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Superconductivity in the pressurized
nickelate La3Ni2O7 in the vicinity of a
BEC–BCS crossover
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Ever since the discovery of high-temperature superconductivity in cuprates, gaining microscopic
insights into the nature of pairing in strongly correlated systems has remained one of the greatest
challenges in modern condensed matter physics. Following recent experiments reporting
superconductivity in the bilayer nickelate La3Ni2O7 (LNO)with remarkably high critical temperatures of
Tc = 80 K, it has been argued that the low-energy physics of LNO can be described by the strongly
correlated, mixed-dimensional bilayer t–J model. Here we investigate this bilayer system and utilize
density matrix renormalization group techniques to establish a thorough understanding of the model
and themagnetically induced pairing through comparison to the perturbative limit of dominating inter-
layer spin couplings. In particular, this allows us to explain appearing finite-size effects, firmly
establishing the existence of long-range superconducting order in the thermodynamic limit. By
analyzing binding energies, we predict a BEC–BCS crossover as a function of the Hamiltonian
parameters. We find large binding energies of the order of the inter-layer coupling that suggest
strikingly high critical temperatures of the Berezinskii–Kosterlitz–Thouless transition, raising the
question of whether (mixD) bilayer superconductors possibly facilitate critical temperatures above
room temperature.

Although the discovery of high-temperature superconductivity in cuprates
dates back more than three decades1–3, fully understanding their enigmatic
pairing mechanism remains an unsolved and long-sought problem in
contemporary condensed matter physics. In particular, detailed micro-
scopic insights into the relevant physics are necessary to open the path
towards a targeted design of novel materials, possibly with high critical
temperatures at ambient conditions4–7.

Very recently, the Ruddlesen–Popper bilayer perovskite nickelate
La3Ni2O7 (LNO) has joined the family of bulk superconductors above the
boiling point of liquid nitrogen, with extraordinarily high critical tem-
peratures of Tc = 80 K at applied pressures above 14 GPa8–10. Density
functional theory (DFT) calculations suggest that the active degrees of
freedomnear theFermi energy in the layeredLNOstructure are givenby the
3dx2�y2 and 3dz2 Ni orbitals

11–17, whereby the four 3d orbitals in each unit
cell (two in each layer) share three electrons. The 3d character of the elec-
tronic structure together with the absence of perfect nesting in the non-
interacting model indicates the necessity of strong coupling approaches for

an accurate description of LNO18, in linewith recent experiments suggesting
the vicinity of LNO to a Mott transition19.

Starting in the limit of strong on-site repulsion, two of the three elec-
trons in each unit cell fill the dz2 orbitals due to lower on-site energies of the
3dz2 compared to the 3dx2�y2 states. This results in a half-filled, Mott
insulating dz2 band, while the dx2�y2 orbitals at quarter filling constitute an
itinerant, conducting band20. Hybridization of the 3dz2 -Ni and apical 2pz-O
orbitals has been demonstrated to mediate strong inter-layer couplings
between the dz2 orbitals of the two Ni layers within each unit cell at high
pressures, where theNi–O–Ni bonding angles are aligned at an angle of 180∘

(the crystal structure of LNO experiences a structural transition from the
Amam to the higher-symmetry Fmmm space group at pressures ~0 GPa)8.

The inter-layer superexchange between the insulating dz2 spins has
been argued to be elevated to the dx2�y2 orbitals by strong intra-atomic
Hund’s couplings17, whereby the formation of a spin-triplet between the two
active orbitals at each site is favored. Integrating out the dz2 degrees of
freedom yields a minimal, single-band, mixed-dimensional (mixD) bilayer

1Department of Physics and Arnold Sommerfeld Center for Theoretical Physics (ASC), Ludwig-Maximilians-Universität München, München, Germany. 2Munich
Center for Quantum Science and Technology (MCQST), München, Germany. 3Institut für Theoretische Physik, Universität Regensburg, Regensburg, Germany.

e-mail: H.Schloemer@physik.uni-muenchen.de

Communications Physics |           (2024) 7:366 1

12
34

56
78

90
():
,;

