of
neuroimaging findings, not only in the domain of decision-making. From
this perspective, model comparisons at the neural level inform not only
about thebiological plausibilityof competingmodels ofhumanbehavior but
also advance our understanding of the precise computations implemented
by a brain region.

Methods
Participants and ethics statement
fMRI study. A total of 35 volunteers took part in the fMRI experiment
(mean age = 26.2 years; standard deviation = 2.74 years; 11 females, 24
males). All participants had normal or corrected-to-normal vision, were
screened for counterindications of fMRI, and gave informed written
consent prior to participation. The study was approved by the ethics
committee of the psychology department at the Ludwig Maximilian
University Munich (46_Soutschek_a). All ethical regulations relevant to
human research participants were followed. Participants were compen-
sated with 10 euro/hour plus a performance-dependent bonus
(see below).

Dopamine antagonist study. 56 volunteers (27 female, Mage = 23.2
years, SDage = 3.1 years) received 400 mg amisulpride or placebo in two
separate sessions (2 weeks apart) in a double-blind, randomized, within-
subject crossover design12. Participants gave informed written consent
before participation. The study was approved by the Cantonal Ethics
Committee Zurich (2012-0568).

Stimuli and task design
Participants performed three tasks in the fMRI scanner: an intertemporal
decision task, an interpersonal decision task, and an environmental decision
task. Experimental details and results for the environmental decision task
will be reported in a separatemanuscript. In the intertemporal decision task,
participants chose between smaller-sooner and larger-later rewards (e.g., “3

Fig. 5 | Influence of dopamine on value compar-
isons. Reducing dopaminergic activity with ami-
sulpride (compared with placebo) attenuated the
engagement in an individual’s dominant value
comparison strategy both in the A intertemporal
and the B interpersonal decision task (N = 56 par-
ticipants). In interpersonal decisions, D2R inhibi-
tion is also generally promoted option-wise over
attribute-wise value comparisons.
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euro in 0 days” versus “5 euro in 10 days”). The magnitude of the smaller
reward varied from 0.5 to 5 euro (in steps of 0.5) and was delivered after
delays ranging from 0 to 90 days, whereas the larger reward was fixed to 5
euro and delivered after 10–360 days. For the interpersonal decision task,
participants first had to imagine a list of 100 people ranging from 0 to 100
(with 0 representing themselves, 1 the person socially closest to them, 50 a
person that the participant had seen before without knowing the name, and
100 a random stranger on the street). In the task in the scanner, participants
decidedbetween assigning a variable amount ofmoney (5.5–10 euro in steps
of 0.5) to themselves or a close other (social distances 0, 10, or 20) or equally
split the amount of 10 euro between the persons from the closer and the
more distant options (e.g., “7.5 euro for themselves” versus “5 euro for both
themselves and the person at social 20”). For the more distant option, we
used the social distances of 1, 10, 20, 50, and 100.

In both tasks, participants had to indicate their choices via keypresses
on anMR-compatible button box during the offer presentation for 5 s. After
a decision, the chosen option turned red for the remaining stimulus pre-
sentation time. Trials were separated by jittered inter-trial intervals drawn
from a Poisson distribution (mean = 3 s, minimum= 0.5 s). Within each
run, the three tasks were administered in miniblocks of six trials, with the
task order of the miniblocks being pseudo-randomized across each run.
Participants performed a total of five runs, with one run including three
miniblocks for each task. This resulted in a total of 90 trials for each task.

In the dopamine antagonist study, participants made intertemporal
and interpersonal choices 90min after amisulpride or placebo intake. In the
intertemporal decision task, participants decided between a smaller-sooner
reward (5–250 Swiss francs delivered after delays of 0–30 days) and a larger-
later reward (15–300 Swiss francs delivered after 3–90 days). Participants
made a total of 20 intertemporal decisions in an adaptive fashion where the
choice options on each trial were designed such that the information pro-
vided by each decision was optimized (for details, see ref. 12). In the
interpersonal decision task, participants made 54 choices between a selfish
reward option (7.5–15.5 Swiss francs only for the participant) and sharing
15 Swiss francs equally between themselves and another person at social
distance 1, 5, 10, 20, 50, or 100.

