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Abstract
Objective  Bone metastases are very common in advanced prostate cancer and 
can sensitively be detected utilizing PSMA-PET/CT. Therefore, our goal was to 
evaluate the suitability of PSMA-PET/CT-guided metastasis-directed external beam 
radiotherapy (MDT) as treatment option for patients with biochemical recurrence and 
oligometastatic bone lesions.

Materials & methods  We retrospectively examined 32 prostate cancer patients with 
biochemical recurrence and PSMA-positive oligometastatic disease limited to the bone 
(n = 1–3). A total of 49 bone lesions were treated with MDT. All patients received a post-
radiotherapy PSMA-PET/CT-Scan. Changes in SUVmax, PSMA-positive tumor volume 
per lesion and PSA, as well as the correlation between the PET/CT-interval and SUVmax 
response were calculated.

Results  MDT lead to a SUVmax decrease in 46/49 (94%) of the lesions. The median 
relative decline of SUVmax was 60.4%, respectively. Based on PSMA-positive lesion 
volume with a SUV cut-off of 4, 46/49 (94%) of lesions showed complete response, two 
(4%) partial response and one lesion (2%) was stable on PSMA-PET/CT after MDT. Most 
of the treated patients (56.3%) showed an initial PSA decline at three months and a PSA 
nadir of median 0.14 ng/ml after a median time of 3.6 months after MDT. The median 
relative PSA change at three months after MDT was 3.9%.

Conclusion  MDT is a very effective treatment modality for prostate cancer bone 
oligometastases and lesion response to MDT can be assessed using the (semi-)
quantitative parameters SUVmax and PSMA-positive lesion volume with established SUV 
cut-offs.

Keywords  Oligometastatic prostate cancer (OMPC), Prostate specific membrane 
antigen (PSMA), PET/CT, Metastases directed therapy (MDT), Response assessment
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Background
Prostate cancer is the most common malignancy among men in Europe (Sung et al. 
2021) and in advanced metastatic prostate cancer the incidence of bone metastases is 
65–75% (Macedo et al. 2017). So far, no curative treatment option is available for pros-
tate cancer which has metastasized to the bone. Patients with metastatic prostate cancer 
are currently treated with androgen deprivation therapy (ADT) and androgen receptor 
signaling inhibitors (ARSi) in the hormone sensitive state (mHSPC). Once the tumor 
becomes resistant to castration (mCRPC), therapy options include chemotherapy, radio-
therapy and prostate specific membrane antigen (PSMA)-directed treatment (Cornford 
et al. 2017).

PSMA-positron emission tomography (PET)/computed tomography (CT) offers a 
high sensitivity and specificity for the detection of bone metastases (Zacho et al. 2018; 
Lawhn-Heath et al. 2019; Mingels et al. 2022). Furthermore, lesion identification is pos-
sible even at low serum prostate specific antigen (PSA) levels with a detection rate of 
45% for PSA values between 0.20 and 0.49 ng/ml (Perera et al. 2020).

These imaging advancements combined with regular PSA-monitoring make a detec-
tion of metastatic prostate cancer at an early stage with limited metastatic count more 
likely (Lievens et al. 2020), a condition between localized and widespread metastatic dis-
ease termed oligometastatic disease (Hellman and Weichselbaum 1995). However,  the 
definition of oligometastatic disease is inconsistent, with up to three or five metastases 
as frequent used cut-off values (Rogowski et al. 2022). The evolution of metastases is not 
unidirectional (Deek et al. 2021) and there is evidence that metastases can play a role in 
seeding further metastases (Gundem et al. 2015). On this ground, metastasis directed 
therapy (MDT), e.g. complete ablation by stereotactic body radiotherapy (SBRT) might 
improve clinical outcome. Several prospective studies have found MDT with SBRT to 
benefit patients with oligometastatic disease in respect to overall survival (OS) (Palma et 
al. 2020), progression-free survival (Tang et al. 2023), biochemical recurrence-free sur-
vival (Reyes et al. 2020), delaying biochemical or image based progression (Phillips et al. 
2020) and ADT-free survival compared to other treatments or observation alone, while 
not being associated with any significant reduction in quality of life. However, MDT in 
oligometastatic prostate cancer is controversial and current national and international 
guidelines do not provide a clear recommendation for MDT or recommend it only 
within the context of studies (Cornford et al. 2021; Thomas and Schrader 2023).