12
34

56
78

90
():
,;

http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-024-01854-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-024-01854-9&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1038/s42005-024-01854-9&domain=pdf
http://orcid.org/0000-0002-3879-9837
http://orcid.org/0000-0002-3879-9837
http://orcid.org/0000-0002-3879-9837
http://orcid.org/0000-0002-3879-9837
http://orcid.org/0000-0002-3879-9837
http://orcid.org/0000-0003-3531-8089
http://orcid.org/0000-0003-3531-8089
http://orcid.org/0000-0003-3531-8089
http://orcid.org/0000-0003-3531-8089
http://orcid.org/0000-0003-3531-8089
http://orcid.org/0000-0002-3339-5200
http://orcid.org/0000-0002-3339-5200
http://orcid.org/0000-0002-3339-5200
http://orcid.org/0000-0002-3339-5200
http://orcid.org/0000-0002-3339-5200
mailto:H.Schloemer@physik.uni-muenchen.de
www.nature.com/commsphys


t∥–J⊥–J∥model for describing the essential low-energy physics of LNO21–24,
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Here, ĉðyÞi;σ;α; n̂i;α and Ŝi;α are fermionic annihilation (creation), particle
density, and spin operators on site i and layer α = 1, 2, respectively; hi; ji
denotes nearest neighbor (NN) sites on the two-dimensional (2D) square
lattice, and P̂ is the Gutzwiller operator projecting out states with double
occupancy.TodescribeLNO, thequarterfilleddx2�y2 band corresponds to a
doping level of δ = 0.5 in the mixD t∥–J⊥–J∥ model compared to the half-
filled state with one particle per site.

The Hamiltonian Eq. (1) and related, multi-band models have been
studied in particular with regard to pairing order using matrix
product20,22,25,26 and mean field21,23,27 methods, supporting the appearance of
inter-layer s-wave superconductivity. We note that while a multi-band
description that includes both dx2�y2 and dz2 orbitals provides a more
accurate description of LNO (e.g., capturing self-doping effects between the
two active orbitals17,23), studying the single-band model may allow for a
detailed understanding of the essential physics governing superconductivity
in mixD bilayer systems. In particular, though it is commonly agreed upon
that inter-layer magnetic interactions provide the pairing glue for super-
conductivity in the bilayer model6,7,22, predicting and understanding the
structure of the ground state in the simplified single-band model may be
particularly useful for engineeringmaterials with high critical temperatures.

Here, we usematrix productmethods to study pair–pair correlations,
as well as binding energies in the Hamiltonian Eq. (1) on finite-width
bilayer geometries. By comparison to the limit of strong inter-layer
spin–spin interactions, where themodel can bemapped to a spin-1/2XXZ
model, we gain a detailed understanding of themixD t∥–J⊥–J∥model even
away from this perturbative limit. In particular, this allows us to under-
stand the appearing finite-size effects and the influence of the various
coupling parameters on the long-range pairing order, where the latter
might permit to realization of a certain tunability of experimental probes
to favorable situations. We note that multi-band models taking into
accountHund’s coupling in a rigorousmanner have been shown to reduce

to the single-band Hamiltonian Eq. (1) in the limit J⊥≫ t∥, however with
weaker effective interlayer couplings23,28. This suggests that, while energy
scales may be renormalized, the single-bandmixD t–Jmodel captures the
essential low-energy physics of more accurate multi-band models.

Through the computation of binding energies, we anticipate the
emergence of a crossover from a Bose-Einstein condensate (BEC) to
Bardeen–Cooper–Schrieffer (BCS) state in the mixD bilayer model as a
functionof t∥/J⊥, see Fig. 1a, characterizedby extended, overlappingpairs.We
estimate critical temperatures of the superfluid transition to be of the order of
the magnetic coupling, hence possibly facilitating superconductivity at tem-
peratures beyond room temperature inmixD bilayer systems. In addition, as
the effectivemodel of tightly bound pairs in the limit of strong spin couplings
J⊥ ≫ t∥, J∥ yields a linear resistivity as a function of temperature above the
superconducting phase, we speculate that the resistivity in the bilayer model
in the vicinity to the crossover is governed by the conduction of pairs. Our
results are summarized in the schematic phase diagram in Fig. 1a.

Results
Perturbative limit
In the case of dominating spin couplings J⊥ ≫ t∥, J∥, the fermions pair into
tightly bound inter-layer singlets, where breaking apart a singlet is associated
with energy cost J⊥. In this limit, the low-energy physics of Eq. (1) is described
by the restricted local basis consisting of empty sites on-site j in both layers,
∣0ij ¼ ∣0ij;1∣0ij;2 (a chargon–chargon pair), as well as paired singlets,

∣1ij ¼ b̂
y
j ∣0ij,where the (hard-core)bosonicoperator b̂
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y
j;";2

�
∣0ij. By considering virtual

processes to spinon-chargon states cyj;σ;α∣0ij in second-order perturbation

theory, and restricting the effective Hamiltonian to the low-energy subspace,
themixDbilayermodel reduces to an interacting hard-core bosonic system in
a single 2Dplane illustrated in Fig. 1b, as shown in ref. 29 (see also refs. 30,31),

ĤHCB ¼� K
2

X

i;jh i
P̂ b̂

y
i b̂j þ h.c.

� �
P̂ � J?