Data acquisition
Imageswere acquiredusing a SiemensMagnetomPrisma3 T scannerwith a
64-channel head coil at theNeuroImaging Labor at theCityCentreCampus
of LMU Munich (NICUM). We acquired gradient echo T2*-weighted
echo-planar images (EPIs) with blood-oxygen-level-dependent (BOLD)
contrast (slices = 48; repetition time = 1 s). Participants completed five runs
of the experiment in the scanner. Imaging parameters were the following:
echo time = 30ms; field of view = 240mm, slice thickness = 3mm, inter-
slice gap = 0.3 mm.We also acquired a T1-weighted structural image (voxel
size = 0.8 mm) for each participant. High-resolution structural scans were
coregistered to theirmean EPIs and averaged together to permit anatomical
localization of the functional activations at the group level.

Statistics and reproducibility
Behavioral analysis. Behavioral analyses were conducted in R. To test
whether participants’ choices in the intertemporal and interpersonal
decision tasks can better be explained by attribute-wise or option-wise
comparisons, we fitted Bayesian drift-diffusion models (DDMs) using
the JAGS software package34. JAGS utilizes Markov Chain Monte Carlo
sampling for Bayesian estimation of drift-diffusion parameters (drift rate
ν, boundary α, bias ζ, and non-decision time τ) via the Wiener module35.
In our models, the upper decision boundary was associated with a choice
of the larger-later or more distant option, and the lower boundary with a
choice of the smaller-sooner or closer option. A positive drift rate thus
indicated evidence accumulation towards the larger-later/distant option
and a negative drift rate towards the smaller-sooner/closer option. In line
with previous procedures15, we ran separate models where the drift rate
reflected either attribute-wise (DDMattribute) or option-wise (DDMoption)
decision strategies. In attribute-wise comparisons, the drift rate v is given

by the linear combination of the weighted comparisons of reward mag-
nitudes and (temporal or social) distances between the choice options:

ν ¼ βintercept þ βreward ×Rewarddiff þ βdistance ×Distancediff ð5Þ

where Rewarddiff and Distancediff indicate the difference in reward magni-
tudes and temporal or psychological distances, respectively, between the
more distant and the closer options. βreward and βdistance represent the
individual weights assigned to differences in reward magnitude and dis-
tance, respectively, during evidence accumulation, whereas βintercept is a
participant-specific intercept. We note that DDMattribute included no
separate choice consistency parameter for the drift rate as this would make
the model parameters unidentifiable, but in principle, Eq. (1) could be re-
written as follows to include a separate choice consistency parameter36:

ν ¼ βintercept þ βreward ×Rewarddiff þ βdistance ×Distancediff ð6Þ
For option-wise comparisons, the drift rate was modeled to reflect

comparisons of discounted subjective reward values:

ν0 ¼ βtemperature × ðSVdistant � SVcloseÞ ð7Þ
The hyperbolically discounted subjective reward values were given by

SV ¼ reward magnitude=ð1þ βdiscount × distanceÞ ð8Þ
Here, βdiscount represents the individual (log-transformed) discount

factor in the intertemporal or interpersonal decision task. In both
DDMattribute and DDMoption, we also modeled the starting bias ζ, the deci-
sion threshold α, and the non-decision time τ. Because previous studies
suggest concave rather than linear relationships between drift rates and
option-wise value comparisons, we transformed v’ with a sigmoidal link
function (note that this also ensured that DDMattribute andDDMoption entail
the same number of parameters, whereas a model without this sigmoidal
transformation provided a worse fit; see results section):

v ¼ 2× vlim=ð1þ expð�v0ÞÞ � vlim ð9Þ
We estimated all parameters separately for each participant and

