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In multicentric studies, data sharing between institutions might negatively impact patient privacy or
data security. An alternative is federated analysis by secure multiparty computation. This pilot study
demonstrates an architecture and implementation addressing both technical challenges and legal
difficulties in the particularly demanding setting of clinical research on cancer patients within the strict
European regulation on patient privacy and data protection: 24 patients from LMUUniversity Hospital
in Munich, Germany, and 24 patients from Policlinico Universitario Fondazione Agostino Gemelli,
Rome, Italy, were treated for adrenal glandmetastasis with typically 40 Gy in 3 or 5 fractions of online-
adaptive radiotherapy guided by real-time MR. High local control (21% complete remission, 27%
partial remission, 40% stable disease) and low toxicity (73% reporting no toxicity) were observed.
Median overall survival was 19 months. Federated analysis was found to improve clinical science
through privacy-friendly evaluation of patient data in the European health data space.

Data has been heralded the “new oil” that fuels the digital economy. Society
and science need data to make informed decisions, and such information
becomesmore reliablewhen it is built frommany independent data sources.
This is particularly true inmedical research andpersonalizedmedicine.Rare
diseases research requires collection of cases few and far between to reach
meaningful case numbers. Personalized medicine requires tapping into
diverse datasets scattered across health providers for each individual patient.
E-health and digital epidemiology require federation of potentially millions
of personal and remote IoTdevices. In clinical research, themulticenter trial
remains the gold standard for high-quality research, requiring data sharing
or federation across partner sites1.

On the other hand, there is a lot of friction in sharing data openly.
Patients are sensitized about sharing their data and are demanding an active
say in their usage. Institutions and regulators are increasingly concerned
about the privacy and legality of data sharing. Data protection and data
security are ubiquitous, and informational self-determination has practi-
cally become a basic human right. Legislation such as General Data Pro-
tection Regulation (GDPR)2 or Health Insurance Portability and
Accountability Act (HIPAA) form a tight corset for healthcare providers
and research institutions to operate in. The solution to this conundrumwill

probably consist of both legal, societal, communicative, processual, and
technological tools.

In particular, privacy-preserving technologies3 such as Secure Multi-
party Computation (SMPC)4, Fully Homomorphic Encryption (FHE)5,6, or
Differential Privacy (DP)7,8 promise to reconcile the need for data with the
right to privacy by providing new mechanisms for collaboration and eva-
luation of data without the need to openly share such data. These tech-
nologies are often referred to as Privacy-Preserving Computation (PPC) in
termsof classical statistical analysis or asFederatedAnalysis (FA) in termsof
machine learning. As a new paradigm, PPC and FA promise to offer some
beneficial perks: federation of heterogenous data sources across multiple
organizations, avoiding of some of the legal and regulatory restrictions of
data sharing, enabling of dynamic consent and dynamic retraction (right to
forget), built-in mechanisms for data aggregation and metadata evaluation,
and in general more democratic data flows (Open Data, Open Science,
Citizen Science).

Some privacy-preserving computation technologies have been pro-
posed or are already in active use in university medicine and clinical
research9–19. For example, the GermanMedical Informatics Initiative (MII)
is a joint effort of all Germanmedical faculties to improve data sharing and
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data usage among their sites. Their task force for federated analysis has
generated recommendations for data federation and is rolling out
DataSHIELD20,21 to their partner sites. It is a semi decentralized system in
whichmany data providers connect to a central Trusted Third Party (TTP).
Researchers must then send their request to the central TTPwhich accesses
the federated datasets and only returns the aggregate result. This system is
very useful for example for feasibility analysis, where a researcher only needs
summary statistics over multiple partner sites. Because DataSHIELD is
already installed at many of MII’s partner sites, MII is generally recom-
mending the use of DataSHIELD for PPC and has begun rolling out
infrastructure to sites. Other tools were originally developed by MII
researchers: The Trusted Server22 is a trusted computing environment, and
EasySMPC23 is a no-code tool that aims to use existing infrastructure by
communicating via email.

Our own group, within the German Consortium for Translational
Cancer Research, had performed the first secure multiparty computation
with real oncology patient data in Germany in 201924. The radiation
oncology departments of LMU Munich and Charité Berlin contributed
N = 96 patients each. The KaplanMeier estimator was implemented within
the FRESCO framework with SPDZ protocol by an expert cryptographer
from TU Munich. While the experiment was a success and allowed the
analysis of confounding factors in the survival of patients suffering from
glioblastoma, our team encountered problems that significantly restricted
the long-term and reliable use of this promising technology. These included
a complex tech stack, demanding implementation, complicated technology
management, noprior standards for the data protectionprocess, and a brain
drain of our expert to the German Federal Office for Information Security
immediately after the project.

The Federated Secure Computing (FSC) project was born conse-
quently. The goal was to enable research institutions, government agencies,
small andmedium enterprises to deploy PPC solutions in a simpler fashion.
During 2019 and 2020 we developed an easy-to-use propaedeutic archi-
tecture that offloads the complex anddemanding cryptography to the server
and separates the concerns of cryptography and business logic by providing
a simpleAPI25. In thisway, existing powerful PPC solutions can be deployed
behind this abstraction and easily be used by domain experts on the client
side. The project was developed into a Free and Open Source (FOSS)
initiative and has been supported and financed by Stifterverband, the
German Donors’ Association, since 202126. The express goal is to provide
blueprints and visible show cases to address the full project chain from
problem definition to technical solution, to regulatory implementation, to
adoption by actual actors in the German and European data space.

In this paper, we present the first SecureMultiparty Computation with
patient data across national borders within the European regulatory data
space. Our lighthouse experiment provides:
• The use case ofMR guided stereotactic body radiation therapy, a novel

treatment modality warranting diligent quality control and regional
cooperation to establish best practice.

• A rare tumor entity, metastases of the adrenal gland, requiring the
pooling of data collected by multiple treatment centers to reach suffi-
cient and significant statistics.

• The introduction of Sharemind MPC27 to university medicine, a
commercial, feature-complete and industry-grade solution by the
leading experts on secure multiparty computation.

• The use of Federated Secure Computing in a typical propaedeutic
setting with several academic non-expert data providers and an
academic non-expert researcher.

• The end-to-end documentation of the GDPR-compliant technical and
administrative data protection measures that enabled regulators to
green light this pilot experiment within the institutional, national and
European regulatory framework on health data protection.