X

i

b̂
y
i b̂i

þ K
X

i;jh i
Δb̂

y
i b̂ib̂

y
j b̂j �

b̂
y
i b̂i
2

�
b̂
y
j b̂j
2

0
@

1
A;

ð2Þ

where K ¼ 4t2k=J? and Δ = 1− J∥/2K. The density-density term of the in-
plane Heisenberg interactions in Eq. (1) leads to the appearance of an
anisotropyΔ < 1. The effective bosonmodel Eq. (2), in turn, can bemapped

Fig. 1 | Schematic phase diagram and effective model. a Schematic phase diagram
of the mixD t∥–J⊥–J∥model, Eq. (1), at doping δ = 50% relevant to LNO. In the limit
of dominating inter-layer magnetic interactions, a BEC-type superfluid of tightly
bound pairs is realized. When the average sizes of pairs become larger, spatially
extended pairs form a BCS-like superconducting state. Binding energies and esti-
mated critical temperatures in the vicinity of the crossover are of the order of the
magnetic coupling J⊥. In the BEC regime, the model shows linear T resistivity
(ρ ∝ T) above the superconducting phase, whichmay extend to larger values of t∥/J⊥
above the BCS regime. The relevant parameter regime for LNO depending on the

strength of the on-site repulsion is shown by the black hatched area, where t∥/
J⊥ ~ 0.7–1.5 (which may however be renormalized when taking into account multi-
band effects). b In the limit J⊥ ≫ t∥, J∥, the bilayer mixD t∥–J⊥–J∥ model, Eq. (1),
reduces to a model of hopping singlets. c Singlets hop on the bilayer structure via
second-order processes, leading to a single layer interacting hard-core bosonic
system, Eq. (2), in the perturbative limit. dA furthermapping to a spin system yields
an effective 2D XXZ model, Eq. (3), where spin–spin correlations in the xy-plane
map to coherent pair–pair correlations in the bilayer system.
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to a 2D XXZ spin system32,
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where a unitary transformation has been applied to make all coefficients

positive and trivial constant terms have been dropped. Ĵ
μ
i ; μ ¼ x; y; z are

spin-1/2 operators – not to be confused with the spin operators Ŝ
μ

i of the
fermionicbilayerHamiltonian, Eq. (1).Themagnetizationof the spinmodel
maps to the filling δ of the bilayermodel asm = δ− 1/2. The last term in Eq.
(3) is constant in periodic systems, however, induces non-trivial effects for
open boundaries—see Supplementary Note 2. For J∥ = 0, Eq. (3) reduces to
the Heisenberg model with an emerging SU(2) symmetry.

In the perturbative regime, the bilayer system is hence a bona fide
superconductor, featuring long-range pairing order in the ground state that
translates to long-range antiferromagnetic order in the xy-plane of the XXZ
model, see the lower right panel in Fig. 1b. The controlled connection to the
XXZmodel in the perturbative limit will prove to be useful in the following
analysis of the appearing phases in the mixD bilayer model.

Pair correlations and finite-size effects
We simulate the bilayer t∥–J⊥–J∥ system, Eq. (1), in the ground state using
the densitymatrix renormalization group33–37 for various parameters J⊥/t∥ at
J∥ = 0 anddoping δ = 0.5.We focus on systems of size l ×w × 2,wherew and
l are thewidthand lengthof each layer in thebilayer system, respectively.We
implement separate U(1) symmetries in each layer and conserve the total
magnetization, such that the symmetry of the system is given by
Uð1Þα¼1 � Uð1Þα¼2 � Uð1ÞSztot . We use bond dimensions up to χ = 7000
and carefully ensure that our results are converged, see Supplemen-
tary Note 2.

Figure 2 shows coherent pair–pair correlations hΔ̂y
i Δ̂ji as a function of

distance along the long direction x of the bilayer system, for varying J⊥/t∥
and for widthsw = 1, 2, 3, and 5.We apply open boundary conditions in all
directions. In the ladder systems (w = 1), we find pronounced algebraic
signals of pair–pair correlations throughout the whole system for all para-
meters, in line with the previous findings presented in ref. 22.When tuning
the system towards the perturbative limit, pair–pair correlations are seen to
converge towards spin–spin correlations hĴþi Ĵ