Local control after MDT for bone oligometastases is high, with rates above 95% (Onal 
et al. 2021; Rogowski et al. 2021a, b). However, morphological assessment of the treat-
ment response of osteoblastic bone metastases remains difficult on a lesion basis as 
hypersclerosis and tumor-related deformities often persist (Oprea-Lager et al. 2021). 
Hence, the current Response Evaluation Criteria In Solid Tumors 1.1 (RECIST1.1) 
guideline considers bone metastases without a significant soft tissue component to be 
unmeasurable and morphological imaging to be inadequate for assessing the response 
of bone metastases (Eisenhauer et al. 2009). PSMA-PET/CT, on the other hand, can 
(semi-)quantitatively assess PSMA-expression of bone metastases. Nevertheless, data 
investigating the treatment response of irradiated bone lesions based on repeated PET-
imaging are scarce (Baumann et al. 2018).
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Therefore, the aim of our study was to evaluate treatment response in patients treated 
with MDT for bone oligometastatic prostate cancer on pre- and post-radiotherapy 
PSMA-PET/CT.

Methods
This retrospective analysis was performed in compliance with the principles of the Dec-
laration of Helsinki and its subsequent amendments (World Medical Associations Dec-
laration 2013) and was approved by the local Ethics Committee of the Medical Faculty 
(approval number 19–361).

Patient selection

Consecutive patients undergoing MDT for bone oligorecurrent prostate cancer at the 
University Hospital Munich (LMU) between January 2015 and November 2022 were ret-
rospectively identified (n = 32). Oligometastatic disease was defined as presence of up to 
three bone metastases (miM1b (oligo) according to the PROMISE v2.0 framework (Seif-
ert et al. 2023a, b). Simultaneous intrapelvic nodal disease (miN1-2) and lymph nodes 
in the common iliac or retroperitoneal region (miM1a) were allowed. However, patients 
with distant lymph nodes in other regions, visceral metastases (miM1c) and patients 
with oligoprogressive or induced oligometastatic disease were excluded. All patients had 
hormone-sensitive prostate cancer at the time of MDT. Patients with repeated PSMA-
PET/CT examinations (pre- and post-radiotherapy) were considered for analysis.  The 
reason for performing a repeated PSMA-PET/CT investigation were persisting or 
increasing serum PSA levels after MDT. .

PSMA ligand and PET/CT imaging protocol

Patients were imaged by [68Ga]Ga-PSMA-11- or [18F]PSMA-1007-PET/CT as previ-
ously described (Rogowski et al. 2021a, b). Pooling of data from different scanners (Sie-
mens Biograph 64 and GE Discovery 690 PET/CT) was possible on the basis of phantom 
studies carried out by our medical physics department, resulting in a conversion factor, 
based on radionuclide, lesion diameter and SUVmax. Radiolabelling was performed in 
conformity with good clinical practice. In absence of contraindications, patients received 
20 mg furosemide at the time of tracer injection. PSMA-PET/CT scans were acquired 
approximately 60  min after intravenous tracer injection. Depending on previous CT 
scans and contraindications, a contrast-enhanced or unenhanced diagnostic CT (120 kV, 
100–400 mAs, dose modulation) was used for anatomical correlation and attenuation 
correction.