To our knowledge, this research constitutes the first ever use of
true secure multiparty computation in the setting of an international
clinical study.

We hope that this initiative might be useful as a blueprint for other
groups to successfully implement and deploy Privacy-Preserving Compu-
tation and Federated Analysis to European healthcare data.

Results
Project timeline
The secure multiparty computation project started with an earlier pilot
experiment in 2019 between LMUUniversity Hospital andCharité24. In the
follow-up of this proof-of-principle, the Federated Secure Computing
Project by LMU Munich was launched. The team took part in a large
initiative by Stifterverband and received coaching and funding through the
years 2020 to 202425,26.

The clinical study started in 2019 when the initial study protocol was
written. The study protocol was amended and the cooperation agreement
was signed in 2020 to allow for joint evaluation of data.

In November of 2022 the clinical study was proposed as a use case for
the Federated Secure Computing project. From this point to the first cal-
culation on live patient data the project durationwas 14months, including a
number of preparatory steps. See Table 1.

Note that most of these steps would have been necessary also for
conventional data sharing. The same legal pretext and similar data pro-
tection measures would have been needed. The clinical study and the data
collection would have taken the same time. From the moment the data was
available from both sides, the first calculations were done on the same day.
The evaluationdidnot take longer because of the additional security.Wedid
take some extra documentation steps during the overall project, though, to
pave a way for future use of secure multiparty computation in clinical
medicine.

Table 1 | Project Timeline

Year Milestone

2019 Earlier pilot experiment with secure multiparty
computation in Germany

2020 to 2024 Federated Secure Computing initiative funded by
Stifterverband

2019 Study protocol written

2020-05-13 Initial ethics vote

2020-07-06 Cooperation agreement signed

2020-11-30 Ethics vote amended to include cooperation agreement

2020 to 2023 Clinical data collection

2022-11-24 Clinical study proposed as use case for Federated
Secure Computing project

2023-04-21 Munich data format shared

2023-04-26 Rome data format shared

2023-06-11 Data Use and Access Committee involved

2023-06-11 Data Protection Officers involved

2023-07-31 Recommendations byDataUse andAccessCommittee

2023-09-04 GDPR compliant documentation requested by Data
Protection Officers

2023-09-21 Sharemind MPC Customer Agreement signed

2023-10-12 GDPR compliant documentation complete (98 pages)

2023-10-16 Permission granted by Data Protection Officers

2023-12-01 Sharemind MPC compute cluster functional

2023-12-18 Federated Secure Computing interface implemented

2023-12-18 System test with pseudo data complete

2023-12-21 Munich patient data goes live on the compute cluster

2024-01-25 Rome patient data goes live on the compute cluster

2024-01-25 First secure multiparty computation on patient data
from both partner sites
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Federation
Patient data from both Munich and from Rome was successfully trans-
mitted to the securemultiparty computation network. The upload timewas
about one second in both cases.

Both datasets each contained 24 rows (patients) and columns (data
items). The data items included 20 categorial classifiers (e.g., sex, ECOG
status) and 24 metrical floating-point variables (e.g., age, prescription dose,
follow up time in months). When converted to CSV data, each dataset was
about 15 kilobytes in size.

Exact timings are available for the Munich dataset. Of the total of 942
milliseconds, 69millisecondswere spent on the client-side (reading the data
from Microsoft Excel workbook, converting to CSV format). Another 457
milliseconds were spent on networking for four API calls (requesting a
connection, requesting a microservice, uploading the data, and requesting
the result). Another 154 milliseconds were spent server-side on the mid-
dleware (processing the API calls and feeding the data to the Sharemind
MPC backend). Finally, 262 milliseconds or 28% of total computing time
were spent on the backend (running Sharemind importer, distributing
secret shares across servers). See Table 2.

HTTP request body payloads were 49 bytes for the connection POST
request (71 bytes answer), no payload for themicroservice GET request (71
bytes answer), 15,103 bytes for the upload PATCH request (71 bytes
answer), and no payload for the result GET request (2662 bytes answer).

Similar to upload times, computing times were also generally below
one second, see Table 3.

Clinical results
Patient characteristic. A total of 48 patients with adrenal gland
metastasis were included from both centers. See Table 4 for detailed
patient and therapy characteristics. Median age at radiotherapy initiation
was 66 years (range: 38–91). The patients were predominantly male
(60%) vs female (40%), without significant difference (p = 0.56). Main
location of primary diagnosis was lung cancer with 63% followed by 9%
with skin cancer. The Eastern Cooperative Oncology Group (ECOG)
performance status was 0-1 in 40 patients (83%) and ECOG 2 in 8
patients (17%). 24 patients (50%) presented with metastasis in the left
adrenal gland, 18 (38%) with metastasis on the right side and 6 patients
(13%) presented with bilateral disease. Adrenal metastasis were meta-
chronous, synchronous and oligoprogressive in 23 (48%), 13 (27%) and 8
(17%) patients respectively. In terms ofmetastatic pattern, 19%presented
with solitary metastasis, 54% with oligometastatic disease and 25% with
metastatic disease.

Therapy details. As radiotherapy is part of a multidisciplinary therapy,
25 patients received systemic chemotherapy and 19 patients received
immunotherapy either 3 months before, concurrent or 3 months after
radiotherapy respectively. Median GTV was 21 cm³ and a median PTV
margin of 3 mm led to amedian PTV size of 37 cm³. 10 patients received 3
fractionswith amedian prescription dose of 40.5 Gy for 3 and aBED10 of
95 Gy. 38 patients received 5 fractions with median prescription dose of
40 Gy and a BED10 of 72 Gy. 71% of the fractions were online adapted
and 96% patients were treated using DIBH or DEBH. See Table 5 for
more details.