�
j i of themappedXXZmodel

(with Ĵ
±
i ¼ Ĵ

x
i ± îJ

y
i ), see the upper left panel of Fig. 2. Importantly,while the

absolute values of pair–pair correlations rise for increasing J⊥/t∥, their cor-
responding decay exponent remains almost unchanged even down to J⊥/
t∥ ~ 1, which is the relevant regime for LNO12. In particular, fitted Luttinger
exponents Ksc (with hΔ̂y

i Δ̂ji / ji� jj�Ksc ) are Ksc = 1.211(18) for J⊥/t∥ = 1
and Ksc = 0.946(3) for J⊥/t∥ = 20. Similarly to the ladders, algebraic decay is
observed for w = 3 throughout the range of J⊥/t∥, cf. Fig. 2c. Here, the fitted
Luttinger exponents are givenbyKsc = 0.82(2) for J⊥/t∥ = 5andKsc = 0.89(1)
for J⊥/t∥ = 20 For w = 5, we show results for δ = 0.5 and in the perturbative
regime J⊥/t∥= 20 for varying bond dimensions in Fig. 2e. Though variations
of pair–pair correlations for increasing bond dimension are visible, an
extrapolation to χ → ∞ matches the prediction from the XXZ model,
suggesting long-range pairing order also away from J⊥/t∥ ≫ 1.

In stark contrast to systems of oddwidths, forw = 2 at δ = 0.5wefind at
distances jx− ix≳ 10 exponential behavior of pair–pair correlations, which,
notably, has not beenmentioned in previous numerical studies of themixD
bilayer t–J model22. A comparison with the perturbative XXZ model turns
out as a useful tool to understand the origin of exponentially decaying pair
correlations: In SU(2) symmetric Heisenberg ladders of even width and at
zero magnetization, the formation of rung-singlets opens a spin-gap Δs,
which in turn leads to an exponential suppression of spin–spin correlations.
In contrast, odd-width ladders have a vanishing spin gap, and long-range
correlations are observed38–40. Similarly, we argue that the exponential decay
of pair–pair correlations (even away from the perturbative limit) is an
artifact of finite-size effects along the y-direction, driven by a finite charge
pair gapΔpair = E(N)− E(N+ 2)+ J⊥.Here,E(N) is the ground state energy
at δ = 0.5, i.e., with a total particle number of N = l ×w, and E(N+ 2) cor-
responds to the energy of the system with one more particle in each layer
compared to δ = 0.5.We further add J⊥ inΔpair to account for contributions
from the Zeeman field in the effective XXZ description, see Supplemen-
tary Note 2.

Indeed, the charge pair gap is seen to be finite throughout the whole
parameter regime for w = 2 at δ = 0.5, as illustrated in Fig. 2f. Particularly,
Δpair falls below the singlet-triplet spin gap in the Heisenberg model (where
Δs∝K) for increasing t∥/J⊥, signaling a weaker exponential decay of
pair–pair correlations when tuning the model away from the tightly-bound
limit, matching observations in Fig. 2b.

Away from δ = 0.5, a finite magnetization in the effective model in the
perturbative limit prevents the formation of a spin-singlet state, which in
turn results in algebraic decay of spin–spin correlations even forfinite, even-
width systems. Likewise, pair–pair correlations in the bilayermodel are seen
to decay algebraically for δ ≠ 0.5, as shown for δ = 0.44 in Fig. 2d. We note
that in LNO, the coexistence of a strongly correlated state and a hole pocket
in thedz2 bandhas beenproposed to lead to self-doping between thedz2 and
dx2�y2 orbitals, which is likely to slightly shift the doping in the dx2�y2 away
from δ = 0.517,23. In this case, the appearance of long-range pair–pair cor-
relations is expected for all system widths in the single-band description.

Fig. 2 | Pair correlations. Pair–pair correlation function hΔ̂y
i Δ̂ji in the t∥−J⊥model

(J∥ = 0) for varying J⊥/t∥ and width w; δ = 0.5 is used if not indicated differently. For
w = 1 (a) and w = 3 (c), correlations show algebraic signals, with increasing mag-
nitudes for growing J⊥/t∥ while the decay exponents stay almost constant. Pair–pair
correlations converge towards spin–spin correlations ĥJþi Ĵ

�
j i of the XXZ model in

the perturbative limit (black data). e For w = 5, an extrapolation to a large bond
dimension for J⊥/t∥ = 20 is shown,matching the prediction from theXXZmodel. For
w = 2 at δ = 0.5 (b), the decay of hΔ̂y

