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Abstract
Objective  To conduct a systematic review and meta-analysis of case–control and cohort human studies evaluating metabolite 
markers identified using high-throughput metabolomics techniques on esophageal cancer (EC), cancer of the gastroesophageal 
junction (GEJ), and gastric cancer (GC) in blood and tissue.
Background  Upper gastrointestinal cancers (UGC), predominantly EC, GEJ, and GC, are malignant tumour types with 
high morbidity and mortality rates. Numerous studies have focused on metabolomic profiling of UGC in recent years. In 
this systematic review and meta-analysis, we have provided a collective summary of previous findings on metabolites and 
metabolomic profiling associated with EC, GEJ and GC.
Methods  Following the PRISMA procedure, a systematic search of four databases (Embase, PubMed, MEDLINE, and 
Web of Science) for molecular epidemiologic studies on the metabolomic profiles of EC, GEJ and GC was conducted and 
registered at PROSPERO (CRD42023486631). The Newcastle–Ottawa Scale (NOS) was used to benchmark the risk of bias 
for case-controlled and cohort studies. QUADOMICS, an adaptation of the QUADAS-2 (Quality Assessment of Diagnos-
tic Accuracy) tool, was used to rate diagnostic accuracy studies. Original articles comparing metabolite patterns between 
patients with and without UGC were included. Two investigators independently completed title and abstract screening, data 
extraction, and quality evaluation. Meta-analysis was conducted whenever possible. We used a random effects model to 
investigate the association between metabolite levels and UGC.
Results  A total of 66 original studies involving 7267 patients that met the required criteria were included for review. 169 
metabolites were differentially distributed in patients with UGC compared to healthy patients among 44 GC, 9 GEJ, and 25 
EC studies including metabolites involved in glycolysis, anaerobic respiration, tricarboxylic acid cycle, and lipid metabo-
lism. Phosphatidylcholines, eicosanoids, and adenosine triphosphate were among the most frequently reported lipids and 
metabolites of cellular respiration, while BCAA, lysine, and asparagine were among the most commonly reported amino 
acids. Previously identified lipid metabolites included saturated and unsaturated free fatty acids and ketones. However, the 
key findings across studies have been inconsistent, possibly due to limited sample sizes and the majority being hospital-based 
case–control analyses lacking an independent replication group.
Conclusion  Thus far, metabolomic studies have provided new opportunities for screening, etiological factors, and biomark-
ers for UGC, supporting the potential of applying metabolomic profiling in early cancer diagnosis. According to the results 
of our meta-analysis especially BCAA and TMAO as well as certain phosphatidylcholines should be implicated into the 
diagnostic procedure of patients with UGC. We envision that metabolomics will significantly enhance our understanding of 
the carcinogenesis and progression process of UGC and may eventually facilitate precise oncological and patient-tailored 
management of UGC.
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UHPLC-MS	� Ultra-Performance Liquid Chro-
matography- Mass Spectrometry
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Electrospray Ionization Quad-
rupole Time-of-Flight Mass 
Spectrometry

UPLC–TOF/MS	� Ultra-Performance Liquid 
Chromatography- Time-of-Flight 
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MRB–CE–MS	� Moving Reaction Boundary 
Capillary Electrophoresis-Mass 
Spectrometry

MALDI MS	� Matrix-Assisted Laser Des-
orption/Ionization- Mass 
Spectrometry

MALDI MSI	� Matrix-Assisted Laser Desorp-
tion/Ionization- Mass Spectrom-
etry Imaging

SIFT-MS	� Selected Ion Flow Tube Mass 
Spectrometry

SPME-GC/MS	� Solid-Phase Microextraction-
Gas Chromatography-Mass 
Spectrometry

HR-MAS NMR	� High-Resolution Magic Angle 
Spinning-Nuclear Magnetic 
Resonance

InChIKey	� International Chemical Identifier
CTS service	� Chemical Translation Service
FAD	� Flavin Adenine Dinucleotide
SM	� Sphingolipids
HCA	� Hyocholic acid
HDCA	� Hyodeoxycholic acid
TCA​	� Tricarboxylic acid cycle
MUFA	� Monounsaturated Fatty acid
PUFA	� Polyunsaturated Fatty acid
MG	� Monoacylglycerol
DG	� Diacylglycerol
TG	� Triacylglycerol
PLA2	� Phospholipase A2
Me	� Means in experimental group
Se	� Standard deviation in experimen-

tal group
Ne	� Headcount in experimental 

group
Mc	� Means in control group
Sc	� Standard deviation in control 

group
Nc	� Headcount in control group

Introduction

Surgery of upper gastrointestinal cancers (UGC) such as 
esophageal cancer (EC), cancer of the gastroesophageal 
junction (GEJ) and gastric cancer (GC) are still one the most 
lethal types of cancer worldwide (Jin et al. 2020). Advances 
in surgical technique and perioperative systemic therapies 
have made many patients with more advanced disease or co-
morbidities candidates for surgery (Bray et al. 2018; Perera 
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et al. 2021; Siegel et al. 2022). In light of these changes, reli-
able measures that assess preoperative diagnostics, patient-
centred outcomes and individualised follow-up tools are 
more important than ever to establish a precision oncology 
approach in diagnostics and multimodality therapy (War-
burg et al. 1927; Slankamenac et al. 2013). Ideally, these 
measures will help guide treatment decisions and ensure 
treatment meets appropriate standards. Early detection 
and timely treatment following precise risk classification 
are imperative for improving patient outcomes in GC. The 
most frequent symptoms of UGC are very unspecific, like 
dysphagia, nausea, and loss of weight (Heslin, et al. 1997). 
The primary diagnostic tool is gastroscopy, an invasive 
procedure allowing tumour detection and biopsy collection 
in the same procedure (Heiliger et al. 2022). Conventional 
plasma tumour biomarkers have been proposed as valuable 
parameters for early detection, prognostic prediction and 
recurrence monitoring in EC and GC (Emoto et al. 2012). 
Nonetheless, because of limited specificity and sensitivity, 
most circulating molecular markers are not recommended 
for early diagnosis of UGC. Therefore, identification and 
validation of UGC-specific biomarkers are warranted to 
facilitate early diagnosis (Gurdasani et al. 2019). It is nec-
essary to observe the progression from precancerous lesions 
to malignancies, and therefore, identifying diagnostic bio-
markers for EC, GEJ, and GC is of great significance. A key 
feature of tumour cell metabolism is the ability to obtain 
nutrients from a frequently nutrient-poor microenvironment 
and utilise these nutrients to meet the demands of growth 
and proliferation (Lewis et al. 2021). Thereby a tumour 
microenvironment (TME) is sequentially formed, which 
comprises cancer cells, the cytokine environment, extra-
cellular matrix, immune cell subsets and other components 
(Gustafsson et al. 2024). In this complex network of cancer 
cells and cancer derived metabolites, the pro-tumorigenic 
vicinity plays a pivotal role in stimulating tumour angio-
genesis, promoting its invasiveness and metastatic poten-
tial (Berrell 2023). Certain tumour-associated metabolites 
are associated with aggressive cancer phenotypes, facili-
tated angiogenesis, promoted mutagenesis and suppress the 
immune system (Zhang et al. 2023). However, the migration 
of cancer derived metabolites from the tumour itself, as well 
as its microenvironment into the systemic blood circulation 
can be detected and quantified by state-of-the-art clinical 
mass spectrometry (Zhao et al. 2023).

For decades, metabolic reprogramming of tumours was 
perceived as only increased glycolysis, as postulated by 
Otto Warburg almost a century ago. This simplistic view 
has recently been challenged and revised as we realized that 
tumour metabolism is more heterogeneous than initially 
assumed (Thompson et al. 2023). The concept of metabolic 
plasticity has recently emerged as we learned that some 
tumours are able to switch between alternative metabolic 

programs to meet challenges exerted by drugs targeted 
against a particular metabolic pathway or during tumori-
genesis (Finley 2023). It is suggested that EC and GC cells 
may consume a large number of fatty acids to meet the needs 
of cell membrane synthesis and energy production (War-
burg et al. 1927). The survival of cancer cells in the human 
body depends on lipids, and accumulated lipid droplets are 
found in various cancer microenvironments (Mikami et al. 
2019), so lipid droplets are expected as effective targets for 
blocking tumour growth (Petan et al. 2018), and fatty acid 
metabolism-related proteins may also become diagnostic 
markers for early GC diagnosis and follow-up (Wu et al. 
2019; Jiang et al. 2017). In addition, UGC is prone to metas-
tasis, and adipocytes regulate fatty acid oxidation. However, 
fatty acid oxidation is enhanced in UGC patients, which pro-
motes metastasis in EC, GEJ, and GC (Tsuboi 2019; Tan 
et al. 2018). The plasma is commonly considered a pool 
of metabolites and reflects the systemic metabolic regula-
tion in cancer patients (Lopez-Bascon et al. 2016). Multiple 
methods have been developed for metabolome assessment, 
including nuclear magnetic resonance spectroscopy (NMR), 
liquid chromatography (LC), gas chromatography, capillary 
electrophoresis (CE), and mass spectroscopy (MS). To date, 
liquid chromatography-tandem mass spectroscopy (LC–MS/
MS)-based high throughput techniques are broadly utilised 
in various compartments, allowing joint assessment of mul-
tiple metabolites, only requiring small amounts of biological 
specimens (Chan et al. 2014).