Outcome. Median follow-up time was 8.5 months. Radiotherapy
achieved complete or partial remission in 48% of patients and stable
disease in 40%. Progressive disease occurred locally in 8% of patients
resulting in a median OS 19.0 months (average 19.4, 95% CI: 15.2–23.6)
usingKaplan-Meier analysis as seen in Fig. 1. 23%of patients experienced
acute toxicity, including 13% with CTCAE grade 1 and 10% with grade 2

Table 2 | Computing time to upload data and distribute
secret shares

Federated Secure Computing (client-side) 69ms 7%

Networking (client-server and server-server) 457ms 49%

Federated Secure Computing (server-side) 154ms 16%

Middleware subtotal 680ms 72%

Secure Multiparty Computation (backend server-side) 262ms 28%

Total 942ms 100%

Table3 |Computing times for someRmindstatistical functions

function on data from one
partner site

on data from both
partner sites

freq (frequency table) 0.31 s 0.38 s

mean 0.60 s 0.82 s

median 0.68 s 0.85 s

quantile (multiple
quantiles)

0.70 s 0.96 s

Table 4 | Patient characteristic

n (%)

Number of patients Total 48

Male 29 (60%)

Female 19 (40%)

Age at treatment start Median (range) 66 (38–91)

ECOG 0 18 (38%)

1 22 (46%)

2 8 (17%)

Laterality Left 24 (50%)

Right 18 (38%)

Bilateral 6 (13%)

Timing of metastases Metachronous 23 (48%)

Oligoprogressive 13 (27%)

Synchronous 8 (17%)

Other 4 (8%)

Metastatic pattern Solitary 9 (19%)

Oligo 26 (54%)

Multiple 12 (25%)

n/a 1 (2%)

Chemotherapy 3 months before Radiotherapy 14 (29%)

Concurrent 9 (19%)

3 months after radiotherapy 2 (4%)

3 months before and after
Radiotherapy

0

None 23 (48%)

Immunotherapy 3 months before Radiotherapy 13 (27%)

Concurrent 2 (4%)

3 months after radiotherapy 3 (6%)

3 months before and after
Radiotherapy

1 (2%)

None 29 (60%)

Location of primary
diagnosis

Lung 29 (63%)

Skin 4 (9%)

Liver 4 (9%)

Rectal + Colorectal 2+ 1 (7%)

Kidney 2 (4%)

Other 4 (9%)
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toxicities. Fatiguewas the predominant toxicity, affecting 17%of patients.
Gastrointestinal toxicities were reported by 4% of patients. There were no
reports of grade 3 or 4 toxicities. Additional data are available in Table 6.
1-year and 2-year OS were 73% and 48% respectively. Overall survival
stratified by ECOG-PS indicated a mean OS of 20.4 months for ECOG
0–1 versus 9.2months for ECOG2; themedianOS for ECOG0–1was not
reached after 27 months. The log-rank (Mantel–Cox) test revealed no
significant difference in survival distributions with χ² = 1.8 and p = 0.18
(Fig. 2). Kaplan–Meier analysis did not identify gender, metastatic pat-
tern, remission status, treatment of the primary tumor, or BED10 (Fig. 3)
as significant factors influencing overall survival. BED10 however, was
significantly associated with complete remission. Whereas 5 out of 10
patients with BED of 80 Gy or more showed complete remission, only 5

out of 36 patients with BED less than 80 Gy did so, p = 0.027 by the two-
sided Fisher test.

Power analysis. Overall survival was 20.4 ± 2.2 months for ECOG 0–1
(n = 40) and 9.2 ± 1.3 months for ECOG 2 (n = 8). In this case, the two-
tailed p-value is less than 0.0001 which seems highly significant.
Accordingly, for a two-sided alpha of 0.05, the statistical power of the
sample sizes was close to 1.

On the other hand, overall survival was 20.0 ± 2.2 months for
BED10 < 80 Gy (n = 37) and 17.3 ± 2.3 months for BED 10 > 80Gy
(n = 11). In this case, the95%confidence intervalswell overlap (Table 6). For
a two-sided alpha of 0.05, the sample sizes yield a statistical power of 0.89.

Sample sizeswere two small to distinguish complete remission for BED
10 < 80Gy (n = 5, 14%) and BED 10 > 80Gy (n = 5, 50%). For a two-sided
alpha of 0.05, the resulting power was only 0.10.

Discussion
Regarding the study protocol, the ethics vote, and the patient information
material, in future iterations it would be beneficial to explicitly describe
methods of secure computing. This would limit the fashion in which data
may be processed, and it would make the (commendable) use of secure
computing transparent to ethics counsellors andpatients. For thepurposeof
this experiment, at the time of writing of the study protocol the exact
mechanism for data sharing was not known, and hence the study protocol
and subsequent documents allowed for more lenient alternatives of data
processing.

Regarding the cooperation agreement, it has been argued by a law
firm involved in the project that secure multiparty computation would
constitute a joint responsibility as provided by GDPR: “Where two or
more controllers jointly determine the purpose andmeans of processing,
they shall be joint controllers.” (Art. 26 GDPR) Insofar it would be
advisable to explicitly frame the parties as “joint controllers” in future
iterations of cooperation agreements that foresee secure multiparty
computation. The further provisions of Art. 26GDPRwere adhered to in
this project, anyway.

As far aswritten informedconsent is concerned, thenovelmethoddoes
have advantages in terms of privacy and data security, but it was discussed
with legal experts that this is not something that the patient should have to
rely upon or that should be advertised to the patient. In particular, the new
method must not be abused to circumvent any stipulations. In particular,
there must not be “less” consent for the novel method to be employed than
for conventional opendata sharingbetween the joint controllers.Also, itwas
recommended by a specialist law firm that the method should be legally
considered pseudonymization, rather than anonymization, of the data. For

Table 5 | Therapy details

Gross Tumor Volume (GTV) [cm³] Median (range) 21 (2.2–383)

Planning Target Volume (PTV) [cm³] Median (range) 37 (5.1–517)

PTV margin expansion [mm] Median (range) 3 (3–6)

Numbers of Fractions Median (range) 5 (3–5)

3 fractions, N (%) 10 (21%)

5 fractions, N (%) 38 (79%)

BED10 [Gy] Median (range) 72 (43–112)

3 Fractions

Prescription Dose [Gy] Median (range) 40.5 (24–45)

BED10 [Gy] Median (range) 95 (43–112)

PTVopt Dmax [Gy] Median (range) 62 (31–75)

5 Fractions

Prescription Dose [Gy] Median (range) 40 (30–50)

BED10 [Gy] Median (range) 72 (48–100)

PTVopt Dmax [Gy] Median (range) 49 (32–68)

Conformity Index (CI) Median (range) 0.98 (0.39–1.39)

Homogeneity Index (HI) Median (range) 1.25 (1.05–1.86)

Number of adapted fractions Median (range) 4 (0–5)

Respiratory Motion Management Technique

Deep inspiration breath hold (DIBH) N (%) 39 (81%)

Deep expiration breath hold (DEPH) N (%) 7 (15%)

Free breathing N (%) 2 (4%)

Fig. 1 | Cumulative survival using Kaplan–Meier
analysis. Kaplan-Meier analysis shows a median
overall survival of 19 months. Average survival was
19.4 months with 95% confidence interval between
15.2 and 23.6 months.
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this reason, patients were informed in the consent form that their “personal
data and clinical findings will be processed in encrypted (pseudonymized)
form […] and will be sharedwith cooperation partners of the study […] for
scientific evaluation.” The cooperation partners abroad were also explicitly
named. We are not aware of any challenges obtaining informed consent.