i Δ̂ji is exponential for all values of J⊥/t∥, with
decreasing correlation lengths for increasing J⊥/t∥. This is explained by a finite pair
charge gapΔpair that corresponds to the spin gap of the SU(2) symmetricHeisenberg
model in the perturbative limit (f). Away from δ = 0.5 and forw = 2 (d), correlations
decay algebraically for all values of J⊥/t∥, as expected from the Heisenberg model at
finite magnetization. We choose reference sites i = [ix = 10, iy = 1] (l = 32) for
w = 1, 2, i = [ix = 4, iy = 2] (l = 24) for w = 3 and i = [ix = 2, iy = 3] (l = 16) for w = 5.
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From our considerations, we conclude that in the thermodynamic
limit, the model (with J∥ ≠ 0 to break the emergent SU(2) symmetry) fea-
tures quasi-long-range pairing correlations up to a critical temperature
determined by the Berezinskii–Kosterlitz–Thouless (BKT) transition TBKT
where phase coherence occurs. We stress the direct correspondence of the
decay of correlations in the mixD bilayer and XXZ model: When the
effective model in the perturbative limit features an emerging SU(2) sym-
metry and forms spin singlets, correlations are exponential in the mixD
model even away from J⊥/t∥ ≫ 1; however, when a finite magnetization
prevents the formation of spin-singlets, correlations decay algebraically
throughout the whole range of J⊥/t∥. Furthermore, there is only an insig-
nificant change in the decay of pair–pair correlations when leaving the
perturbative limit towards experimentally relevant regimes of J⊥/t∥ ~ 112,
strongly suggesting that the key pairing physics of superconductivity in
LNO is described by the XXZ universality class of hard-core bosons con-
stituted by s-wave singlet pairs. Such controlled limits that capture the
essential physics are absent in the plain-vanilla 2D Fermi–Hubbard model,
where the ground state (not to mention the finite temperature phase dia-
gram) is still under active debate due to the intricate competition between
various phases41–49.

Binding energies and critical temperatures
Though long-range pair–pair correlations are necessary for any super-
conductor, their presence does not give any further insights into the nature
and structure of the ground state. For this purpose, we compute inter-layer
binding energies at δ = 0.5 by evaluating Eb = 2E(N+ 1)− E(N)−
E(N+ 2), and compare them to the spin gap Δs ¼ EðN; Sztot ¼ 1Þ �
EðN; Sztot ¼ 0Þ.

The left panel in Fig. 3 shows results formixD ladders, i.e.,w = 1. In the
perturbative regime t∥/J⊥ ≪ 1, Eb ≈ Δs ≈ J⊥; each chargon–chargon, as well
as chargon-spinon pair is associated with energy J⊥, while breaking up a
singlet with fixed particle number also costs energy J⊥. Away from the
tightly-bound limit, the spin gap monotonously decreases, as growing sizes
of the chargon–chargon bound states induce increasing frustration in the
spin background50. However, similar to the case of zero doping6, where we
compute Eb = 2E(1)− E(0)− E(2) for a single hole pair (see gray solid lines
in Fig. 3), the binding energy is observed to have a minimum around t∥/
J⊥ ≈ 0.5, after which it starts to increase for further rising t∥/J⊥. In the low
doping limit, it has been shownby someof us that this behavior is accurately
captured within the string picture51–53 of the mesonic bound states: an
increasingmobility of the dopants leads to a significant kinetic contribution
to the binding energy, resulting in an asymptotic scaling

Eb=J? � ðtk=J?Þ1=3 6. Away from the perturbative limit, themonotonously
decreasing spin-gap hence falls below the binding energy. Our numerical
results demonstrate that the phenomenology is the same even at high
doping δ = 0.5 of the mixD ladders, though binding energies are renor-
malized to smaller values due to doping (see Supplementary Note 2).

When considering bilayer systems with widths w > 1, the structure of
the pairs fundamentally changes. In contrast to w = 1 ladders, where the
chargon–chargon bound states may overlap without destroying their con-
fining strings, adding a second dimension allows for string-breaking pro-
cesses, see Supplementary Note 1. In particular, this effect is expected to
strongly influence physics when the size of the bound pairs becomes
comparable to the inter-pair distance for a given doping. Results for the
binding energy and spin gap are shown forw = 2 in the right panel of Fig. 3.
In the dilute limit with only two holes (gray line), the binding energy is
observed to feature a string-like behavior as expected. Likewise, in the
perturbative regime t∥≪ J⊥ at doping δ = 0.5, we find binding energies
following the string prediction since string lengths d≲ 1 remain small
compared to the average distance between hole pairs. Strikingly, this
behavior extendswell beyond the perturbative limit, where binding energies
at δ = 0.5 are seen to match predictions in the dilute limit up to t∥/J⊥ ≈ 0.6.
However, for t∥/J⊥ ≳ 0.6—where d≳ 16—the binding energy starts to
decrease for growing t∥/J⊥, approximately approaching the spin gap for large
t∥/J⊥, which is expected in a BCS-like state. This, in turn, suggests the
appearance of a BCS phase beyond t∥/J⊥ ≳ 0.6, consisting of spatially
extended pairs of holes.

We further corroborate the appearance of a BEC–BCS crossover by
estimating critical temperatures of the BKT phase ordering transition in the
perturbative limit. In the 2D XXZ model with coupling K, extensive
quantumMonte Carlo studies have quantified the phase transition, finding
TBKT/K ≈ 0.7 (0.6) for Δ 0 (0.95)54,55. We estimate critical temperatures in
the mixD bilayer model by assuming a small in-plane superexchange cou-
pling J∥, leading to an anisotropy close to the Heisenberg point in the
effective XXZ description, Δ≲ 1.0. Hence, following Eq. (3) and assuming
Δ = 0.95, the BKT transition temperature is estimated by
TBKT=J? � 2:4 tk=J?