Image analysis

PSMA-PET/CTs were primarily interpreted in clinical routine by a junior nuclear medi-
cine physician or radiologist and a senior nuclear medicine physician as well as a senior 
radiologist, the latter both with a minimum of 5 years of PET/CT experience. An inde-
pendent secondary evaluation of the clinical reports and the images was carried out by 
another radiologist and nuclear medicine physician with 3 years of PET/CT experience. 
Cases of disagreement were solved in consensus. Lesion location was determined by CT. 
PET-positive lesions were visually identified on [68Ga]Ga-PSMA-11-/[18F]PSMA-1007-
PET/CT as focal uptake above background not associated with the physiological uptake 
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(Fendler et al. 2017). Tumor delineation and an PSMA-positive volume of bone lesions 
was based on a 3D isocontour at 50% of a lesions maximum SUV as recommended by 
the European Association of Nuclear Medicine for FDG-PET imaging (Boellaard et al. 
2015) and mentioned in the PROMISE V2 Supplements for PSMA-PET/CT (Seifert et 
al. 2023a, b).

Radiotherapy treatment

Treatment indications were approved by an interdisciplinary tumor board.  Radiother-
apy was administered to all PSMA-PET/CT positive lesions. The planning target vol-
ume (PTV) comprised the macroscopic bone lesion with a margin depending on the site 
and the expected intrafractional motion. All patients received volumetric modulated arc 
therapy (VMAT) and image-guided radiotherapy (IGRT). The exact dose prescription 
depended on the volume and the localization of the lesion. Patients diagnosed with local 
recurrence and / or pelvic lymph node-recurrence additional to bone metastases were 
treated simultaneously with radiotherapy to prostate fossa with or without whole-pelvic 
radiotherapy and boost to affected lymph nodes. The recommendation for concomitant 
ADT was based on disease burden, comorbidities and patient’s preference.

Response evaluation

For the assessment of lesion response to radiotherapy SUVmax and PSMA-positive lesion 
volume of the irradiated lesions were recorded on pre- and post-radiotherapy PSMA-
PET/CT-Scans and absolute and percentual changes were calculated. Based on the 
PSMA PET Progression framework (Fanti et al. 2020) and the consensus statements on 
PSMA-PET/CT response assessment criteria in prostate cancer (Fanti et al. 2021) an 
SUVmax increase of 30% was considered as progressive disease (PD), while an SUVmax 
decrease or increase below 30% was considered as non-progressive disease (non-PD).

Cut-offs for evaluation of PSMA-positive lesion volume were adopted from the RECIP 
framework (Gafita et al. 2022), with an increase in lesional tumor volume ≥ 20% confirm-
ing lesion progression, a decrease of ≥ 30% defining lesion regression (Fig. 1) and values 

Fig. 1  Example of bone metastasis with PR, fused PET/CT and PET only prior to (A + B) and after MDT (C + D)

 



Page 5 of 13Sheikh et al. EJNMMI Reports            (2024) 8:25 

in between defining a stable lesion. No residual PSMA-uptake above background levels 
on follow-up PSMA-PET/CT was considered as complete response of a lesion (Fig. 2).

Post-radiotherapy PSA-response was also evaluated. A decrease or increase in the PSA 
value compared to the pre-MDT level by > 0.2 ng/ml was considered as a response or 
progression, respectively, while values in between were considered stable.

Statistical analysis

All statistical analyses were conducted using SPSS Version 28  (IBM Corp., Armonk, NY, 
USA). Descriptive statistics were used to describe patient and treatment characteristics. 
Continuous measures were summarized using median and range, whereas ordinal and 
categorial measures were summarized using counts and percentages. Mann-Whitney-U-
Test was used for univariate analyses and correlation analyses were conducted using the 
Spearman rank test. P-values of < 0.05 were considered statistically significant.

Results
Demographics

A total of 32 patients treated with MDT for bone oligorecurrent disease had repeated 
PSMA-PET/CT examinations pre- and post-radiotherapy at the University Hospi-
tal Munich (LMU) between January 2015 and November 2022. PET/CT ligands were 
[68Ga]Ga-PSMA-11 and [18  F]PSMA-1007 in 28.1% and 71.9%, respectively pre- and 
6.1% and 93.9%, respectively post-MDT. In six patients there was a switch from [68Ga]
Ga-PSMA-11 pre-MDT to [18 F]PSMA-1007 post-MDT, three patients received [68Ga]
Ga-PSMA-11 and 23 patients [18 F]PSMA-1007 pre- and post-MDT. The reason for the 
second PSMA-PET/CT was a PSA increase after MDT in all patients.