Regarding the evaluation, Rmind28 is an exploratory tool that allows
fast calculations and provides Statistical DisclosureControl (SDC) on top of
Secure Multiparty Computation. In a more regular setting with repeat
computations, the SecreC language could be considered as amore stringent
alternative.Here, the parties agree on some bytecode that is distributed to all
compute nodes and is guaranteed to perform the agreed upon function in a
tamper proof way.

Regarding data flow, it would be preferable to keep it entirely server-
side from the start. (“Keep people away from data.”)With Federated Secure
Computing, data could be sourced server-side. There would be control flow

from the researcher to the Federated Secure API, but no data flow outside of
the secure server cluster.

As far as interoperability is concerned, it has beendiscussed to integrate
the Federated Secure Computing (FSC) middleware into the infrastructure
of the local Data Integration Centers. Data could then be sourced directly
from clinical data management systems. Similarly, the FSC middleware
could fetch data from Fast Healthcare Interoperability Resources (FHIR).
Again, this would be advantageous as data would be processed entirely
server-side. While the ability of FSC to source from FHIR server has been
tested, it was not employed during this project for lack of preparation of the
data as a FHIR.

In general, the implementation of Secure Multiparty Computation
(SMPC) is a substantial technical challenge25. The complexity of the tech-
nology and the required specialist knowledge to implement and operate
SMPCsolutions has probably hindered itsmorewidespread adoption so far.
In this project, we solved the problem in the followingway. First, we did not
implement our own cryptographic routines or employ an open source
SMPC framework. Rather, we licensed an industry-grade SMPC suite. The
installation and operation of this suite was not straightforward, but man-
ageable and of similar difficulty as any server-side productivity solution.
Secondly,wedidnot require scientists to operate the SMPCsoftware itself or
interact with the server-side. Rather, we provided them with the Federated
Secure Computing25 middleware. This middleware encapsulates the com-
plex server-side functionality into simple, easy-to-use microservices and
exposes them through a web-hosted Application Programming Interface
(API). The scientistswere thenprovidedwith a simple script they had to run
locally once to encrypt and upload their data to their server. This removed
most of the technical difficulties. The going live of local data wasmoderated
in a video call that lasted about half an hour. Logistical challenges were only
encountered in slightly different data formats (especially different locales for
calendar formats) and local firewall rules that had to be temporarily adapted
during the data upload.

As far as scalability is concerned, we expect that our results will hold in
multicenter settingswithmore than two sitesprovidingdata. Basically, every
sitewouldneed their ownFSCserver, however FSC is extremely lightweight,
and any small virtual machine with a single core would suffice. The much
more demanding hardware for SMPC, on the other hand, does not even
have to scale at all, as three independent compute nodes are sufficient to
provide security to an arbitrary number of data providing parties. This is at
least true in our architecture; other solutions might opt for one dedicated
compute node per party. Hardware demand would then scale linearly with
thenumberof sites.Data federation times, due toparallel networking,would
mainly scale linearlywith the size of the data rather than thenumber of sites.
For our small dataset, data upload timewas about one second,mainly due to

Table 6 | Outcome

Median followup [months] Median (range) 8.5 (0.5 – 26.9)

Acute toxicity Fatigue 8 (17%)

Gastrointestinal 2 (4%)

Anorexia 1 (2%)

None 35 (73%)

Not reported 2 (4%)

Local control Complete remission 10 (21%)

Partial remission 13 (27%)

Stable disease 19 (40%)

Progressive disease 4 (8%)

n/a 2 (4%)

Complete remission
BED < 80Gy

5 (14%)

Complete remission
BED > 80Gy

5 (50%)

OS [months] Median OS 19.0

Mean OS (95% CI) 19.4 (15.2–23.6)

ECOG 0-1 Mean OS (95%CI) 20.4 (15.9–24.8)

ECOG 2 Mean OS (95%CI) 9.2 (6.6–11.8)

BED10 < 80 Gy Mean OS (95%CI) 20.0 (15.6–24.0)

BED10 > 80 Gy Mean OS (95%CI) 17.3 (12.8–21.8)

Fig. 2 | Impact of ECOG status on cumulative
survival. Overall survival stratified by ECOG per-
formance score indicated a mean overall survival of
20.4 months for ECOG 0-1 versus 9.2 months for
ECOG 2; the median OS for ECOG 0–1 was not
reached after 27 months.

ECOG 0/1ECOG 2
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network latency. On the timescales of a clinical study (months to years) we
cannot see how data upload would ever be a bottleneck. As regards com-
puting times, the scaling depends on the implementation of the underlying
algorithms which are closed source. In most cases, however, we expect
computing times to scale linearly or at most quadratically with the number
of sites. As the number of sites is naturally limited inmulticenter studies, we
do not expect the number of sites to be a limiting factor. There is a lot of
literature on space and time complexity of SMPC. In practice, multicenter
clinical studieswouldprobablynot really be limitedbySMPCafter the initial
challenge of setting up the infrastructure.

From a medical standpoint, this novel approach of computation pro-
vides significant advantages for healthcare professionals, patients, hospitals,
and the broader scientific community. It facilitates the secure and efficient
sharing of patient data across multiple centers and countries, all while
adhering to stringent data protection rules. This capability allows for the
pooling of patient data from different institutions and enables the assembly
of larger cohorts, particularly for rare cancers or specialized techniques like
MR-guided radiotherapy (MRgRT) or reirradiation. These rare cases often
face the challenge of small sample sizes.With the approach presented in this
study, valuable data from different regions can be combined. Thus offering
insights that would otherwise be impossible to obtain without data sharing.