� �2
, shown by the blue solid line in the right panel of

Fig. 3. Indeed,wefind that the critical temperatureTBKT for phase coherence
surpasses the binding energy at t∥/J⊥ ≈ 0.6,matching the point of qualitative
change ofEb. Beyond this point, the superconducting transition is no longer
drivenbyphasefluctuations and should beBCS-type. In theBCS regime, the
binding energy of a Cooper pair is given by Eb = 2Δ (with Δ the super-
conducting gap in the ground state), which implies critical temperatures of
Tc ~ 0.28Eb for t∥/J⊥ ≳ 0.6.

The resulting phase diagram of the mixD bilayer model is schemati-
cally shown in Fig. 1a. In LNO, depending on the strength of the on-site
Coulomb repulsion U/t∥ ~ 5–10, the predicted range of superexchange
interactions is given by t∥/J⊥ ~ 0.7–1.512, such that we predict the super-
conductor to be of BCS-type (though multi-band effects may renormalize
the energy scales23,28). We note that a complementary mean-field study of a
related model found a similar BEC–BCS crossover phenomenology, how-
ever with quantitatively different results27. In order to experimentally verify
the nature of the condensate, we propose to measure the specific heat of
LNOunder pressure, where a symmetric (asymmetric) shape is expected in
a BEC-like (BCS-like) state as a function of the temperature56,57. Measuring
the shift of spectral weight of the optical conductivity across the super-
conducting phase transition may give additional insights into the nature of
the condensate27.

We speculate that the in-plane hopping t∥ for systems of widths w > 1
plays a similar role as nearest-neighbor particle repulsion in mixD ladders,
where a related crossover from tightly bound pairs of holes (closed channel)
at small repulsion to more spatially extended, correlated pairs of individual
holes (open channel) at large repulsion has been proposed and studied in
detail in refs. 28,30,31. There, it was argued that the attraction of holes is
ultimately mediated by the closed channel in analogy to a Feshbach
resonance58,59. Our simulations of extended systems similarly suggest
Feshbash-mediated pairing in bilayer nickelates, resulting in an effective

Fig. 3 | Binding energies.Binding energiesEb/J⊥ (dark blue) and spin gapΔs/J⊥ (red)
as a function of t∥/J⊥ at δ = 0.5 and J∥ = 0, forw = 1 (left) andw = 2 (right). For mixD
laddersw = 1, binding energies behave as predicted in the string picture6, where large
mobility of pairs for increasing t∥/J⊥ leads to enhanced binding energies. As a
reference, binding energies in the dilute limit of a single–hole pair are shown by gray
solid lines. Meanwhile, due to the frustrating effect of moving charges, the spin gap
decreases monotonously. For w = 2, the binding energy in the zero doping limit
features a similar structure as in the ladders. In contrast, large doping levels δ = 0.5
permit the appearance of strongly overlapping chargon–chargon pairs, leading to a
distinct drop of Eb for t∥/J⊥ ≳ 0.6. The crossing point of estimated critical tem-
peratures of the BKT transition (corresponding to w→∞) in the perturbative
regime (light blue line) with the binding energy coincides with the point of quali-
tative change of Eb, suggesting a BEC–BCS crossover as t∥/J⊥ is tuned.
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attraction of spinon-chargon pairs due to the presence of the closed
chargon–chargon channel.

Regardless of whether the constituents of the superfluid are tightly
bound chargon–chargon pairs (BEC) or overlapping Cooper pairs (BCS),
binding energies of the order of the coupling J⊥ suggest extraordinarily high
critical temperatures in bilayer systems.Assuming an inter-layer coupling of
J⊥ ≈ 0.3 eV12, our results propose transition temperatures of the order of
Tc ≈ 1000 K in the region of the BEC–BCS crossover, which is an order of
magnitude larger than measured in LNO.We note however that the multi-
band nature of LNO likely leads to strong suppressions of the condensation
temperatures. For instance, amore sophisticated two-bandmodel that takes
into accountHund’s coupling in amore rigorousmannerhas been shown to
effectively reduce the coupling J⊥ by a factor of four, which shifts the system
deeper into the BCS phase and reduces its critical temperature23. Never-
theless, we stress that the physics in the perturbative limit (i.e., a description
by an effective XXZmodel) stays identical up to the renormalization of the
parameters, supporting the view that the single-band model captures the
essential pairing physics. Considering both an effective reduction of J⊥ due
to themulti-bandnatureof LNO, aswell as theBCSprediction forTc leads to
estimated critical temperatures of themixD bilayermodel that are indeed of
the same order of magnitude as measured in LNO. Disorder effects may
further suppress Tc in bilayer nickelate materials, such that higher critical
temperaturesmay be reached for cleaner samples. Though the above effects
likely play a major role in determining the exact quantitative transition
temperature of LNO, high Tc’s of the order of J⊥/2 in the single-band, mixD
bilayermodelHamiltonian near the crossover are very striking in their own
right, and may open the path towards a more targeted design of materials
possibly facilitating superconductivity above room temperature.