Patient characteristics at baseline and treatment characteristics are shown in Table 1. 
The median age at the time of MDT was 73.5 years (range 57–81). Primary therapy was 
radical prostatectomy in all patients. The initial tumor stage was T2 in 25%, T3 in 75% 
and N1 in 21.9%. The initial ISUP score was ≥ 4 in 71.8%. The majority of patients (62.5%) 

Fig. 2  Example of bone metastasis with CR, fused PET/CT and PET only prior to (A + B) and after MDT (C + D)
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presented with a single bone metastasis in the first PSMA-PET/CT (range one to three). 
Seven patients (21.9%) received additional RT to the prostatic fossa and /or a pelvic RT 
with a boost on positive lymph nodes simultaneously with the MDT for bone metas-
tases due to macroscopic extraosseous recurrence. The median biologically effective 
dose (BED) (α/β = 3) administered to bone metastases was 93.3 Gy (range 66.7–93.3 Gy). 
The site of treated metastases was thorax, pelvis and spine in 56.3%, 37.5% and 6.3% of 
patients, respectively. Eleven patients (34.4%) received concomitant ADT at a median of 
four days before MDT.

PSMA-PET/CT response

The median interval between the first and the second PSMA-PET/CT was 13.2 months 
(range 4.4–63.3 months). The median SUVmax was 5.19 (range 2.3–87.4) and 1.93 (range 
0,67–5.78) on pre- and post-MDT PET/CT, respectively. The median absolute and rela-
tive change of SUVmax was − 2.97 (range − 82.05 to + 1.76) and − 60.4% (range − 98% to 
+ 54%), respectively. The median absolute change of SUVmax in patients with and without 
concomitant ADT was − 12.0 (range − 82.05 to + 0.44) and − 2.92 (range − 7.32 to + 1.76), 
respectively (p = 0.001) (Fig. 3). Based on SUVmax 47/49 lesions (96%) were classified as 

Table 1  Patient and treatment characteristics at baseline
Patients, n 32
Bone metastases, n 49
Age (years), median (range) 73.5 (61–86)
Initial tumor stage, n (%)
  T2 8 (25.0)
  T3 24 (75.0)
Initial nodal stage, n (%)
  N0 23 (71.9)
  N1 7 (21.9)
  Nx 2 (6.3)
Initial ISUP score, n (%)
  2 5 (15.6)
  3 4 (12.5)
  4 6 (18.8)
  5 17 (53.1)
Initial PSA (ng/ml), median (range) 11.4 (4-127)
Number of bone oligometastases, n (%)
  1 20 (62.5)
  2 7 (21.9)
  3 5 (15.6)
Site of bone oligometastases, n of lesions (%)
  Thorax 18 (56.3)
  Spine 2 (6.3)
  Pelvis 12 (37.5)
RT fractionation, n of lesions (%)
  30 Gy, 5 fractions (BED3 = 90.0 Gy) 18 (36.7)
  40 Gy, 10 fractions (BED3 = 93.3 Gy) 24 (49.0)
  other (BED3 66.7–93.3 Gy) 7 (14.3)
Concomitant ADT, n (%)
  yes 11 (34.3)
  no 21 (65.6)
Abbreviations ADT = androgen deprivation therapy; BED3 = biologically effective dose, α/β = 3; ISUP = International Society of 
Urological Pathology; PSA = prostate specific antigen; RT = radiotherapy
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non-progressive, of which 46 lesions had any decrease of SUVmax and one lesion showed 
an increase of only 16%. Two lesions (4%) showed an increase of SUVmax after MDT of 
54% and 30%, respectively, and were therefore classified as non-responding lesions (non-
responding lesion 1 and 2, respectively).