Respectively, these “omics” technologies enable the study 
of cancer-related alterations at both a genetic level and at 
proteomic and metabolomic levels with high sensitivity 
(Doshi et al. 2023). Among these techniques, metabolomics 
is a promising approach for cancer biomarker discovery, as 
the reprogramming of cellular metabolism is one of the 
hallmarks of cancer, and metabolomics as the endpoint of 
“omics” cascades could reflect perturbations in all biological 
activities with an amplified way (Stine et al. 2022). Since the 
beginning of metabolomic research, guidelines have been 
defined by the Metabolomics Standards Initiative for data 
reporting, outlining the minimal information content that 
should be reported, common syntax, defining the transmis-
sion formats that facilitate the exchange of information, 
and standard semantics (Sumner et al. 2007). Thus, current 
metabolomic research provides global data on the metabo-
lism of tumours and can also act as a promising tool to dis-
cover biomarkers of diagnosis, metastatic surveillance, and 
prediction of chemotherapeutic sensitivity (Warburg 1956a).

According to The Human Metabolome Database 
(HMDB), lipids, carbohydrates and amino acids constitute 
obligate cofactors in mitochondrial fatty acid -oxidation, 
which represents the major step of energy production and 
is altered in multiple malignancies (Lu et al. 2019; Wishart, 
et al. 2022). On the example of lipids, excessive production 
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of acylcarnitines has been shown to reflect altered fatty acid 
oxidation, contributing to metabolic diseases (Balonov, et al. 
2023). In cancer, acylcarnitine metabolism is considered a 
gridlock to precisely promote metabolic flexibility based on 
its crucial function in controlling the metabolic processes 
of glucose and fatty acids (Warburg 1956b). Metabolic 
reprogramming in malignant cells modulates the produc-
tion of acylcarnitines of different chain lengths (Kim et al. 
2023). This intercalates with other major metabolic path-
ways, factors and metabolites, resulting in balanced energy 
production and consumption, as well as in the biosynthesis 
of metabolic intermediates for fast growth (Liu et al. 2018). 
However, studies evaluating acylcarnitine profiles associ-
ated with EC, GEJ and GC are scarce and inconsistent (Sun 
et al. 2023). Corona et al. found that plasma acetylcarnitine 
(C2), hexadecanoylcarnitine (C16) and octadecenoylcarni-
tine (C18:1) of UGC patients were higher than first-degree 
relatives (Corona, et al. 2018). A study performed by Lario 
et al. found that plasma hydroxytetradecadienylcarnitine 
(C14:2-OH) and octadecanoylcarnitine (C18) were increased 
in GC patients compared to precursor lesions of gastric can-
cer (Lario et al. 2017). Therefore, more studies are required 
to assess metabolic changes in UGC.

Methods

This systematic review was developed, conducted and 
reported following the Preferred Reporting Items for Sys-
tematic Reviews and Meta-Analyses (PRISMA) guidelines 
and relevant recommendations; Good Clinical Practice 
(GCP)-compliant handling of the data is secured by ade-
quate SOPs (Page et al. 2021; Nagendrababu et al. 2020). 
The review protocol was established before the initiation 
of the research and registered in the International Pro-
spective Register of Systematic Reviews (PROSPERO) 
(CRD42023486631) (Schiavo 2019).

Literature search strategy

A systematic literature search was conducted using Pub-
Med, Embase, Web of Science, and MEDLINE according 
to the PRISMA guidelines by two independent investigators 
(IB and SJ) (Shamseer et al. 2015). All studies published 
in English through January 2023 were potentially eligible 
for inclusion. We have performed searches using the key-
words (metabolomics OR metabolomic profiling OR metab-
olomic fingerprinting OR oncomet) AND (gastric cancer 
OR cancer of the gastroesophageal junction OR esophageal 
cancer) present in the [Title] or [Title/Abstract], as well 
as combinations, and limits (humans, adults, English lan-
guage etc.). The reference list of each article was searched 
for further relevant literature. Duplicate articles, editorials, 

and conference abstracts were excluded. The articles were 
screened and filtered by title and abstract. A full-text assess-
ment and review of the remaining studies was conducted. In 
the initial screening phase the following criteria have been 
utilized for filtering:

•	 Not population of interest
•	 Not entity of interest
•	 Relevant outcomes not reported
•	 Did not report real patient data, and instead reported 

Kaplan–Meier survival estimates without real patient 
survival

The two reviewers independently extracted data from 
the included articles using double-data extraction. Incon-
sistencies were resolved by consensus. In the case of disa-
greement, a third reviewer (CH) was consulted to reach a 
consensus.

Eligibility criteria

All studies reporting metabolomic profiles in patients 
18 years or older who underwent either EC, GEJ or GC sur-
gery for any malignant condition besides sarcoma were con-
sidered eligible for inclusion. Studies aiming to find metabo-
lomics characteristics and candidate metabolic biomarkers 
for diagnosis in EC, GEJ, and GC were included. The study 
used the PECOS acronym to define the inclusion and exclu-
sion criteria: Population, Exposure, Comparison, Outcome, 
and Type of Study. Studies that satisfied the requirements 
established using the PECOS method were included.

PECOS inclusion criteria:

•	 P: adult patients (> 18 years of age) from any geographic 
location or gender

•	 E: patients with a confirmed diagnosis of UGC​
•	 C: difference in the concentration of metabolites between 

UGC and healthy controls in preoperative plasma sam-
ples and intraoperative samples from the tumour and/or 
adjacent tissue

•	 O: dysregulation of metabolite concentrations between 
the predetermined study groups reported as either 
mean ± standard deviation, fold change concentration or 
log fold change concentration

•	 S: human-based observational studies (case–control, 
cohort, or cross-sectional) published since the inception 
of UGC metabolomics, i.e., January 2004 and January 
2023, which used an untargeted or targeted metabolomic 
technique to quantify metabolite concentration

As well as metabolomics-specific inclusion criteria:

•	 studies investigating either human tissues or plasma
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•	 the use of a detection platform including NMR, GC-MS, 
LC-MS, UPLC-MS/MS, HPLC-GC/MS-MS, or multiple 
platforms

•	 the names of differential metabolites available for extrac-
tion

When duplicated reports were published from the same 
population, the most recent or most complete publica-
tion was included. Studies with pregnant women, children 
and adolescents, those that addressed a disease other than 
UGC, review articles, guidelines, letters and editorials were 
excluded.

Exclusion criteria:

•	 Patients diagnosed with neoplasms other than UGC, 
either in past or present

•	 Patients suffering from any chronic systemic illness or on 
medication for the same

•	 components other than metabolites as biomarkers
•	 animal or cell-based studies
•	 non-observational study designs such as case reports, 

conference proceedings, and reviews
•	 Metabolites quantified other than in concentration, such 

as field of appearance, retention time, m/z ratio, etc.
•	 studies published before January 2004 or after January 

2023
•	 genomics and proteomics research
•	 incomplete data

Data extraction

For all selected articles, information on authors, publication 
year, sample type, analytical platform, sample size, and dif-
ferentially distributed metabolites across comparison groups 
were independently extracted by two investigators (IB and 
SJ). In addition to individual metabolites, the two investiga-
tors independently reviewed findings on alterations in central 
metabolic pathways associated with upper GI cancers.

We used PubChem (https://​pubch​em.​ncbi.​nlm.​nih.​gov/ 
(accessed on December 11th 2023)) to search the metabo-
lites needed to convert their units. The quartile and median 
or interquartile range (IQR) were converted into mean and 
standard deviation (SD). For median and quartile, we tested 
the skewness first and applied a new piecewise function 
based on the sample size.

Das Manuskript sollte eine klare Erläuterung der Bed-
ingungen enthalten, unter denen Studien mit mehreren 
Versuchsgruppen im Verhältnis zu einer einzigen Kon-
trollgruppe zusammengeführt werden. Dazu gehören die 
Kriterien für die Einstufung der Gruppen als experimentell, 
die Art der Behandlungen oder die Bedingungen der Unter-
gruppen (z. B. pathologisches Staging und Klassifizierung) 

sowie Strategien für den Umgang mit erheblicher 
Heterogenität.

When a study matches two or more experimental groups 
to one control group, the mean and standard deviation of the 
experimental group are combined. A qualitative analysis was 
performed to change the direction of metabolites by count-
ing the frequency across the studies.