For hospitals, this results in more efficient research processes and
improved resource allocation, as patient data can be collected and analyzed
more quickly across diverse populations. For patients, the impact is sig-
nificant. By enabling the pooling of data from multiple centers, treatments
can be better evaluated, and outcomes can be improved through shared
insights while still protecting their privacy. This collaborative approach not
only speeds up the generation of high-quality clinical evidence but also
ensures that patients with rare conditions have access to the latest advances
in care. Ultimately, this technique enhances global healthcare by accel-
erating research, improving treatment options, and fostering international
collaboration, all while maintaining the highest standards of data security.

As a pilot study, our analysis focused on the technical aspects with data
from two centers and 48 patients. Despite the small sample size, it showed
favorable overall survival after radiotherapy.However, the survival advantage
for patients with ECOG-PS of 0–1 compared to those with ECOG-PS of 2
was not statistically significant. This observation is consistent with existing
literature that suggests comorbidities independently influence survival,
irrespective of tumor characteristics or therapeutic interventions. Notably,
Wang et al.29 identified ECOG-PS as a prognostic indicator for overall sur-
vival in a cohort of 600 HNSCC patients undergoing pre-radio-
chemotherapy, a finding echoed by Kang et al.30 who demonstrated the
significance of ECOG-PS in predicting overall survival in 714 early-stage
non-small cell lung cancer patients treated with stereotactic ablative
radiotherapy.

In terms of treatment efficacy, 88% of patients achieved at least stable
disease. This outcome aligns with the findings from larger studies, such as
those by Chen et al.31 who reported pooled 1-year and 2-year local control
rates of 84% and 70%, respectively, in a meta-analysis involving 1006
patients with adrenalmetastasis. They also reported comparable 1-year and
2-year overall survival rates of 72% and 47%. While Chen et al.31 and
Ugurluer et al.32 proposed a correlation between radiation dose and local
control, our analysis did not conclusively demonstrate this relationship
significantly, although a higher local control in terms of complete remission
was observed in patients with a BED10 of 80 Gy or higher. The analysis did
not establish a significant relationship between BED10 and overall survival.
The inability to establish a significant relationship between BED10 and
overall survival is likely attributable to the small number of patients in
our study.

Despite the administration of high doses, toxicity remains low in our
study, with only 23%of patients experiencing any side effects and no reports
of Grade 3 or 4 toxicities. In contrast, Holy et al.33 reported gastric and
duodenal ulcers in 2 out of 18 patients following SBRT with a BED10 of 72
delivered to adrenal metastases using conventional C-arm linear accel-
erators. Despite not exceeding dose constraints for the stomach and duo-
denum, the authors suggest that variations in organ filling, which were not
detectable by X-ray based image guidance, might have contributed to this
elevated toxicity. Another study by König et al.34 which also treated adrenal
metastases with SBRT using conventional C-arm linear accelerators but
with daily kilovoltage (KV) or megavoltage (MV) cone-beam computed
tomography (CBCT). Treatments were adjusted if therewere changes in the
filling of theduodenumor stomach, resulting in lower toxicity rates of 32.2%
for Grade 1 and 2, with no Grade 3 toxicities reported.

Comparatively, studies like Ugurluer et al.32 reported a 9.7% toxicity
rate for CTCAE Grades 1-2 using MR-guided SBRT (MRgSBRT), with no
Grade 3 toxicities. Our analysis revealed a 23% rate of Grade 1–2 toxicities,
primarily fatigue (17%), and also found no Grade 3 toxicities, underscoring
the advantages of MRgSBRT over conventional SBRT. The ability of
MRgSBRT to adjust daily for anatomical changes and target volumes allows
for potentially higher tumor doses while reducing toxicity rates.

The rigor of the study and the generalizability of the outcomes would
have been strengthened by a control group. However, the study was expli-
citly approved by the ethics committee without control group, as it would
have been difficult to justify the exclusion of the control group from the
tangible benefits of MR guided treatment which is without downside to the
patient. In particular, the irradiation scheme and fractionation used in this
treatment have only become possible with the introduction of MRgSBRT.
Forming a control group would have been difficult as those would have
received an entirely different treatment regime. Lastly, a control group
would have further reduced the already small sample size. Instead, this study

Fig. 3 | Impact of number of BED10 on cumulative
survival. Kaplan–Meier analysis did not identify
BED10 as a significant factor influencing overall
survival.

BED10 > 80

BED10 < 80
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included all patients “ab initio”, i.e. from the introduction of MRgSBRT at
the centers.

Further limitations of this study include the restrospective evaluation
and the relatively small patient cohort. The latter factor is comparable to
other studies given that SBRT for adrenal metastases is not widely available
tomany patients.Moreover, this study was designed to validate the concept
of Federated Secure Computing to enable larger multicenter studies, which
would allow for better analysis of these rare diseases while ensuring data
protection.

Another limitation is the retrospective analysis of collecteddata and the
development of federation technology during and after data collection. The
latter should have a limited effect on the evaluation, as the validity of the
evaluation should not be affected by the algorithms used.

This further demonstrates that data federation and research into fed-
eration technologiesmaybehelpful to reachmeaningful insights inbicentric
and multicentric clinical studies for rare tumor entities.

This pilot features secure multiparty computation as a viable and
valuable tool in the European data space for evaluation of patient data. Its
use has been successfully demonstrated in the setting of a clinical observa-
tional study. As far as radiation oncology is concerned, our analysis suggests
that MR-guided SBRT may be an effective option for stereotactic radio-
therapy of adrenal metastases, offering high local control and low toxicity
rates, potentially attributable to the online adaptation workflow.

Methods
Clinical study
This research involving human researchparticipants has been performed in
accordancewith theDeclarationofHelsinki, approvedbyEthikkommission
bei der LMU München, reference number 20–291. Written informed
consent was obtained from all participants.