The median PSMA-positive lesion volume was 0.66 cm3 (range 0.2–9.4 cm3) and 
0.0 cm3 (range 0.0–0.93 cm3) on pre- and post-MDT PET/CT, respectively. Based on 
PSMA-positive lesion volume 40/49 lesions (82%) did not have any correlate above 
background on post-MDT PET/CT, consistent with complete response. Seven patients 
showed partial response with volume decreases reaching from − 66% to -95% in one 
lesion with a decrease of 16% was labelled as stable. When applying an SUV cut-off of 
4, previously reported to be best suited to delineate the true tumor volume on [18  F]
PSMA-1007-PET/CT (Mittlmeier et al. 2021), complete response was seen in 46/49 
lesions (94%).

Non-responding lesion 1, which was the same lesion that was classified as stable based 
on PSMA-positive lesion volume, showed delayed complete response in a subsequent 
[18 F]PSMA-1007-PET/CT 15 months after treatment. Unfortunately there was no sub-
sequent PSMA-PET/CT available for non-responding lesion 2, which was classified as 
partially responsive based on PSMA-positive lesion volume with a decrease of 94%.

Twenty-one patients (65.6%) showed new metastases on post-treatment scan. In seven 
patients (21.9%) no suspicious lesion could be found on PSMA-PET/CT, despite of bio-
chemical recurrence. The rest of the patients (12.5%) had progressive lesions only appar-
ent in hindsight (n = 2) or local recurrence of a previously treated lesion. There was no 
significant correlation between the interval between the two PET/CT and the SUVmax 
response (r = 0.282, p = 0.098, Fig. 4).

PSA response

The median serum PSA values at the time of the pre- and post-radiotherapy PSMA-
PET/CT were 1.03 ng/ml (range 0.2–39.2 ng/ml) and 1.05 ng/ml (range 0.1–10.3 ng/
ml), respectively. The majority of treated patients (56.3%) showed an initial PSA decline 

Fig. 3  Absolute change in SUVmax in patients with and without concomitant ADT to radiotherapy
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three months after MDT and a median PSA nadir of 0.14 ng/ml (range 0.01–2.75 ng/
ml) after a median time of 3.6 months (range 1.2–24.4 months) after MDT. However, 
after a median time of 15.7 months, all patients with an initial decline of PSA had a PSA-
progression. The PSA was stable or rising at the first follow-up at three months in the 
remaining 14 patients. The median absolute and relative PSA change at three months 
after MDT was − 0.2 ng/ml (range − 22.9 ng/ml to + 2.48ng/ml) and − 3.9% (range − 99.9% 
to + 224.0%). Four patients had rising PSA values after MDT while on ADT, meeting the 
criteria of mCRPC.

Discussion
Bone metastases are the most frequent site of distant metastasis in prostate cancer and 
PSMA-PET/CT is evolving as the standard of care imaging method for metastatic pros-
tate cancer (Zacho et al. 2018; Gandaglia et al. 2014). Several prospective trials have 
demonstrated that MDT in prostate cancer may prolong the initiation of systemic ther-
apy and the time until disease progression (Tang et al. 2023; Reyes et al. 2020; Phillips et 
al. 2020). However, MDT is subject to critical evaluation because its impact on overall 
survival is still pending in trials with prostate cancer as the sole histology (Palma et al. 
2020).

Current response criteria like RECIST 1.1 and PERSIST either deem bone lesions 
without significant soft tissue component unmeasurable or are not applicable to imag-
ing with PSMA-PET/CT (Eisenhauer et al. 2009). We therefore aimed to investigate 
treatment response of MDT for bone oligometastatic disease in prostate cancer patients 
based on the objective parameters SUVmax and PSMA-positive lesion volume on pre- 
and post-MDT imaging with PSMA-PET/CT.