Data synthesis and meta‑analysis

Due to the lack of a standard procedure for meta-analysis 
of metabolomic data, in this study, we used SPSS software 
(PASW version 29.0, SPSS Inc. Chicago, IL, USA) as well 
as the machine learning algorithms Amanida and meta pack-
age in R (version: 4.2.2) (Egger et al. 1997). The Amanida 
and meta package enabled us to perform a meta-analysis of 
metabolomics data and combine the results of different stud-
ies addressing the same question in metabolomics profiles 
(Llambrich et al. 2022). A list of dysregulated metabolites 
was obtained from each study, considering the metabolite 
levels in healthy controls. Then, the input data were pro-
vided via text files containing the information of studies, 
including the identifiers (metabolite names), p values, fold-
changes, study sizes, and references. Since different studies 
used different assessment methods, we used standardised 
mean difference (SMD) to assess the effect size. SMD was 
calculated using Cohen’s D. An effect size of 0.2 was con-
sidered to have a low effect, whereas 0.4 was a moderate 
effect, and 0.8 or more was a large effect. Alternatively, the 
effect measures used to determine the association between 
UGC and metabolite with the odds ratio (OR), hazard 
ratio (HR), incidence rate ratio (IRR) and summary rela-
tive risk (SRR) with respective 95% confidence intervals 
(CI). The significance level for this meta-analysis model 
was 0.05. We used Q statistic and I2 values to test for vari-
ability and assess the proportion of total variability due to 
heterogeneity, respectively. Heterogeneity was considered 
low, medium, and high, where I2 values of about 25%, 50% 
and 75% were present. The total amount of heterogeneity 
was estimated by heterogeneity variance (τ2) (Patti et al. 
2012). A combination of weighted p-values, a modification 
of Fisher’s method, was used to evaluate the significance of 
a statistical result using the p-value. The fold change was 
logarithmically transformed (base 2) to reduce methodologi-
cal bias, in which case the variation is more homogeneous, 
and the distribution of the sample mean matches a normal 
distribution. Log-transformed fold change values are aver-
aged with weight by study size. Qualitative data analysis 
was performed using the vote-counting method. Vote count-
ing involves the overall behaviour of metabolites per study. 
Votes are assigned as follows: a value of 1 for metabolites 
that are up-regulated, a value of − 1 for down-regulated, 
and 0 for no change in behaviour. The total votes for the 

https://pubchem.ncbi.nlm.nih.gov/
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composition are then added together. Herewith, our model 
incorporates both within-study and between-study variabil-
ity (Higgins et al. 2002).

Study quality assessment

According to the recommendation of the Cochrane Col-
laboration, the Newcastle–Ottawa scale (NOS) was used to 
determine the risk of bias, assess the overall reliability of 
the extracted data, and evaluate the methodological quality 
of the included studies, respectively (Stang 2010; Lin and 
Chu 2018). The NOS contains eight items (nine scores in 
total, where 9 indicates that the study meets all nine criteria 
for quality assessments and 0 indicates that the study does 
not meet any of the requirements), which fit into three cat-
egories: selection (four scores), comparability (two scores), 
and exposure of a case–control study or outcome of a cohort 
study (three scores). The articles were classified as “poor”, 
“fair”, “good”, or “excellent” when achieving scores of 
0–3, > 3–6, > 6–8 or > 8–9, respectively (Lo et al. 2014a). 
Studies with less than five points were classified as having 
a high risk of bias.

In our study, the diagnostic accuracy and quality assess-
ment of the included studies were reckoned by three review-
ers (IB, SJ, and CH). We independently evaluated the qual-
ity of all selected articles using the QUADOMICS tool, 
an adaptation of the QUADAS-2 (Quality Assessment of 
Diagnostic Accuracy) tool (Lumbreras et  al. 2008). To 
evaluate the quality of studies included in this systematic 
review, we addressed 16 selected questions for each to assess 
methodological subheadings used in metabolomic investiga-
tions. Each question is either answered “yes” or “no”. The 
methodologies of studies that achieved 12/16 or more on 
the QUADOMICS tool were classified as ‘high quality’, 
whereas those that scored 11/16 or lower were classified 
as ‘low quality’. For reference, each reviewer was provided 
with a copy of the QUADOMICS publication (Whiting et al. 
2003) and the article evaluating QUADAS-2 and provid-
ing some modifications to the items (Whiting et al. 2006). 
All three researchers met to compare their observations and 
generate the consensus rating after ten articles had been 
reviewed, after 30, and finally after all 66; any disagree-
ments were solved by discussion (Long, et al. 2020). The 
data set supporting the results of meta-analyses presented in 
this study is available in Supplementary Material.

Results

The results were divided into five parts: (1) PRISMA lit-
erature research; (2) characteristics of the included studies 
for both qualitative (systematic review) and quantitative 
(meta-analysis) results; (3) systematic review results; (4) 

quality assurance results for the studies included; and (5) 
meta-analysis results.

Literature search

The search returned a total of 1509 reports from Embase 
(571), Web of Science (109), MEDLINE (217) and PubMed 
(612). A total of 981 studies were identified after de-dupli-
cation. Screening by title and abstract led to the exclusion 
of 866 studies, leaving 115 studies that underwent full-text 
assessment (Fig. 1). We then excluded studies that were 
reviews, conference papers, book chapters, short surveys, 
notes, letters, or editorials. The final list of included investi-
gations for the systematic review (qualitative synthesis) and 
for quantitative synthesis in the meta-analysis contained 66 
studies, which investigated the metabolome of EC or/and 
GEJ or/and GC and met the criteria of minimum compounds 
per group and matched groups by age and sex, compound 
identification, ethics approval, and matrix sample storage.

Characteristics of the included studies

The included records were published between 2004 and 
2023, and all were cross-sectional, case–control, or cohort 
designs reported in English. Non-English articles were 
excluded from this review. Participants were from Europe, 
the United States, and Asia. Age and sex were well-matched 
in most of the studies. The studies were classified according 
to different sample types, including 41 blood samples and 29 
tissue sample studies. All the included studies investigated 
the metabolome mainly using LC-MS, GC-MS, CE-MS 
techniques or NMR. The methodological and cohort char-
acteristics of each study are shown in Table 1.

Systematic review

In 66 studies a total of 169 metabolites; 142 in blood 
samples, and 65 in tissue samples were identified to sig-
nificantly differentiate patients with UGC from healthy 
controls. These investigations comprised 7267 samples in 
total, of whom 3650 were samples from a UGC and 3617 
were healthy controls. 12 of the included studies were con-
ducted in Europe, 38 in Asia, and 17 in America. Each 
study reported the compound name translated to InChIKey 
with the chemical translation service (http://​cts.​fiehn​lab.​
ucdav​is.​edu/​batch (accessed on December 11th 2023). 
These results were compared to match the compound iden-
tifiers between articles, as only some authors reported the 
same compound in the same manner. If the CTS service 
did not find a compound, a manual search was performed 
at PubChem (https://​pubch​em.​ncbi.​nlm.​nih.​gov/ (accessed 
on December 12th 2023)). In most studies, investiga-
tors used MS coupled with different chromatography 

http://cts.fiehnlab.ucdavis.edu/batch
http://cts.fiehnlab.ucdavis.edu/batch
https://pubchem.ncbi.nlm.nih.gov/
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techniques to generate the metabolomic data (n = 51). In 
14 studies, an NMR platform was used, and two used a 
combination of MS and NMR platforms. The monoiso-
topic mass from all compounds ranged from 31.06 g/mol 
for methylamine with only one carbon to 859.74 g/mol 
for phosphatidylcholine (42:0) with 50 carbons. The com-
pounds most repeated in the literature were branched-chain 
amino acids (BCAA; isoleucine, leucine, and valine) iden-
tified by 8 studies. The most repeated compounds in the 
literature after BCAA were phosphatidylcholines, eicosa-
noids, and carbohydrates from the tricarboxylic acid cycle. 
Based on the sample type classification, 97 metabolites 
showed increased concentrations, 58 showed decreased 
concentrations, and 14 showed inconsistent concentrations 
in blood and tissue samples. The details of the qualitative 
synthesis are given in Supplementary Table 1.

Quality assurance

Quality assurance of the included studies was performed, 
using the NOS and the QUADOMICS tool for evaluation. 
The quality assurance results are shown in Figs. 2, 3, and 
4. Variables were based on the experimental methodology.

In case–control studies, the most reported domains were 
in “Same method of ascertainment for cases and controls”, 
“Ascertainment of exposure”, and “non-Response rate”, 
with more than 90% of studies reporting complete informa-
tion. On the other hand, the least reported domains were 
in “Selection of Controls” and “Representativeness of the 
cases”, where less than 60% of the studies disclosed com-
plete information.

In contrast to case–control studies, cohort studies reported 
the most domains in “Adequacy of follow up of cohorts”, 

Fig. 1   PRISMA flow diagram 
of search strategy and inclu-
sion in the updated systematic 
review on metabolomics and 
upper GI cancers according 
to the PRISMA 2020 updated 
guidelines
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Table 1   Methodological and cohort information from selected studies' systematic review (qualitative analysis)

Sample type Analytical plat-
form

Ethics 
Approval

Cancer group Sample size Control group Sample size Storage Ref

Plasma LC–MS/MS Yes GC 10 Healthy subjects 31  – 80 °C Li et al. (2023)
Tissue and Plasma 1H NMR Yes EC 70 Healthy subjects 70  – 80 °C Ouyang et al. 

(2023)
Plasma UPLC-TQ-MS Yes GC 150 Healthy subjects 151  – 80 °C Yu et al. (2023)
Plasma UPLC-MS Yes GC, GEJ 113 Healthy subjects 145  – 80 °C Pan et al. (2022)
Plasma LC–MS/MS Yes GC 72 Healthy subjects 29  – 80 °C Matsumoto et al. 