This study aimed to assess the efficacy of MR-guided radiotherapy
(MRgRT) in treating adrenal gland metastasis, a context where precision is
crucial. Stereotactic body radiation therapy (SBRT) is employed in radiation
oncology to deliver high radiation doses directly to tumors, minimizing
exposure to surrounding organs and adjacent tissue. Traditional imaging
modalities, such as Conebeam CT, often lack the resolution needed for
utmost precision, necessitating wider safety margins and consequently,
greater radiation exposure to adjacent tissues. The introduction of MR-
Linac systems introduces the capability for real-time MRI scanning before
and during radiation sessions. This innovation allows for on-the-fly
adjustments to account for daily anatomical shifts and the dynamic
movement of tumors, especially due to respiratory motions. Such adapt-
ability is essential for treatingmetastases in the liver or adrenal glands,where
tumors are located near critical organs and are prone to move with each
breath. MRgRT’s ability to minimize safety margins while concentrating
radiation doses on the tumor enhances the precision of treatment, improves
local control, and substantially lowers the risk to nearby organs at risk
(OARs), marking a significant step forward in the management of complex
cases like adrenal gland metastases.

Radiation therapy of adrenal glandmetastases is relatively uncommon,
largely because they frequently undergo surgical removal. This rarity poses
challenges for evaluating and conducting in-depth analyses of radiation
treatments, as the number of patients treated at any given center is often
insufficient. Furthermore, MR-Linac treatments are not widely available,
being offered in only a select number of centers, and they have yet to be
established as the standard of care. As a result, many referring physicians
might not be familiar with these treatment possibilities, leading to patients
receiving radiotherapy elsewhere and not being accounted for in centralized
analyses. These factors contribute to the limited representation of such cases
in larger studies, underscoring the importance of collaborative data gath-
ering across various institutions and countries to create a comprehensive
dataset for meaningful research. Nonetheless, efforts to merge data from
different sources are hindered by strict data privacy laws, with Germany
being a notable example. Such regulations challenge the sharing of data
between healthcare facilities. Secure multiparty computation presents a

viable solution by enabling joint data analysis while allowing sites to retain
control over their data and protecting patient privacy. Employing this
technique improves the possibility of carrying out detailed studies on rare
cancers in extensive basket trials, overcoming privacy obstacles and
advancing the field of personalized oncology.

During this prospective observational study, the results of MR-guided
radiation therapy were documented and evaluated as a measure of quality
control (QC). Foremost, this was required for the quality assurance (QA)
process in routinely applied radiotherapy at theMR-Linac. All patients that
had an indication for MR-guided radiotherapy were treated according to
existing standard operating procedures (SOP) and national and interna-
tional guidelines. The latter were based on clinical data and account for
general requirements of the Quantitative Analysis of Normal Tissue Effects
in the Clinic (QUANTEC) and American Association of Physicists in
Medicine (AAPM) reports.During follow-upcare as clinically indicated and
legally required, parameters of tumor control and overall survival were
routinely documented, as well as toxicities according to Common Termi-
nology Criteria for Adverse Events (CTCAE) v5.0. By the systematical
documentation of this data, the long-term effectivity and safety of MR-
guided radiation therapy was to be improved for the patients.

This study was designed as a bicenter, prospective, longitudinal
observational study without a control group between LMU University
Hospital in Munich, Germany, and Fondazione Policlinico Universitario
Agostino Gemelli IRCCS in Rome, Italy. There were no changes to the
radiooncological treatment plan of any patient. The treatment itself was
administered solely per the pre-existing SOPs, based on best available evi-
dence. There was no deviation from standard therapy planned. The doc-
umentation of toxicity was part of clinical routine. Clinical results were
documented for quality control and quality assurance after the end of
treatment and evaluated after the fact.

Secure multiparty computation
Instead of data being transmitted between the two sites for evaluation in a
pseudonymised way, the data was to remain with the two clinical sites and
was evaluated by jointly running a secure multiparty computation that will
prevent each site from reconstructing the other sites’ data or processing
them in a way that was not initially agreed on. Additionally, administrative
data protection measures were put in place, and a novel safety architecture
and technical infrastructure was implemented.

Administrative data protection measures included an amendment of
the original (monocentric) study protocol to allow for multicentric data
gathering and joint evaluation; a cooperation agreement between LMU
UniversityHospital, FondazionePoliclinicoUniversitarioAgostinoGemelli
IRCCS, and LMU Munich stipulating the joint evaluation of data and the
shared responsibility; written informed consent by all patients with details
on data storage and processing; an amended institutional ethics vote that
provided for joint data processing; a detailed description of the software
infrastructure; a data flow diagram; a description of the hardware; a roles
and access concept; written signed declarations of the duties of the
responsible scientists for systems access; a documentation of technology
designandprivacy-friendlydefault settings; a software license agreement; an
oral presentation to and deliberation of the institutional Data Use and
Access Committee; and aGDPR compliant description and documentation
registeredby theofficialDataProtectionOfficer. In total, the documentation
included 98 pages.

Technical data protection measures included a secure multiparty
computation backend; a federated secure computing middleware; sand-
boxing; firewalls and port forwarding; virtual private networks (VPN) and
transport layer security (TLS). The resulting architecture is depicted in
Fig. 4.

There are three servers connected in a peer-to-peer network secured by
VPNandTLS. Theirfirewalls are configured to only allow ingress fromeach
other and from a researcher by LMU University Hospital, Fondazione
Policlinico Universitario Agostino Gemelli IRCCS, and LMU Munich,
respectively.
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The servers each host an instance of SharemindMPC, a framework for
secure multiparty computation. Data is stored as distributed secret shares
across all three servers such that security is guaranteed if there is no collusion
betweenparties. To evaluate data in a privacy-friendlyway, the servers of the
parties must actively cooperate in all calculations.

The two servers assigned to the two clinical parties in addition host
Federated Secure Computing, a middleware that facilitates data input and
allows to further restrict data flow to a predetermined protocol. Using
Federated Secure Computing as an entry point, the clinical researchers may
upload their data which is then immediately converted into secret shares
across the three servers.At nopoint is anydatauploaded visible or accessible
to any one party.

The third server run by LMUMunich featured an additional instance
of Rmind analytics28, a secure R-style programming language that offers a
suite of statistical functions to be run on secret shares.

In summary, the two clinical researchers had no access to their data
vice-versa, and the researcher by LMUMunich had only access to aggregate
results but no access to raw data of either clinic.