Two different PET/CT ligands were used for imaging. In January 2018 our nuclear 
medicine department replaced [68Ga]Ga-PSMA-11 with [18F]PSMA-1007 in clini-
cal routine. Even though [68Ga]Ga-PSMA-11 has been prospectively validated to have 
excellent sensitivity, especially for bone metastases (Lawhn-Heath et al. 2019), imaging 
with 18F has several advantages over 68Ga. The longer half-life and the possibility of large 

Fig. 4  Correlation between absolute change in SUVmax and interval between PET/CT examinations
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batch production make handling easier, while the lower positron energy of 18F in theory 
increases the resolution (Kesch et al. 2017). A potential pitfall of [18F]PSMA-1007 on 
the other hand is the increased frequency of unspecific focal bone uptake (UBU) that 
has previously been reported (Grünig et al. 2021; Seifert et al. 2023a, b), which can lead 
to a decreased diagnostic accuracy for bone lesions (Mingels et al. 2022) and inadequate 
therapy. Unfortunately, there is no definitive way of differentiating between UBU and a 
true lesion in the retrospective setting and a standardized definition of UBU is lacking 
(Seifert et al. 2023a, b; Grünig et al. 2021; Phelps et al. 2023). It is therefore possible that 
some of the lesions we evaluated did not represent prostate cancer metastases.

We used a SUVmax increase above 30% to define a non-responding lesion, adopted 
from the PSMA PET Progression criteria (PPP) and the consensus statements on PSMA-
PET/CT response assessment criteria in prostate cancer (Fanti et al. 2020, 2021) as 
well as volume cut-offs defined in the RECIP framework (Gafita et al. 2022) to evaluate 
lesion response to MDT on PMSA-PET/CT. The PPP framework by Fanti et al. defines 
treatment response using three different criteria, one of which is the increase in PSMA 
uptake of one or more existing lesions by at least 30% (Fanti et al. 2020). The RECIP 
framework by Gafita et al. takes into account the total PSMA-positive tumor volume 
and the presence or absence of new lesions (Gafita et al. 2022). Both frameworks evalu-
ate tumor response and progression on patient basis and could therefore only be used in 
parts for our lesion based response assessment. While Gafita et al. propose a SUV cut-
off of 3 to define PSMA-positive tumor volume on [68Ga]Ga-PSMA-11, Mittlmeier et. 
described a SUV cut-off of 4 to be best suited to delineate PSMA-positive tumor volume 
on [18F]PSMA-1007-PET/CT. Since some of the lesions treated with MDT were very 
small and already had a SUVmax below 3 on pre-MDT PET/CT, we utilized a relative 
threshold of 50% of local SUVmax which can be superior to fixed thresholds due to par-
tial volume effects as also stated in the supplements of the second version of the pros-
tate cancer molecular imaging standardized evaluation framework including response 
evaluation for clinical trials (PROMISE V2 (Seifert et al. 2023a, b) based on the work by 
Erdi et al. (1995, 1997). Morphologic imaging was not helpful in response assessment, 
as many lesions lacked well delineated morphologic correlates on pre- as well as post 
therapeutic PSMA-PET/CT. Our analysis of PET response after MDT of bone metas-
tases showed very high response rates up to 96% based on SUVmax as well as PSMA-
positive lesion volume, well in line with local control rates - usually defined as absence 
of morphological or metabolic progression - between 95% and 98% reported in literature 
(Onal et al. 2021; Rogowski et al. 2021a, b; Henkenberens et al. 2020). In our study the 
high response rate was achieved despite of a comparatively low BED3 of median 93.3 Gy. 
Other studies have found that BED-values > 100 Gy and > 108 Gy, respectively, are asso-
ciated with improved outcome (Ost et al. 2016; Hurmuz et al. 2020). Only two lesions 
showed a significant SUVmax progression despite of MDT. However, the interval between 
the pre- and post-therapeutic PSMA-PET/CT was less than six months in both cases. 
Baumann et al. reported a correlation between the time interval after radiotherapy and 
PET-response suggesting that an interval of six months or more may be required to fully 
estimate the efficacy of radiotherapy in PSMA-PET imaging (Baumann et al. 2018). As a 
matter of fact, one of the patients showed a complete response of the treated lesion on 
repeat PSMA-PET 15 months after MDT. The other patient could not be evaluated in 
this regard due to the lack of additional follow-up PET scans. We could not confirm a 
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correlation between the time interval and the SUVmax response, probably due to a long 
median interval of 13 months with a range of four to 63 months in our study.