(2023)
Plasma LC–MS/MS Yes GC 69 Healthy subjects 146  – 80 °C Li et al. (2022)
Plasma GC–MS Yes EC, GEJ 121 Healthy subjects 30  – 80 °C Yang et al. (2022a)
Dried blood LC–MS/MS Yes GC 166 Healthy subjects 183  – 80 °C Wu et al. (2022)
Plasma LC–MS/MS Yes GC 112 Healthy subjects 112  – 80 °C Yuan et al. (2022)
Tissue UHPLC-MS Yes EC 60 Healthy subjects 15  – 80 °C Yang et al. (2022b)
Tissue LC–MS/MS Yes GC 28 Healthy subjects 28  – 80 °C Wang, et al. (2021)
Plasma LC–MS/MS Yes GC, GEJ 30 Healthy subjects 170  – 80 °C Huang et al. (2021)
Plasma LC–MS/MS Yes GC 250 Healthy subjects 250  – 80 °C Shu et al. (2021)
Tissue and Plasma 1H NMR Yes EC 50 Healthy subjects 50  – 80 °C Ye et al. (2021)
Plasma UHPLC-Q-TOF/

MS
Yes GC 51 Healthy subjects 40  – 80 °C Yu et al. (2021)

Plasma NMR Yes GC 103 Healthy subjects 100  – 80 °C Kwon, et al. (2020)
Tissue LC–MS/MS Yes GC 62 Healthy subjects 62  – 80 °C Pan et al. (2020)
Tissue CE-TOF/MS Yes GC 140 Healthy subjects 140  – 80 °C Kaji et al. (2020)
Plasma LC–MS/MS Yes GC 47 Healthy subjects 47  – 80 °C Wang et al. 2020)
Plasma UHPLC–MS/MS Yes GC, GEJ 20 Healthy subjects 20  – 80 °C Lee et al. (2019a)
Plasma LC–MS/MS Yes GC 71 Healthy subjects 54  – 80 °C Corona, et al. 2018)
Tissue CE–TOF/MS Yes EC 35 Healthy subjects 35  – 80 °C Tokunaga et al. 

(2018)
Plasma LC–MS/MS Yes EC 84 Healthy subjects 82  – 80 °C Jing et al. (2018)
Plasma LC–MS/MS Yes EC 34 Healthy subjects 32  – 80 °C Ma et al. (2018)
Plasma LC–MS/MS Yes GC 20 Healthy subjects 60  – 80 °C Lario et al. 2017)
Tissue LC–MS/MS Yes EC 40 Healthy subjects 40  – 80 °C Zhang et al. (2017)
Plasma LC–MS/MS Yes EC 40 Healthy subjects 27  – 80 °C Cheng et al. (2017)
Tissue GC/TOF–MS Yes EC 43 Healthy subjects 40  – 80 °C Zhu et al. (2017)
Tissue 1H NMR Yes EC 46 Healthy subjects 75  – 80 °C Reed et al. (2017)
Plasma HPLC/ESI/Q-

TOF/MS
Yes GC 125 Healthy subjects 38  – 80 °C Wang et al. (2017)

Plasma LC–MS/MS Yes GC 35 Healthy subjects 17  – 80 °C Choi et al. (2016)
Tissue 1H NMR Yes GC 125 Healthy subjects 54  – 80 °C Wang et al. (2016)
Plasma 1H-NMR Yes GC 43 Healthy subjects 80  – 80 °C Chan et al. (2016)
Plasma UPLC–TOF/MS Yes GC 33 Healthy subjects 110  – 80 °C Kuligowski et al. 

(2016)
Plasma LC–MS/MS Yes EC 62 Healthy subjects 62  – 80 °C Xu et al. (2016)
Plasma LC–MS/MS Yes GC 13 Healthy subjects 9  – 80 °C Liang et al. (2015)
Plasma LC–MS/MS Yes EC 40 Healthy subjects 10  – 80 °C Mir et al. 2015)
Tissue 1H NMR Yes GC, GEJ 80 Healthy subjects 80 ´ – 80 °C Jung et al. 2014)
Plasma HPLC/ESI–MS/

MS
Yes GC 49 Healthy subjects 40  – 80 °C Lo et al. (2014b)

Plasma MRB–CE–MS Yes GC 26 Healthy subjects 14  – 80 °C Chen et al. (2014)
Tissue GC–MS Yes GC 45 Healthy subjects 45  – 80 °C Hur et al. (2014)
Tissue MALDI MS Yes GC 12 Healthy subjects 12  – 80 °C Kwon, et al. (2014)
Tissue 1H NMR Yes EC 17 Healthy subjects 14  – 80 °C Yang et al. (2013)
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“Was follow-up long enough for outcomes to occur”, and 
“Assessment of outcome”, with more than 90% of studies 
reporting complete information. The least reported domains 
were in “Selection of the non-exposed cohort” and “Ascer-
tainment of exposure”, where less than 60% of the studies 
disclosed complete information.

As a summary, of the 66 cross-sectional studies, 54 
attained a NOS score of 6 or higher (“good” or “excellent”; 
thus, moderate to low risk of bias). We deemed 12 studies to 
have a relatively high risk of bias (NOS score: < 6) because 
of their small and unjustified sample size and lack of statisti-
cal adjustments for confounding factors. However, excluding 
this study did not alter our risk estimate.

According to QUADOMICS, we conducted a quality 
assessment process (see the score in Fig. 4). The general 
characteristics of the selected studies and methodological 
quality assessment were independently checked by IB, SJ 
and CH.

The quality assessment process following the QUADO-
MICS tool is summarised in Supplementary Table 1. 6 
of the 66 studies were classified as ‘low quality’, fulfill-
ing fewer than 12 of the 16 criteria. The most common 
problems were not reporting the justification, sample size 
calculation, and the number of non-respondents. Although 
the funnel plot was asymmetric on visual inspection, and 
a potential publication bias was also found in Egger’s test 
(p = 0.006, Supplementary Table 1), the effect size was not 
significantly changed after the trim-and-fill (OR = 1.12, 
95%CI [1.01, 1.25], p < 0.05, number of trim and fill = 4), 
thus indicating that the publication bias had little influence 
on the results. The complete appraisal of the methodologi-
cal quality of the articles is described in Supplementary 
Table 1.

MS/MS tandem mass spectrometry, HPLC high-performance liquid chromatography, CE capillary electrophoresis, UPLC ultra-performance liq-
uid chromatography

Table 1   (continued)

Sample type Analytical plat-
form

Ethics 
Approval

Cancer group Sample size Control group Sample size Storage Ref

Plasma 1H NMR and 
UHPLC

Yes EC 25 Healthy subjects 25  – 80 °C Zhang et al. (2013)

Plasma UPLC/TOF/MS Yes EC 53 Healthy subjects 53  – 80 °C Liu et al. (2013)
Tissue 1H NMR Yes EC 89 Healthy subjects 26  – 80 °C Wang et al. 2013)
Plasma GC–MS Yes GC, EC, GEJ 26 Healthy subjects 12  – 80 °C Ikeda et al. (2012)
Tissue SIFT-MS Yes GC, EC, GEJ 19 Healthy subjects 20  – 80 °C Kumar et al. (2012)
Plasma GC–MS Yes GC 30 Healthy subjects 30  – 80 °C Song et al. (2012)
Plasma and tissue GC/TOFMS Yes GC 32 Healthy subjects 20  – 80 °C Aa et al. (2012)
Plasma NMR Yes EC 108 Healthy subjects 40  – 80 °C Hasim et al. (2012)
Plasma LC–MS and NMR Yes EC 67 Healthy subjects 46  – 80 °C Zhang et al. (2012)
Plasma 1H NMR Yes EC, GEJ 44 Healthy subjects 106  – 80 °C Davis et al. (2012)
Tissue HPLC–MS Yes GC 33 Healthy subjects 68  – 80 °C Deng et al. (2011)
Plasma GC/TOF–MS Yes GC 22 Healthy subjects 57  – 80 °C Yu et al. (2011)
Plasma NMR Yes EC 68 Healthy subjects 50  – 80 °C Zhang, et al. (2011)
Tissue GC–MS Yes GC 18 Healthy subjects 18  – 80 °C Wu et al. 2010)
Tissue NMR Yes EC 52 Healthy subjects 35  – 80 °C Yakoub et al. 2010)
Tissue GC–MS Yes GC, GEJ 65 Healthy subjects 65  – 80 °C Cai et al. (2010)
Plasma HPLC/TQ/MS Yes EC 14 Healthy subjects 12  – 80 °C Djukovic et al. 

(2010)
Tissue CE–MS Yes GC 12 Healthy subjects 12  – 80 °C Hirayama et al. 

(2009)
Tissue SPME-GC/MS Yes GC 5 Healthy subjects 5  – 80 °C Buszewski et al. 

(2008)
Tissue HR-MAS MRS Yes GC 5 Healthy subjects 22  – 80 °C Calabrese et al. 

(2008)
Tissue SPME-GC/MS Yes GC 3 Healthy subjects 13  – 80 °C Ligor et al. (2007)
Tissue HR-MAS NMR Yes GC 5 Healthy subjects 11  – 80 °C Tugnoli et al. 