Lastly, we note that there exist intriguing similarities between the
condensationof electron–hole pairs (excitons)60,61 in bilayer semiconductors
and superconductivity in bilayer nickelates. For example, high-temperature
condensation of inter-layer excitons with large binding energies of
Eb≳ 100meV has been demonstrated in bilayer transition metal dichal-
cogenide (TMD) semiconductors62. Additionally, a BEC–BCS crossover
between tightly andweakly bound electron–hole pairs has been observed in
bilayer quantum Hall systems by continuously tuning the pairing strength
through variation of the layer separation63.

Strange metallicity
Above the superconducting critical temperature of LNO, an extended
region of strangemetallicitywith linear resistivity ρ∝Thas been reported8,9.
Indeed, it has been shown that hard-core bosons on the 2D square lattice
show very similar behavior, with zero resistivity for T < TBKT and asymp-
totic linear resistivity dρ/dT∝ 1/ρs above TBKT, with ρs the phase stiffness in
the ground state64.Wenote that this is in stark contrast toweakly interacting
Bose gases, where the resistivity saturates at high temperatures. This shows
that, within the perturbative limit, the extended regime of linear in T
resistivity above the superconducting transition temperature asmeasured in
LNO is captured in the effective model of tightly bound pairs, cf. Fig. 1a.

We propose that, away from the perturbative limit but in the vicinity of
the conjectured BEC–BCS crossover, the behavior of the conductivity is
nevertheless dominantly dictated by the conduction of pairs, conceivably
leading to linear in T resistivity in the bilayer system at experimentally
relevant parameters J⊥/t∥ ~ 1, cf. Fig. 1a. Further studies of themixD bilayer
system are, however, necessary to pin down its properties away from the
BEC-like limit. As numerical simulations are heavily limited in system size
already in the ground state, transport simulations at finite temperatures are
beyond the reach of current state-of-the-art techniques. In contrast, with
recent advances in ultracold atom quantum simulations29,65–67, direct
observation of the superconducting and potential strangemetal phase in the
bilayer mixD t∥–J⊥–J∥model is within reach, as we discuss inmore detail in
the following.

Cold atom proposal
Already before the discovery of superconductivity in LNO, themixDbilayer
model, Eq. (1), has been proposed to feature enhanced pairing and high
superconducting critical temperatures in repulsively interacting strongly
correlated systems6,68. Subsequently, real-space hole pairing has been
observed experimentally in ultracold atom simulations in optical lattices by
realizing the mixD setup through potential gradients7—paving the way
towards an experimental realization of a phase-coherent condensate in
repulsive fermionic lattice systems with ultracold atoms.

In order to measure long-range pairing correlations using ultracold
atom snapshots, we propose to hole dope the upper, while doublon doping
the lower layer in a bilayer optical lattice30,69. After state preparation and
freezing out in-plane tunneling in both planes, we propose to perform a
global π/2 tunneling pulse between the two layers resonant with the tran-
sition fromrung-singlets to interlayer doublon-hole pairs. This realizes aπ/2
rotation within the subspace spanned by rung-singlets and doublon-hole
pairs, while other transitions are either Pauli-blocked or off-resonant69 (see
also Supplementary Note 3). Measuring spatial correlations between
doublon-hole pairs from snapshots then allows for a direct probe of
pair–pair (superconducting) order with power-law decay for T ≤ TBKT,
without the need for simultaneous spin-charge resolution. We note that in
the plain-vanilla Fermi–Hubbard model, which has been in the spotlight of
fermionic quantum simulators in recent years, the strong competition
between different phases, low Tc’s, or even the absence of superconductivity
in the ground state44 renders an observation of long-ranged pairing order
with ultracold atoms a real challenge. The mixD bilayer model, in turn,
facilitates such an observation in state-of-the-art experiments owing to its
large tunability and high predicted critical temperatures of the order of J⊥/2.
Furthermore, transport properties can be measured by relaxation of an
imposed density modulation70, enabling direct observation of the strange
metal and superconducting phases in themixD t∥–J⊥–J∥model. This would
allow for the simulation of 2D bilayer systems for a generic choice of
Hamiltonian parameters, ultimately enabling realistic simulations of
materials using analog quantum machines. A detailed experimental pro-
posal can be found in ref. 69.