Evaluation was performed with Rmind, an interactive statistics
environment similar to R offering protection for input and outputs of
the study. The Rmind analytics suite is part of Sharemind MPC.
Computations in Rmind can be performed through commands given by
the researcher, see Fig. 5. Note that Rmind distinguishes between
“private” and “public” variables. Private vectors are distributed as secret
shares to all Sharemind MPC compute nodes and cannot be directly
accessed by the researcher in any way. The researcher may only inter-
face with the cluster as a whole and compute a set of predetermined
functions, such as averages, quantiles or frequencies that deliver
aggregate results as public variables.

In our case, the input data from Munich and Rome was loaded as
private tables “tm” and “tr”:

> tm <- load("DS1", "munich_production")
> tr <- load("DS1", "rome_production")

Specific columns such as gender, age etc. were referenced as, e.g.

Fig. 4 | Architecture for secure multiparty computation. Technical data protection measures included a secure multiparty computation backend; a federated secure
computing middleware; sandboxing; firewalls and port forwarding; virtual private networks (VPN) and transport layer security (TLS).
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> tm$age private-float32-vector
> tr$gender private-factor-vector

Note that the resulting vectors were private, their values could not be
accessed by the researcher directly. They could be used as inputs for
aggregate statistics only, e.g.,

> quantile(tm$age) {38.0, 62.5, 66.0, 72.25, 91.0}
> freq(tm$gender) [male = 16, female= 8]

Most importantly, the data from Rome (N = 24 patients) and Munich
(N = 24 patients) was concatenated into a larger dataset of N = 48 patients:

> length(tm$age) 24
> length(tr$age) 24
> length(c(tm$age, tr$age)) 48

In this way, quantiles and frequencies of the overall patient population
were computed, e.g.,

> freq(c(tm$gender, tr$gender))
[male= 29, female = 19]
> quantile(c(tm$age, tr$age))
{38.0, 60.75, 66.0, 73.0, 91.0}

Finally, subsets for specific events (such as dead/alive during followup)
and subgroups (e.g., by Eastern Cooperative Oncology Group (ECOG)
Performance Status) were selected. Survival tables were then constructed by
counting events per follow up month, e.g.,

> freq(c(subset(tm, event_death == 0)$follow_up,
subset(tr, event_death == 0)$follow_up))
[0= 2, 1= 1, 2= 2, …]
>freq(c(subset(tm,event_death==0&ecog_status==
0)$follow_up, subset(tr, event_death== 0 & ecog_sta
tus == 0)$follow_up))
[10= 1, 11= 0, 12= 0, …]

The resulting survival tables were then imported into SPSS version
29.0.2.0 for regular survival analysis.

Administrative data protection measures
Study protocol. The original study protocol defined a multicentric,
prospective, longitudinal observational study without control group.
Treatment was determined by established SOPs according to best
available evidence. Clinical results were to be evaluated for quality control
in a “pseudonymized” fashion. Electronic processing of patient data was
announced. Data protection measures were to be taken. Privacy of
individual patients was to be protected and patient data protection was to
be implemented. For the purpose of this experiment, the study protocol
was then amended to allow sharing of pseudonymized data among the
partner sites in a limited fashion.

Cooperation agreement. A cooperation agreement was signed by all
three partner sites: the two data holding university hospitals and LMU
Munich as a neutral third party responsible for evaluation. The coop-
eration agreement stipulated that “Each Party covers its own risk,
assumes responsibility for its own actions and omissions and shall insofar
hold harmless – the other Parties against claims brought by third parties”
and that “Each Party commits to comply, within its own sphere, with
applicable legislation on personal data protection”.

Patient information. Written informed consent stated the usual terms
(why is the study conducted, how is the study conducted andwhat are the
risks involved, voluntary enrollment and exit). In terms of data protec-
tion, the written informed consent contained the following information:
• Lawfulness of processing: Consent by the subject for specific purposes.

(Art 6 GDPR 1. a).
• Responsible entity for processing: University hospital, represented by

CEO / Chief Medical Officer and Commercial Director and Official
Data Protection Officer with contact details.

• Medical confidentiality: All legal requirements. In particular, pseudo-
nymized data would be sharedwith the cooperation partners. Rules for
pseudonymization. Minimum required (10 years) and maximum
allowed (20 years) retention period.

Fig. 5 | First secure evaluation of patient data from two European partner sites.
Commands to the secure computing cluster were given through Rmind. The secure
computing cluster performed statistics on the encrypted federated dataset. Only

aggregate statistics such as medians are revealed to the researcher, while individual
data points remain secret.
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• Risk of data processing: General information on the risks of data
processing and storage. Provision to share data outside of the EU
Data Space only to a specific cooperation partner in Switzerland
(not used in this study). Sufficient data protection standards in
Switzerland.

• Retraction of consent possible at any time. Rights to have data retracted
and deleted. Contact person for data retraction and deletion, the
Official Data Protection Officer with contact details.

• Contract address for complaints, the Data Protection Officer of the
State with contact details.

• Patient signature.

Ethics vote. The original ethics vote stipulated the responsibilities for
lawful conduct of the study and referred to GDPR. The amended ethics
vote consented to data sharing and joint data processing between the
cooperation partners: “As part of the clinical study, pseudonymized
patient data will be shared in accordance with all relevant data protection
standards and legal requirements with [the cooperation partners] for
joint processing.”

Software description. A 25-page technical description, published in a
peer-reviewed journal, was provided to the Data Protection Officers to
demonstrate technical data protectionmeasures of themiddleware. A 27-
page technical description, provided by the manufacturer, was provided
to the Data Protection Officers to demonstrate technical data protection
measures of the backend.

Data flow diagram. A data flow diagram (similar to Fig. 4) with details
such as internal server names, static IP addresses and networking details
(not included in Fig. 4) were provided to theData ProtectionOfficers. For
each data storage and each data connection, details on the nature of the
data were given (individual patient data, aggregate results, control flow).

Declaration by personnel, training. University hospital personnel and
university personnel had all signed data protection requirements and
responsibilities when entering their employment contracts. Personnel
by the university hospital was required to regularly refresh data pro-
tection knowledge through institutional online training. For the purpose
of this study, the external cooperation partner had to individually sign a
7-page “Undertaking for the dealing with personal or otherwise con-
fidential data”. It stipulated rules for lawfulness, fairness, transparency,
purpose limitation, data minimization, accuracy, storage limitation,
integrity and confidentiality (Art. 5 GDPR) and rules for conduct with
confidential data.