(2006)
Tissue 1H MRS Yes GC 13 Healthy subjects 22  – 80 °C Mun et al. (2004)
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Fig. 2   Summary of quality assessment of included studies using the NOS for case–control studies. The proportion of studies satisfying the crite-
ria is plotted on a scale of 100%

Fig. 3   Summary of quality assessment of included studies using the NOS for cohort studies. The proportion of studies satisfying the criteria is 
plotted on a scale of 100%
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Meta‑analysis

Statistical analysis was performed for those groups of stud-
ies that reported the p values and fold-changes for signifi-
cant compounds. Overall, we extracted the relative risk 

estimates for meta-analysis from a total of 169 metabolites 
from 66 studies. Among these, 155 metabolites were found 
to be significantly altered in healthy and tumour tissue by 
meta-analysis, while 14 were not. The forest plots for differ-
ent metabolites between UGC and healthy controls and the 

Fig. 4   Summary of quality assessment of included studies based on the QUADOMICS tool. The proportion of studies satisfying the criteria is 
plotted on a scale of 100%

Fig. 5   Forest plot of pooled estimates of UGC associated per study-
specific difference in each amino acid from case–control and cohort 
studies. Overall estimates were obtained from forest plots and ran-
dom-effects meta-analysis of studies evaluating metabolites and inci-

dence of UGC. Estimates were derived from the most fully adjusted 
model in each included analysis. Closed squares and horizontal bars 
represent the Summary relative risk (SRR) with corresponding 95% 
CIs
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meta-analysis results for different metabolites among UGC 
and controls are shown in Figs. 5, 6, 7, 8, 9, 10, 11, 12, 13 
clustered in their respective biochemical classes.

Amino acids

We performed a meta-analysis for 20 proteinogenic amino 
acids (Fig. 5 and Supplementary Table 1); 19 showed altered 
concentrations between patients with UGC and healthy con-
trols (FDR-corrected P < 0.05) in tumour tissue and plasma. 
In accordance with Cohen's effect size, five metabolites 
were identified in the meta-analysis that exhibited both a 
significant difference between the cohorts and at least a 
moderate effect. Among these are higher circulating levels 
of branched-chain amino acids (BCAA, isoleucine, leucine, 
valine) (SRR 0.44 for leucine [95% CI 0.38–0.49], 0.44 for 
valine [95% CI 0.39–0.50], and 0.35 for isoleucine [95% 
CI 0.30–0.41]), were associated (FDR-corrected P < 0.05) 
with UGC. Also, lysine was associated with UGC (SRR 0.44 
[95% CI 0.39–0.50]). An inverse association was observed 
for asparagine and UGC (SRR -0.50 [95% CI – 0.56 to 
– 0.45]). Decreased concentrations of glutamine were also 
linked to UGC (SRR -0.20 [95% CI – 0.25 to – 0.14]).

Carbohydrates and tricarboxylic acid cycle

In total, 17 carbohydrates and tricarboxylic acid cycle (TCA) 
metabolites in tumour tissue and plasma were included in the 
meta-analysis (Fig. 6 and Supplementary Table 1), and 13 of 

them were associated with UGC (FDR-corrected P < 0.05). 
In accordance with Cohen’s effect size, three metabolites 
were identified in the meta-analysis that exhibited both a 
significant difference between the cohorts and at least a 
moderate effect. For these metabolites, we found that nota-
bly higher flavin adenine dinucleotide (FAD) (SRR 1.10 
[95% CI 1.04–1.16]) and Acetyl-CoA (SRR 1.12 [95% CI 
1.06–1.19]) levels were associated with UGC. One metabo-
lite from the citrate cycle, aconitate (SRR – 0.45 [95% CI 
– 0.51 to – 0.39]), was inversely associated with UGC.

Glycerophospholipids

In the biochemically heterogenous group of 54 glycerophos-
pholipids and their direct derivates, we found 43 of them 
to be significantly associated with UGC (FDR-corrected 
P < 0.05) in tumour tissue and plasma (Fig. 7 and Supple-
mentary Table 1). In accordance with Cohen's effect size, 
several metabolites were identified in the meta-analysis that 
exhibited both a significant difference between the cohorts 
and at least a moderate effect. Within the group of acylcarni-
tines, especially short- to medium-chain acyls, e.g., C2 (SRR 
-0.70 [95% CI – 0.77 to – 0.62]), C6 (SRR – 0.43 [95% CI 
– 0.51 to – 0.36]), and C16-OH (SRR -0.34 [95% CI – 0.42 
to – 0.27]) resulted in having an inverse association with 
UGC. No metabolites resulted in a definitive association 
with UGC in the biochemical group of lysophosphatidylcho-
lines. However, long-chained phosphatidylcholines, exem-
plary PC (18:1/18:1) (SRR – 0.44 [95% CI – 0.52 to – 0.37]) 

Fig. 6   Forest plot of pooled estimates of UGC associated per study-
specific difference in each metabolite from citrate cycle from case–
control and cohort studies. Overall estimates were obtained from 
forest plots and random-effects meta-analysis of studies evaluating 

metabolites and incidence of UGC. Estimates were derived from the 
most fully adjusted model in each included analysis. Closed squares 
and horizontal bars represent the Summary relative risk (SRR) with 
corresponding 95% CIs
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showed an inverse association with UGC. In Summary, these 
results indicate that the constellation of phosphatidylcho-
lines, the main constituents of the cell membrane, distinctly 
differs between healthy cells of the upper gastrointestinal 
tract and tumour tissue from patients with UGC.

Purine and pyrimidine metabolism

Regarding purines and pyrimidines, essential metabolites 
of nucleotide metabolism, our meta-analysis resulted in 

11 compounds associated with UGC in tumour tissue and 
plasma (Fig. 8 and Supplementary Table 1). In accordance 
with Cohen's effect size, five metabolites were identified in 
the meta-analysis that exhibited both a significant difference 
between the cohorts and at least a moderate effect. Higher 
levels of one were associated (FDR-corrected P < 0.05) 
with UGC. In particular, ATP (SRR – 0.73 [95% CI – 0.82 
to – 0.64]) was inversely associated with UGC. However, 
adenosine, a nucleoside composed of adenine and D-ribose, 
was associated with UGC (SRR 0.83 [95% CI 0.74–0.92]).

Fig. 7   Forest plot of pooled estimates of UGC associated per study-
specific difference in each metabolite from case–control and cohort 
studies. Overall estimates were obtained from forest plots and ran-
dom-effects meta-analysis of studies evaluating metabolites and inci-

dence of UGC. Estimates were derived from the most fully adjusted 
model in each included analysis. Closed squares and horizontal bars 
represent the Summary relative risk (SRR) with corresponding 95% 
CIs
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Urea cycle

In the meta-analysis for metabolites involved in the urea 
cycle, six out of nine metabolites were significantly associ-
ated (FDR-corrected P < 0.05) with UGC in tumour tissue 
and plasma (Fig. 9 and Supplementary Table 1). In accord-
ance with Cohen's effect size, six metabolites were identi-
fied in the meta-analysis that exhibited both a significant 
difference between the cohorts and at least a moderate effect. 
No definitive inverse associations with UGC were found 
for metabolites and derivates from the urea cycle. How-
ever, all six metabolites showed a direct association with 
UGC. Especially citrulline, also produced from arginine as 

a by-product, was associated with UGC (SRR 0.36 [95% CI 
0.29–0.44]).

Sphingolipids

Analysing sphingolipids (SM), we found seven SMs in 
tumour tissue and plasma, of which one was significantly 
(FDR corrected P < 0.05) associated with UGC and four 
were inversely associated with UGC (Fig. 10 and Supple-
mentary Table 1). In accordance with Cohen's effect size, 
sphinganine was identified in the meta-analysis to exhibit 
both a significant difference between the cohorts and at 
least a moderate effect. The inverse association with UGC 

Fig. 8   Forest plot of pooled estimates of UGC associated per study-
specific difference in each metabolite from purine and pyrimidine 
metabolism from case–control and cohort studies. Overall estimates 
were obtained from forest plots and random-effects meta-analysis of 

studies evaluating metabolites and incidence of UGC. Estimates were 
derived from the most fully adjusted model in each included analysis. 
Closed squares and horizontal bars represent the Summary relative 
risk (SRR) with corresponding 95% CIs

Fig. 9   Forest plot of pooled estimates of UGC associated per study-
specific difference in each metabolite from urea cycle from case–con-
trol and cohort studies. Overall estimates were obtained from forest 
plots and random-effects meta-analysis of studies evaluating metabo-

lites and incidence of UGC. Estimates were derived from the most 
fully adjusted model in each included analysis. Closed squares and 
horizontal bars represent the Summary relative risk (SRR) with cor-
responding 95% CIs
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was observed for sphinganine (SRR 0.03 [95% CI – 0.06 to 
0.12]). Among the remaining sphingolipids especially SM 
(OH) 22:1, a sphingolipid in the membranous myelin sheath 
which surrounds some nerve cell axons, inversely associated 
with UGC (SRR -0.62 [95% CI – 0.71 to – 0.53]).

Non‑esterified fatty acids

Among six non-esterified fatty acids included in the meta-
analysis (Fig. 11 and Supplementary Table 1), two were 
associated with UGC, and three were inversely associated 
with UGC (FDR corrected P < 0.05) in tumour tissue and 
plasma. In accordance with Cohen’s effect size, two metab-
olites were identified in the meta-analysis that exhibited 
both a significant difference between the cohorts and at 
least a moderate effect. Linoleic acid (SRR 0.53 [95% CI 

0.46–0.60]), a doubly unsaturated essential fatty acid, also 
known as an omega-6 fatty acid, was the fatty acid found 
to be associated the most with UGC, and linolenic acid an 
omega-3 fatty acids were inversely associated with UGC 
(SRR -0.22 [95% CI – 0.29 to – 0.16]).