Tuning pair correlations
The comparison to the perturbative limit of tightly bound inter-layer pairs
J⊥≫ t∥, J∥ further gives us an intuitive understanding of all appearing terms in
the mixD t∥–J⊥–J∥ Hamiltonian, Eq. (1). Due to the in-plane magnetic
interactions, an anisotropy Δ < 1 is introduced in the effective XXZ
model. This strengthens superconducting correlations compared to the iso-
tropic case Δ= 1: for small Δ, the Luttinger decay exponent of correlations
ĥJþix Ĵ

�
jx
i is proportional to 1+ 2Δ/π, i.e., smaller anisotropies Δ lead to slower

power-law decay of correlations. Furthermore, doping the bosonic model
away fromδ= 0.5 translates tofinitemagnetizationsalongz in theXXZmodel,
leading to suppressed pair–pair correlations. We confirm these tendencies in
DMRG simulations of the mixD bilayer model for experimentally relevant
parameters, shown in Fig. 4. Note that the oscillatory behavior of correlations
for δ= 0.44 stem from Friedel modulations of the density that decay away
from the open boundaries, and do not indicate charge order in the system.

Fig. 4 | Tuning pair correlations. Dependence of pair–pair correlations when
tuning the filling δ and the ratio J∥/J⊥, for fixed J⊥/t∥ = 1 (here shown for a system of
size w = 1, l = 64). Finite in-plane AFM spin interactions J∥ lead to an increase in
pair–pair correlations. Doping the system away from δ = 0.5 decreases pairing order
and induces oscillatory boundary effects.
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Discussion
We have presented an extensive analysis of superconductivity in mixD
bilayer systems by studying the single band t∥–J⊥–J∥ model. By carefully
analyzing finite size effects, we demonstrated that long-range pairing cor-
relations emerge in the ground state, and quasi-long-range power-law
correlations below T < TBKT, in the thermodynamic limit. We presented an
analytically accessible limit of dominant inter-layer couplings, in which the
model can be described by an effective spin-1/2 XXZ model. Moreover, we
proposed that the resistivity of themixD bilayer system in the vicinity of the
perturbative regime is dictated by the conduction of pairs, possibly
explaining the linear temperature resistivity measured in LNO above Tc.

Our study of binding energies at δ = 0.5 proposes the appearance of a
BEC–BCS crossover as the ratio t∥/J⊥ is tuned. This may lead to unexpected
similarities with underdoped cuprates, where a similar Feshbach scenario
has recently been proposed58,59. With our understanding of all appearing
terms in themixDmodelHamiltonian, we suggest tuning bilayer nickelates
towards theBEC–BCScrossoverpoint, e.g., through rare-earth substitutions
as proposed in71. Recent experiments suggest the appearance of super-
conductivity in trilayer nickelate compounds72–74. Performing a similar
analysis for minimal models to trilayer systems and identifying relevant
mechanisms may help to obtain a unified understanding of nickelate
superconductors75,76.

Ourworkpresents theperturbative limit of dominating inter-layer spin
couplings as an important case study that allows for an understanding of
qualitative physical features even away from this limit. This is in stark
contrast to the Fermi–Hubbard model—believed to capture the essential
physics of cuprate superconductors—where such controlled perturbative
limits are absent, and large-scale numerical simulations are necessary to
resolve the small energy differences of competing phases41–49. In fact, in the
Fermi–Hubbard model, though tremendous progress has been made in
recent years, its phase diagram (and in particular its applicability to capture
the phases appearing in cuprate superconductors) is still under active
debate.

Though the single-bandmodel, Eq. (1), is not believed to quantitatively
describe e.g., transition temperatures of pressurized bilayer nickelates,
establishing a microscopic understanding of simplified models by fully
taking into account their correlation structure is an important step towards
developing a theory of bilayer superconductors. Our calculations suggest
remarkably high critical temperatures of the single-band model, which
facilitates thepreparationof a statewith (quasi) long-range superconducting
order in ultracold atom experiments with currently realistic temperatures.
This, in turn,may allow for a systematic exploration of novelmaterials using
analog quantum simulation platforms.

Methods
For our DMRG simulations, we use the SyTeN toolkit36,37. We explicitly
implement the separate U(1) particle conservation symmetries in the two
layers50,77,78, resulting in a total Uð1Þα¼1 � Uð1Þα¼2 � Uð1ÞSztot symmetry of
the system. We use bond dimensions up to χ = 7000, and carefully analyze
the convergence of our results. Details can be found in Supplemen-
tary Note 2.

Data availability
The datasets generated and/or analyzed during the current study are
available from the corresponding author on reasonable request.
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