SUVmax response was higher in patients with ADT concomitant to MDT. This might 
indicate a synergistic effect of radiotherapy and ADT as has been postulated before 
(Locke et al. 2015; Anderson and McBride 2022). This is interesting as MDT for oligo-
metastatic disease is often investigated with the goal to defer systemic therapy (Ost et 
al. 2018). An increased PSMA-expression, in particular of bone metastases, has been 
described in patients receiving ADT and therefore could also be responsible for the dif-
ference in SUVmax response compared to patients not on ADT during MDT (Malaspina 
et al. 2023). However, the influence of ADT on PSMA-expression is complex, depending 
on the duration and type of ADT, and there is heterogeneity in the literature regarding 
the effects of ADT on PSMA expression, with some studies reporting increased PSMA 
uptake and others observing a decrease, particularly with long-term ADT (Vaz et al. 
2020).

All patients in our study had a selection bias, since a persistent or rising PSA value after 
MDT was the indication for repeated PET imaging. Two thirds of the patients revealed 
new lesions on the second PET/CT. The informative value of the PSA response in our 
patient collective is thus limited by the fact that these new lesions may have already con-
tributed to the serum PSA at the first follow-up 3 months after MDT. This underlines 
the importance of repeated imaging, which enables a lesion-based assessment, whereas 
the PSA value only provides global information about the state of the metastatic dis-
ease. Progression of some lesions may therefore be masked by the response of other 
lesions when looking at PSA values only (Kuten et al. 2019). Despite of this bias, most 
of our patients showed an initial drop of PSA levels at the first follow-up, indicating that 
PSMA-PET/CT-based MDT in oligometastatic prostate cancer is able to temporarily 
reduce the main tumor burden in the majority of patients. However, after a median time 
of 15.7 months all patients with an initial decline of PSA showed an increase of PSA-
levels, which also has to be seen in the context of the abovementioned selection bias. In 
seven patients (21.9%) no suspicious lesion was found on PSMA-PET/CT at the time of 
biochemical recurrence after MDT (median PSA-level of 1.05 ng/ml), which matches 
the previously reported sensitivity of PSMA-PET/CT for biochemical recurrence (Hof-
man et al. 2018).

Our study has several limitations. The limited number of patients and the lack of sta-
tistical design or power make it difficult to draw a robust conclusion. Our study also 
has an observational nature and had no pre-defined endpoint, making it more vul-
nerable to bias. The different PSMA-compounds and scanners used as well as loss to 
follow up might also have a significant impact on the results. Furthermore, because his-
tologic verification was not performed, we could not exclude false-positive and false-
negative PSMA-PET lesions. However, sensitivity and specificity for detecting bone 
metastases are high (Zacho et al. 2020). Moreover, concomitant ADT was inconsis-
tently administered, which complicated the interpretation of PSA kinetics. Neverthe-
less, we believe that our study adds important information to the sparse data regarding 
response evaluation of MDT for bone metastases of prostate cancer based on repeated 
PSMA-PET-imaging.
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Conclusion
The ability to assess response at the lesion level is particularly important in oligometa-
static prostate cancer patients treated with MDT. Serum PSA levels only provide global 
information on tumor burden and are therefore not suitable for response assessment in 
this setting, as responding lesions could compensate for progressive or even new lesions. 
With PSMA-PET/CT, on the other hand, it is possible to reliably assess tumor load on a 
lesion basis. Using SUVmax and PSMA-positive lesion volume, we were able to confirm 
an excellent response of bone oligometastases to MDT, with almost all treated lesions 
showing a significant if not complete response.
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