Bile acid

Among seven bile acids included in the meta-analysis 
(Fig. 12 and Supplementary Table 1), only two levels were 
associated (FDR-corrected P < 0.05) with UGC in tumour 
tissue and plasma. In accordance with Cohen's effect 
size, two metabolites were identified in the meta-analysis 
that exhibited both a significant difference between the 
cohorts and at least a moderate effect. Both of them, hyo-
cholic acid (HCA) (SRR – 0.28 [95% CI – 0.53 to – 0.03]) 

Fig. 10   Forest plot of pooled estimates of UGC associated per study-
specific difference in each sphingolipid from case–control and cohort 
studies. Overall estimates were obtained from forest plots and ran-
dom-effects meta-analysis of studies evaluating metabolites and inci-

dence of UGC. Estimates were derived from the most fully adjusted 
model in each included analysis. Closed squares and horizontal bars 
represent the Summary relative risk (SRR) with corresponding 95% 
CIs

Fig. 11   Forest plot of pooled estimates of UGC associated per study-
specific difference in each fatty acid from case–control and cohort 
studies. Overall estimates were obtained from forest plots and ran-
dom-effects meta-analysis of studies evaluating metabolites and inci-

dence of UGC. Estimates were derived from the most fully adjusted 
model in each included analysis. Closed squares and horizontal bars 
represent the Summary relative risk (SRR) with corresponding 95% 
CIs
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and hyodeoxycholic acid (HDCA) (SRR -0.39 [95% CI 
– 0.64– – 0.14]) resulted in inverse association with UGC.

Biogenic amines and related

Among 42 biogenic amines and related included in the meta-
analysis (Fig. 13 and Supplementary Table 1), 38 levels were 
associated with a UGC in tumour tissue and plasma (FDR-
corrected P < 0.05). In accordance with Cohen's effect size, 
several metabolites were identified in the meta-analysis that 
exhibited both a significant difference between the cohorts 
and at least a moderate effect. Within this biochemically 
heterogeneous group of metabolites, erythrose-4-phosphate 
(SRR – 0.59 [95% CI – 0.66 to – 0.52]), a monosaccha-
ride comprising a phosphate group linked to the carbohy-
drate unit as well as putrescine a polyamine produced by 
the breakdown of amino acids were associated with UGC 
(SRR 0.65 [95% CI 0.58–0.72]).

Interestingly, Trimethylamine N-oxide (TMAO) (SRR 
0.46 [95% CI 0.39–0.53]), a metabolite frequently reported 
to be associated with esophageal cancer, cancer of the gas-
troesophageal junction and gastric cancer, was associated 
relatively marginal in our meta-analysis.

In summary, meta-analysis for the most significant com-
pounds in EC, GEJ, and GC vs control comparison, includ-
ing the healthy average concentrations (extracted from the 
human metabolome database) and the projected UGC con-
centrations in tumour tissue and plasma, resulted in several 
metabolites directly or inversely associated with the risk 
of UGC as demonstrated in Table 2. The results showed 
that patients with UGC compared to healthy controls espe-
cially had increased concentrations of BCAA, lysine, FAD, 
Acetyl-CoA, adenosine, citrulline, sphinganine, linoleic 

acid, putrescine, and TMAO as well as decreased concentra-
tion of asparagine, glutamine, aconitate, short-chain acylcar-
nitines, ATP, SM (OH) 22:1, linolenic acid, HCA, HDCA, 
and erythrose-4-phosphate. However, 44 out of 169 metab-
olites showed no significant association between patients 
with UGC and healthy controls through the included studies. 
Substantial heterogeneity (I2 > 50%, s2 > 0.1) was observed 
for some metabolites. Thus, the majority of metabolites that 
have been identified show inconsistent results in different 
studies in terms of relative abundance in the cancer versus 
control groups.

Discussion

Several metabolites delineated in this study were found to 
be significantly dysregulated in the local tumour tissue of 
patients with UGC as well as systemically in patients’ blood 
compared to healthy controls. The altered metabolites in 
UGC can be categorised into four main biochemical classes 
which affect precise oncological and patient-tailored man-
agement of UGC: carbohydrates, amino acids, lipids and 
nucleic acids. These classes can be again separated into 
several specific sub-categories considering their importance 
in the general cancer metabolism as well as the particular 
metabolism of UGC.

Carbohydrates and metabolites of the tricarboxylic 
acid cycle

The glucose metabolism in esophageal- and gastric cancer 
cells is augmented differently from that of the normal gas-
tric epithelium (Finley 2023). According to the Warburg 

Fig. 12   Forest plot of pooled estimates of UGC associated per study-
specific difference in each bile acid from case–control and cohort 
studies. Overall estimates were obtained from forest plots and ran-
dom-effects meta-analysis of studies evaluating metabolites and inci-

dence of UGC. Estimates were derived from the most fully adjusted 
model in each included analysis. Closed squares and horizontal bars 
represent the Summary relative risk (SRR) with corresponding 95% 
Cis
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effect, cancer cells support their growth primarily by gen-
erating energy via the anaerobic catabolism of glucose 
which implies the tumour microenvironment, in contrast to 
the oxidative catabolism of pyruvate in healthy cells (War-
burg 1956a; Crabtree 1929). The accumulated lactic acid 
provides an acidic microenvironment that exacerbates the 
decomposition of the extracellular matrix by proteolytic 
activity (Bartman 2023; Lyssiotis and Cantley 2014). Sev-
eral metabolites involved in cellular respiration, including 
lactic acid, glucose, citrate, and fumaric acid, have been 
frequently reported, but these results are inconsistent across 
studies (Cui et al. 2023; Bose et al. 2021). Moreover, oppo-
site associations of some metabolites with UGI cancers are 
documented by different research groups (Matsumoto et al. 
2023; Li et al. 2022; Wang et al. 2020; Wang et al. 2017; 

Hur et al. 2014; Ikeda et al. 2012). To our understanding, 
it has been reported that accumulated lactic acid moderates 
the activity of proteases that decompose extracellular matrix, 
which can produce some peptides and amino acids that are 
consumable for energy generation (Smyth et al. 2020; Stier 
et al. 2020). Acidosis microenvironment is also ascribed to 
the formation of cancer blood vessels, meeting the plenti-
ful supply of nutrients and leading to tumour invasion and 
metastasis (Thompson et al. 2023). The contributions of 
these mechanistic alterations in aerobic glycolysis are cru-
cial for understanding gastric carcinogenesis and progres-
sion (Warburg et al. 1927; Bartman et al. 2023).

Our review found ATP to be systemically decreased 
in patients with UGC. Because mitochondria are the pri-
mary source of ATP production, ATP is paramount in 

Fig. 13   Forest plot of pooled estimates of UGC associated per study-
specific difference in each metabolite from case–control and cohort 
studies. Overall estimates were obtained from forest plots and ran-
dom-effects meta-analysis of studies evaluating metabolites and inci-

dence of UGC. Estimates were derived from the most fully adjusted 
model in each included analysis. Closed squares and horizontal bars 
represent the Summary relative risk (SRR) with corresponding 95% 
CIs
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linking cancer cell metabolism and bioenergetics in the 
TME (Yuneva 2008). However, the hypoxic environment 
in cancer cells triggers the release of ATP. The in vivo 
measurement of extracellular ATP concentrations using 
e.g. cell surface–targeted luciferase revealed the ability 
of solid tumours to maintain peritumoral ATP within the 
range of 10–5 – 10–4 mol/l, which is much higher than the 
concentration of this nucleotide detected in the interstitium 
of healthy tissues and TME (Virgilio et al. 2018) (Marchi 
et al. 2019). However, because tumour cells can efficiently 
scavenge nucleotides, they uniquely contribute to the rapid 
termination of proinflammatory effects of ATP within the 
metabolically abnormal TME (Galon and Bruni 2019). Only 
the past decade has brought advances in our understanding 
of the complexity of mechanisms determining the duration 
and magnitude of purinergic signalling.

Amino acids

Amino acids are building blocks required for cellular pro-
tein biosynthesis and cytoskeleton formation, while elevated 

levels of amino acids in the TME are contributing aspects 
in carcinogenesis (Finley 2023). Alterations in essential 
and non-essential proteinogenic amino acids were reported 
for UGI cancers (Fig. 5). The availability of amino acids 
is pivotal for cellular protein biosynthesis and cytoskeleton 
formation. At the same time, it has been pointed out that 
amino acids, especially those linked to TCA, are an alterna-
tive energy source of cancer cell proliferation (Smyth et al. 
2020). Among them, the metabolic networks of all amino 
acids are complex and highly interconnected with other 
pathways.