Description of hardware and backup. A 3-page document listed all
hardware and software components with their suppliers and physical
location. It stipulated rules for backup; anti-virus precautions; emer-
gency, restart and recovery procedures; technical safety measures; phy-
sical safety measures; access control both logical and physical.

Technology design andprivacy-friendly defaults. A 2-page document
recurred to the detailed software description and briefly listed state of the
art; implementation cost; pseudonymization; data minimization; privacy
friendly default settings.

Roles and access concept. A roles and access concept defined
three roles:
• Administrator (physical access to servers, configures operating sys-

tems, installs applications and packages, responsible for privacy-
friendly defaults, responsible for technical data protection such as
firewalls and anti-virus)

• Principal Investigator (supervises the participation of the cooperation
partners in the joint evaluation; communicates the result of the com-
putation to the cooperation partners)

• Researcher (interactswith the SharemindMPCbackend, interactswith
the Federated Secure Computing middleware, has access to the input
data of their respective partner site for purposes of quality control and
good scientificpractice, inputs thedata of their respective partner site to
the compute cluster)

The Role and Access Concept then individually named persons for
each of the roles from the different partner sites and listed the respective
means of Access Control (usernames, passwords, temporary one-time
keypads).

Software license agreement. For each of the three parties, the
“Sharemind MPC Customer Agreement” listed exactly one person by
name, who were licensed to interact with the software: one principal
investigator (role: researcher) from LMU, and each one scientist (role:
data owner) from LMU University Hospital and Gemelli IRCCS. The
list of these persons conformed to the Roles and Access Concept
as above.

Data use and ethics committee. The study and the data protection
measures were discussed in a regular meeting of the Data Use and Access
Committee (DUAC) of LMU University Hospital. The principal inves-
tigator of the study is a member of the Data Use and Access Committee
and presented the intended project in person. To avoid a conflict of
interest, the principal investigator did not take part in the vote of the Data
Use and Access Committee. The principal investigator did receive the
recommendation of the Data Use and Access Committee and com-
mented on them.

GDPR compliant description. A GDPR compliant description con-
taining a structured questionnaire and points 2.1 through 2.11 as above as
attachments was provided to the Official Data Protection Officers.

Technical data protection measures
Securemultiparty computation backend. For the experiment, a secure
computing network was set up, see Fig. 4. Three identical physical servers
(Intel Xeon Silver 4310, 64 GB) were set up as secure computing nodes in
a Sharemind MPC network. Two of the three servers simultaneously
acted as data input nodes for the two data holding parties, one used by
Munich, and one used by Rome.

The data input nodes would protect incoming patient data by secret
sharing it and distribute the shares to the Sharemind MPC cluster. They
would then wipe any unencrypted in-memory patient data. From this
point on, patient data exists only as distributed secret shares and cannot be
accessed by either data holding party or even a system administrator of
any one compute node. Only by jointly executing previously agreed upon
analytics functions, the SharemindMPC cluster is mathematically able to
generate aggregate results (e.g., medians, frequency tables). Access to or
evaluation of individual patient data is not possible by design and by
intent.

Federated secure computingmiddleware. To facilitate the uploading
of patient data, the Federated Secure Computing middleware (FSC) was
employed. FSC acts as a layer between the SharemindMPC backend and
the data owning parties. It encapsulates the Sharemind MPC interface
and provides only the strictly necessary functionality as microservices
through an Open API 3.0 compliant web interface. This allows to
separate the concerns of cryptography (server-side) and of medical data
science (client-side) and to enforce strict data flow protocols and to
restrict control flow. In this case, the only server-side functionality
exposed was a CSV import function. Client-side, a small Python script
would read patient data from the clinical database, convert it to an
agreed upon spreadsheet format and feed the data to the FSC interface.
This script was provided to both data holding parties and had to be run
by hand once.
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Sandboxing. The servers ranMicrosoftWindows Server 2022 Standard,
Version 10.0 Build 20348 as host operating system. Virtualization was
provided by Oracle Virtual Box 7.0.0 r 153978. Besides the virtualization
software, no other software was run on the host operating system.

The guest operating system was Debian GNU/Linux 12 (Bookworm)
with Linux 6.1.0-13-amd64 kernel. The guest operating system was allo-
cated 8 virtual processors (4 cores) and 16 GB of RAM. Besides the Fed-
eratedSecureComputingmiddleware and theSharemindbackend, noother
software was run on the guest operating system.

Firewall and port forwarding. Two special inbound rules were added to
Windows Defender Firewall with Advanced Security on the host oper-
ating system allowing ingress on TCP port :55000 (Federated Secure
Computing) and TCP port :30000 (Sharemind).

Port forwarding between the host and guest operating system was
provided in the form of Network Address Translation (NAT) and port
forwarding of ports :55000 and :30000. No other ports were forwarded.

Virtual private network. Between the three compute nodes, a virtual
private network (VPN) was configured through Sharemind MPC set-
tings. The three nodes shared a common namespace “FSCRomeMunich”
and identified each other as “FSCVM1” through “FSCVM3”. The VPN
was hardcoded through static IP addresses in each compute nodes server
settings file, and the three compute nodes would be listening only to
ingress from each other.

Transport level security (TLS). The Federated Secure Computation
servers enforcedTLS for all incoming client connections. ISO/IEC9594-8
compliant self-signed certificates were generated according to the X.509
ITU-U standard using 4096 bit RSA encryption. In compliance with TLS
1.3, key exchange through the Diffie Helman protocol was enforced for
every new connection, providing forward security on the transport layer.

The Sharemind server clusterwas similarly usingTLS toprotect server-
server communication. As per Sharemind documentation, 2048 bit RSA
public-private key pairs were generated and converted to DER format. The
generated public keys were then manually distributed across all Sharemind
compute nodes.

Software activation. Software activation happened through 20-
character key files that were transferred in part by email (12 char-
acters) and in part by ShortMessage Service (8 characters). The activation
keys were then manually installed on each Sharemind compute node.

Data availability
Patient data is protected by strict privacy laws and is not generally available
to the public. Requests for data sharingmay bemade through the local data
use and access (DUAC) committees.

Code availability
Federated Secure Computing is available as free and open source software
under the MIT license at https://github.com/federatedsecure. Sharemind
MPC is available as commercial software from Cybernetica AS, Estonia.
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