task and calculated the widely applicable information criterion (WAIC)
as a measure of model fit (with lower values indicating better model fit).
The WAIC represents a generalized form of the Akaike information
criterion (AIC) and can be computed without any information about the
true probability distribution37. Unreasonable fast decision times
(<250 ms; 6%of all trials in both tasks) were excluded from the analysis21.
We note that the results of the behavioral model comparisons are robust
to entering all trials in the analyses. We used flat uniform priors over
reasonable parameter ranges (from−10 to+10 for the drift parameters
and restricted to the positive range for the other parameters). For model
estimation, we computed 2 chains with 10,000 samples (burning =
5000). R̂ was used to assess model convergence in addition to visual
inspection of chains. For all effects, R̂ was below 1.01, indicating model
convergence.

Weconducted amodel recovery analysis by re-computingDDMattribute

and DDMoption on data sets which were simulated based on the original
parameters from DDMattribute and DDMoption. We checked whether the
simulated data could best be explained by the model used for creating the
data set.

We used the samemodeling approach for behavioral data analysis in
the fMRI and the dopamine antagonist study. In the dopamine study, we
moreover fitted separate models for choices under amisulpride
versus placebo. To analyze how amisulpride changed the propensity
for attribute-wise relative to option-wise utility comparisons, we com-
puted the difference between WAICattribute–WAICoption scores under
amisulpride and WAICattribute–WAICoption scores under placebo
(WAICdiff_amisulpride_placebo). The WAICdiff_amisulpride_placebo difference
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scores were then regressed on predictors for Task (0 = interpersonal,
1 = intertemporal), Session (to control for task repetition effects; ami-
sulpride administered in session 1 versus 2), WAICattribute–WAICoption

scores under placebo as measure of the dominant decision strategy in the
baseline condition (WAICdiff_placebo), and all interaction effects in a
general linear model using the lme4 package in R38.

WAICdiff amisulpride placebo ¼ β1ðInterceptÞ þ β2ðTaskÞ þ β3ðSessionÞ þ β4ðWAICdiff placeboÞ
þ β5ðTask × SessionÞ þ β6ðTask ×WAICdiff placeboÞ
þ β7ðSession×WAICdiff placeboÞ þ β8ðTask × Session
×WAICdiff placeboÞ

ð10Þ
Because the dependent variable measures the strength of the amisul-

pride effect on participants’ trade-off between attribute-wise and option-
wise processing, a significant effect of WAICdiff_placebo indicates that the
amisulpride effect depends on the dominant value comparison strategy (i.e.,
WAICattribute–WAICoption) under placebo. All predictors were z-trans-
formed in order to avoid the issue of arbitrarily defining one-factor level as a
reference category (which distorts the interpretation of main effects and
lower-level interaction terms). Degrees of freedom were estimated via the
Satterthwaite approximation.

Imaging analysis. Analysis of neuroimaging data was performed with
SPM12 in Matlab (www.fil.ion.ucl.ac.uk/spm). The functional images of
each participant were motion corrected, unwarped, slice-timing cor-
rected (temporally corrected to the first image), and co-registered to the
anatomical image. Following segmentation, we spatially normalized
the data into standard MNI space. Finally, data were smoothed with a
6 mm FWHM Gaussian kernel and high-pass filtered (filter
cutoff = 128 seconds).

For the first-level analysis of the imaging data, we conducted separate
general linear models (GLMs) to determine the neural correlates of utility
representations according to either attribute-wise (GLMattribute) or option-
wise (GLMoption) comparisons. GLMattribute included separate onset
regressors for the intertemporal and interpersonal decision tasks (modeled
for the duration of the decision screen presentation), whichweremodulated
by parametric modulators for the z-transformed absolute value of the trial-
wise drift rate as a measure of participants’ preference strength for one
option over the other. Trial-wise drift rates were given via the individually
estimated parameters from DDMattribute. GLMoption was identical with
GLMattribute with the only difference being that trial-wise drift rates were
provided by DDMoption rather than DDMattribute. In all models, we added
onset regressors for the environmental decision task and for response
omission trials, as well as 6 movements (3 translation and 3 rotation)
parameters as covariates of no interest. We convolved regressors with the
canonical hemodynamic response function in SPM.