Increased BCAA were consistently detected in studies on 
GC based on tissue and plasma samples, while inconsistent 
findings were obtained from studies on EC and GEJ. Sev-
eral studies additionally reported altered levels of primary 
derivatives of amino acids in UGI cancers. Our review found 
significantly decreased levels of glutamine, a non-essential 
amino acid, in almost all studies (Faubert et al. 2014). Previ-
ous investigations delineated that metabolic regulations meet 
the high glutamine demand of proliferating tumour cells, 
which supports tumour growth by facilitating both energy 
production and the biosynthesis of building materials (Gel-
dermalsen et al. 2016). However, BCAAs were found to be 
systemically increased in patients with UGC. Most amino 
acids are catabolised in the liver, except BCAAs. The liver 
has an active branched-chain ketodehydrogenase (BCKDH) 
to facilitate the consumption of branched-chain ketoacids 
(BCKA) for gluconeogenesis or fatty acid synthesis but is 
deficient in branched-chain amino acid aminotransferase 
(BCAT), the initiator of BCAA breakdown (Neinast et al. 
2019). High BCAA levels may inhibit glucose metabolism, 
and, in turn, high glucose levels may inhibit BCAA deg-
radation (Shao et al. 2018). Hence, abnormal amino acid 
metabolism has diverse and critical roles in various cancers, 
and the potential impact of metabolic control and regulation 
in the tumour microenvironment is becoming increasingly 
important (Sivanand and Vander Heiden 2020).

Nucleic acids

Tumour cells are in a state of such rapid proliferation 
and differentiation that frequent nucleotide synthesis and 
metabolism are upregulated significantly. Higher uric acid 
or urate levels characterise accumulation of the end prod-
ucts of nucleotide catabolism in patients with esophageal- or 
gastric cancer (Wang, et al. 2021). Several studies focused 
on metabolites of nucleotides associated with GC and EC. 
However, direct evidence on the metabolic pathways of 
nucleotides related to UGI cancers is still unavailable (Vir-
gilio et al. 2018). In our review, ATP has been identified to 
be significantly decreased in patients with UGC compared 
to healthy controls. The involved pathways have been deline-
ated previously (Marchi et al. 2019).

Table 2   Identified oncometabolites which resulted in consistent 
results among the investigated studies in patients with UGC com-
pared to healthy controls

SRR Alteration Biochemical class

TMAO 0.46 ↑ Amine oxide
Isoleucine 0.35 ↑ Amino acid
Leucine 0.44 ↑ Amino acid
Valine 0.44 ↑ Amino acid
Lysine 0.44 ↑ Amino acid
Citrulline 0.36 ↑ Amino acid
Asparagine  – 0.5 ↓ Amino acid
Glutamine  – 0.2 ↓ Amino acid
HCA  – 0.28 ↓ Bile acid
HDCA  – 0.39 ↓ Bile acid
Putrescine 0.65 ↑ Biogenic amine
FAD 1.1 ↑ Coenzym
Acetyl-CoA 1.12 ↑ Coenzym
ATP  – 0.73 ↓ Coenzym
Erythrose-4 phosphate  – 0.59 ↓ Coenzym
Linoleic Acid 0.53 ↑ Fatty acid
Short-chain Acylcarnitines
C2  – 0.7 ↓ Fatty acid
C6  – 0.43 ↓ Fatty acid
C16 – OH  – 0.34 ↓ Fatty acid
Linolenic acid  – 0.22 ↓ Fatty acid
Adenosine 0.83 ↑ Nucleoside
Aconitate  – 0.45 ↓ Organic acid
Sphinganine 0.03 ↑ Sphingolipid
SM (OH) 22:1  – 0.62 ↓ Sphingolipid
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Lipids

The notable feature of lipid metabolism in cancer cells is an 
increased rate of lipogenesis and the upregulation of mito-
chondrial fatty acid β-oxidation. At this juncture, fatty acid 
oxidation provides a major energy source because complete 
oxidation of one 16-carbon fatty acid could generate 129 
ATP molecules compared with the 38 generated from one 
glucose molecule (Lee et al. 2019b). Especially gastric can-
cer shows a similar tendency and presents typical changes 
regarding various metabolites involved in lipid metabolism 
(Lien et al. 2021). The main classes of lipids of the cell 
membrane, including fatty acyls, glycerophospholipids, 
sphingolipids, and sterols, feature their very own structure 
and function in the cellular membrane (Yang et al. 2022b). 
Respectively, the recent state of research for each biochemi-
cal class has to be delineated separately.

Fatty acyls

Fatty acyls represent the most fundamental category of 
lipids. Primarily present in esterified form with glycerol, 
cholesterol or other lipid components, fatty acids are car-
boxylic acids, often with long, unbranched aliphatic chains 
of diverse lengths (Nguyen et al. 2014). Fatty acids are cat-
egorised as saturated (no carbon–carbon double bonds in the 
aliphatic chain) and unsaturated with one (monounsaturated 
fatty acid (MUFA)) or more double bonds (polyunsaturated 
fatty acid-(PUFA)) (Nomura et al. 2010). The human body 
can synthesise many of these fatty acids, except some essen-
tial fatty acids, including linoleic acid (omega-6 PUFA) and 
alpha-linolenic acid (omega-3 PUFA) (Shaw and Wolfe 
1987). These two PUFAs are precursors for other omega-6 
and omega-3 PUFAs that play crucial roles in regulating 
lipid metabolism and atherosclerosis. In our study, linoleic 
acid, a doubly unsaturated essential fatty acid, also known as 
an omega-6 fatty acid, was the fatty acid found to be associ-
ated the most with higher UGC risk, and linolenic acid, an 
omega-3 fatty acid, was associated with lower UGC risk. 
These characteristics have been described previously and 
are hence, consistent with the results of our investigation 
(Huerta-Yepez et al. 2016). However, the antitumor effect 
of omega-3 PUFAs and the tumour-promoting effect of 
omega-6 PUFAs are complex processes involving multiple 
factors and levels. They are interrelated, and there are still 
many issues to be elucidated (Lee et al. 2020).

Glycerophospholipids

As the main subclass of phospholipids, glycerophospholip-
ids are diacylglycerides with a phosphatidyl ester attached 
to the terminal carbon. The terminal ester groups are mainly 
ethanolamine (phosphatidylethanolamine; PE), choline 

(phosphatidylcholine; PC), serine (Phosphatidylserine; PS) 
or inositol (Phosphatidylinositol; PI) (Huybrechts, et al. 
2023). In addition, several fatty acids with varying lengths 
and unsaturation could attach to the remaining hydroxyl 
groups of glycerol via either acyl-, alkyl-, or alkenyl bonds. 
Hydrolysis of one of the fatty acids of the phospholipids by 
phospholipase A2 (PLA2) generates respective lysophos-
pholipids, adding to the diversity of the lipid pool (Behuria 
et al. 2022). Glycerophospholipids are the major structural 
component of cell membranes and are involved in various 
biological processes, including inflammation (Cheng et al. 
2016). In the present investigation, especially phosphatidy-
lethanolamines of different lengths have been identified to 
be associated with a higher risk of UGC. Our findings on 
alterations in PE are consistent with previous studies (Tsai 
et al. 2018). Furthermore, the emerging research on lipid 
metabolism in UGC revealed higher PC, PI and PS levels in 
patients with UGC compared to healthy controls (Luo et al. 
2017). In Summary, these results indicate that the constel-
lation of phosphatidylcholines, the main constituents of the 
cell membrane, distinctly differs between healthy cells of the 
upper gastrointestinal tract and tumour tissue from patients 
with UGC. According to the results of our meta-analysis 
certain phosphatidylcholines should be implicated into the 
diagnostic procedure of patients with UGC. At this point 
an investigation of the relevance of phosphatidylcholines in 
certain stages of the oncological treatment should be per-
formed at pace.

Sphingolipids

Sphingolipids are a wide range of complex lipids defined by 
an 18-carbon sphingoid base, usually sphingosine (SPH), 
found in the outer leaflet of cell membranes and in the mem-
branous myelin sheath, which surrounds axons (Behuria 
et al. 2022). Condensation of SPH and free fatty acid gener-
ates the simplest sphingolipids, ceramides which function 
as precursors for complex sphingolipids produced by the 
modification of hydroxyl group with phosphocholine (in 
sphingomyelins) or carbohydrates (in gangliosides) (Janneh 
and Ogretmen 2022). Sphingolipids constitute hundreds of 
species originating from the combinations of varying sphin-
goid bases, various fatty acids that can attach to the bases 
and numerous carbohydrates in gangliosides. Ceramide 
regulates numerous cellular processes, such as prolifera-
tion, differentiation, and cell signalling (Ogretmen 2018; 
Zhu, et al. 2023). In UGC, there is a noticeably increased 
rate of lipogenesis and the upregulation of mitochondrial 
fatty acid β-oxidation utilising the sphingolipids to meet the 
demand of cell membrane synthesis, mainly for lipid raft and 
lipid-modified signalling molecules. The intensive fatty acid 
degradation via β-oxidation causes significantly larger build-
ups of sphingomyelins and gangliosides in cancer tissues 
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(Taniguchi and Okazaki 2021). Notably, in esophageal and 
gastric cancer tissue, there is some evidence that there are 
also sphingomyelins in the inner leaflet of the membrane. 
In addition, the overall accelerated lipid metabolism might 
explain the severe weight loss observed in patients with late 
stages of UGC (Benedetti et al. 2023). Sphinganine, a sphin-
goid base lipid molecule, has been identified to be increased 
in patients with UGC, while SM (OH) 22:1, a sphingolipid 
implicated in the initiation of carcinogenesis and promo-
tion of metastasis, has been identified to be decreased in our 
meta-analysis. Hence, these results indicate an inconsistency 
in the literature (Tallima et al. 2021).