For statistical analysis, we first computed participant-specific contrasts
for utility representations in GLMattribute and GLMoption, separately for the
intertemporal and interpersonal decision task. For the second-level analysis,
we entered the contrast images from all participants into a between-parti-
cipant, random effects analysis and conducted whole-brain second-level
analyses using one-sample t-tests. For these analyses, we reported results
that survived whole-brain family-wise error (FWE) corrections at the peak
or cluster level (p < 0.05). For the figures, we set the individual voxel
threshold to p < 0.001 with a minimal cluster extent of k ≥ 20 voxels. We
reported results using the MNI coordinate system. To test the apriori
hypothesis that the neural reward systemrepresents both attribute-wise and
option-wise value comparisons, we extracted parameter estimates from two
regions of interest (ROIs) using the Marsbar toolbox39. These ROIs were
defined based on a meta-analysis of the neural basis of value coding19 and
comprised spheres with a diameter of 6mm (length of spatial smoothing
filter) around the peak coordinates in the striatum (x =−3, y = 10, z =−4)
and the VMPFC (x =−1, y = 46, z =−7). We used these ROIs to extract
parameter estimates and submitted the extracted values to one-sample t-

tests, Bonferroni-correcting for the number of pre-defined ROIs (corrected
threshold: 5%/2 = 2.5%).

Finally, we testedwhether neural activation in the value system is better
explainedby attribute-wise thanbyoption-wiseutility comparisons. For this
purpose, we first computed two further GLMs, one where the onset
regressor for the intertemporal decision taskwasmoderatedby trial-varying
drift rates from DDMattribute and the onset regressor for the interpersonal
decision task by drift rates based on DDMoption (GLMoption-interpersonal).
Likewise, in a further model the onset regressor for the intertemporal
decision taskwasmoderated by trial-varyingdrift rates fromDDMoption and
the onset regressor for the interpersonal decision task by drift rates based on
DDMattribute (GLMoption-intertemporal). These additional GLMs allowed us to
compare model fits separately for the intertemporal (GLMattrbute versus
GLMoption-intertemporal) and the interpersonal decision task (GLMattrbute

versus GLMoption-interpersonal). We then used the MACS toolbox29 to obtain
participant-specific statisticalmapsof the goodness offit (using theBayesian
information criterion (BIC)) of GLMattribute, GLMoption-intertemporal, and
GLMoption-interpersonal in eachvoxel.We thenentered thedifferencesbetween
the BICs (GLMattribute minus GLMoption-intertemporal and GLMattribute minus
GLMoption-interpersonal) into a second-level analysis. To test the hypothesis
that the striatum more strongly represents attribute-wise than option-wise
value comparisons, we extracted BIC differences from our ROIs using the
Marsbar toolbox39 and submitted the extracted BIC values to one-sample
t-tests.

Statistics and reproducibility
For the reported behavioral analyses, we used R (version 4.0.0); for the
imaging analysis, we used the toolbox SPM 12 within Matlab R2019b. All
figures were created using Matlab 2019b. As robustness checks and to
improve the reproducibility of our findings, we compared two different
domains of cost-benefit decisions and used different value coding ROIs in
the imaging analysis.

Reporting summary
Further information on research design is available in the Nature Portfolio
Reporting Summary linked to this article.

Data availability
The behavioral data supporting the findings of this study and the data
analysis code are available on Open Science Framework (https://osf.io/
krxe4/?view_only=48fe85361aea4c75a18d44b41765e227)40. Imaging data
are providedby the authors upon reasonable request.Numerical source data
for all graphs in themanuscript canbe found in the SupplementaryDatafile.
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