Bile acids

Bile acids are physiological detergents that facilitate the 
excretion, absorption, and transport of fats and sterols in the 
intestine and liver, derived from catabolism of cholesterol 
(Fu et al. 2021). Previously, bile reflux has been shown to be 
an independent risk factor for precancerous gastric lesions 
and GC (Zhang et al. 2021). Especially, HCA a primary bile 
acid and HDCA, a secondary bile acid, play a crucial role in 
regulating energy expenditure and were both identified to be 
decreased in patients with UGC (Pan et al. 2022). However, 
our results are inconsistent with previous literature as mul-
tiple authors described primary bile acids to be reduced and 
secondary bile acids to be increased in patients with UGC 
(Rezen et al. 2022).

Biogenic amines and related

Biogenic amines are mainly produced by the breakdown or 
transformation of amino acids, typically containing one or 
more amino groups. As such, they comprise a wide range of 
very heterogeneous metabolites involved in various cellular 
processes (Fernandez-Reina et al. 2018). A much-discussed 
metabolite which has been demonstrated to be a prerequisite 
for cell proliferation to occur is Trimethylamine N-oxide 
(TMAO). There is evidence suggesting that higher levels 
of TMAO and its precursors in blood can indicate either 
a higher risk of malignancy or its presence (Stonans, et al. 
2023). TMAO is anticipated to have significance as a bio-
marker of—or even an independent risk factor for UGC 
(Oellgaard et al. 2017). More studies confirmed the asso-
ciation of microbiota with TMAO production, resulting in 
higher risk of colorectal, breast, and gastric cancer (Khoda-
bakhshi et al. 2023). Another metabolite in this heterogenous 
field is the polyamine putrescine, a polycationic alkylamine 
commonly found in all living cells and essential for cellular 
growth and survival. Physiologically, it is sequentially syn-
thesised from the catabolism of the amino acids L-arginine 
and L-methionine (Janne et al. 2004). However, the putres-
cine concentrations were significantly increased in patients 

with UGC and their TME compared to the adjacent normal 
gastric mucosa from the same individuals (McNamara et al. 
2021). Respectively, with the inhibition of the growth of 
human gastric tumour; putrescine levels were significantly 
decreased in the tumour tissue (Xie et al. 2023). Consistent 
with previous findings, we found both TMAO and putrescine 
to be significantly increased in patients with UGC.

The majority of metabolites that have been identified 
show inconsistent results in different studies in terms of 
relative abundance in the cancer and its microenvironment 
versus control groups. Accordingly, it infers that cancer cells 
gain growth superiority over their regular counterparts by 
switching metabolic energy patterns to anaerobic glycolysis 
and possibly fumarate respiration instead of securing more 
ATP. These studies, including ours, collectively support 
that understanding the metabolic risk of many malignan-
cies, including esophageal cancer, cancer of the gastroe-
sophageal junction, and gastric cancer, could improve the 
development of precise oncological and patient-tailored 
management of UGC (Han and Lee 2024). Overall, these 
data justify the evaluation of existing models of amino acid, 
lipid, carbohydrates and nucleic acid metabolism and their 
role in tumour growth, metastasis, and immunosurveil-
lance. The measurement of soluble and exosomal activities 
in the blood of cancer patients might represent a compelling 
addition to the ‘liquid biopsy’ arsenal (Jaras et al. 2023). 
Although the described literature reports elevated levels of 
several oncometabolites such as acetylcarnitine (C2), hexa-
decanoylcarnitine (C16), octadecenoylcarnitine (C18:1), 
hydroxytetradecadienylcarnitine (C14:2–OH), and octade-
canoylcarnitine (C18) in patients with UGC, our compre-
hensive meta-analysis encompassing a larger dataset did 
not corroborate these findings. This discrepancy suggests a 
need for further investigation to reconcile these conflicting 
results and to understand the underlying factors contributing 
to these differences (Corona, et al. 2018; Lario et al. 2017).

Strengths and limitations

To the best of our knowledge, our study provides the most 
comprehensive meta-evidence on the associations of single 
metabolites with UGC. This systematic review’s particular 
strength is the large number of included studies conducted in 
different populations and the adoption of metabolomics pro-
filing using various biospecimens and analytic techniques. 
We have performed meta-analysis for a large number of 
metabolites to facilitate the development of precise onco-
logical and patient-tailored management of UGC. Narrowing 
the review’s focus to studies with open-access data allowed 
us to limit the influence of reverse causality and selection 
bias, and most of the included studies were evaluated to be 
of high quality.
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There are several limitations to be considered. First, 
our search covered only four databases. However, relevant 
studies are usually indexed in those databases. Second, 
the majority of metabolites for which we performed meta-
analysis showed considerable between-study heterogeneity 
and resulted in inconsistent results in our meta-analysis. 
Possible reasons why certain oncometabolites show incon-
sistent results may lie both in the pre-analysis and in the 
analysis of the respective study. The metabolites ATP, 
UTP and NADH, for example, reflect metabolites that 
can be measured in different concentrations even when 
there are small differences in the pre-analytical proce-
dures, such as different biopsy sampling or lyophilization 
due to the energetic instability of the cells after biopsy 
sampling (Jang et al. 2018; Tomita et al. 2012). Third, 
the observational nature of the studies included in the 
meta-analysis impedes inferences about potential causal 
mechanisms underlying the observed UGC associations 
or the histology of particular UGC such as the differen-
tiation of GC in adenocarcinoma and signet-cell carci-
noma. Forth, in this meta-analysis, only metabolites were 
considered that exhibited a relevant difference between 
tumor patients and healthy controls both in local tumor 
tissue and systemically in blood plasma and can therefore 
actually be classified as oncometabolites. However, the 
investigation was not subdivided into the separate entities 
of UGCs. In this respect, a further limitation of the study 
is that metabolites that are exclusively elevated locally 
in tumor tissue or exclusively elevated systemically in 
blood plasma were not investigated in detail. Neverthe-
less, a subgroup analysis of metabolites that are elevated 
locally in tumor tissue or exclusively systemically should 
be performed in future studies. We only considered evi-
dence from metabolomics studies, which implies that we 
disregarded potentially relevant data from targeted assays 
for selected metabolites by design. In this respect, it is 
crucial that methods currently experiencing significant 
interest in oncometabolomics research should also be 
considered in a subsequent investigation. These methods 
particularly include, matrix-assisted laser desorption ioni-
zation (MALDI) – mass spectrometry imaging (MSI) and 
the field of spatial metabolomics.

Also, we did not study the relationship between the 
identified metabolites and oncological outcome parameters 
such as the response to chemotherapy within each study 
and the relationship with the TNM – or the UICC clas-
sification. However, the necessity of an investigation of 
the relationship between the metabolome and oncological 
outcome parameters has been highlighted by the results. 
Finally, misclassification of the reports during study 
selection and publication bias are essential sources of 
bias for evidence summaries, which we mitigated through 

an independent review of the included studies by three 
authors and detailed analyses of publication bias.

Conclusion and perspectives

The present systematic review and meta-analysis provides 
an updated overview of the associations between many 
metabolites and UGC. We performed a meta-analysis for 
169 tissue and plasma metabolites associated with the risk 
of UGC, detecting 155 significant risk associations. The 
UGC–associated compounds reflect dysregulation of various 
processes, such as proteolysis, gluconeogenesis, mitochon-
drial function, and fatty acid oxidation. Many discrepancies 
were found between the studies, for example, in metabolite 
behaviour. A small number of studies in each group correctly 
evaluated the results. The necessity of an investigation of 
the relationship between the metabolome and oncological 
outcome parameters has been highlighted by the results of 
this systematic review and meta-analysis.

Although the patients included in these studies are from 
across the globe, a targeted multicentric study is necessary 
to develop a precise oncological and patient-tailored man-
agement of UGC. Another point that should be considered 
is the analysis and research of the same cohort with tech-
niques to account for metabolomics compounds. Finally, 
the reproduction of some of these studies would enable the 
use of these metabolites as biomarkers and is highly desir-
able. We encourage the metabolomics communities to fully 
disclose their ethics approvals and samples’ storage con-
ditions, report compound names with at least one identi-
fier and include p-values and fold changes for the relevant 
compounds. With additional investigations published by the 
scientific community, some of the relevant metabolites found 
might be reaffirmed as applicable, and others may become 
irrelevant for UGC pathophysiology. According to the 
results of our meta-analysis especially BCAA and TMAO 
as well as certain phosphatidylcholines should be implicated 
into the diagnostic procedure of patients with UGC. At this 
point an investigation of the relevance of phosphatidylcho-
lines in certain stages of the oncological treatment should 
be performed at pace.

Key messages

What is already known on this topic

The prognosis of patients with upper gastrointestinal can-
cers, i.e. esophageal cancer, cancer of the gastroesophageal 
junction, and gastric cancer (UGC), is poor in advanced 
stages. The concept of metabolic plasticity in tumours and 
their tumour microenvironment (TME) has recently emerged 
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as we started to realize that tumours alter their metabolism to 
meet the high demands of energy and biomass to fuel their 
rapid growth and metastasis. In this study, we aimed to char-
acterize differences in concentrations of plasma and tissue 
metabolites across patients with UGC and healthy controls. 
Using a statistical approach for vague clustering, we clas-
sify groups of metabolites into biochemical and functional 
categories.

What this study adds

This research summed up the metabolites previously iden-
tified to be either increased or decreased in patients with 
UGC in a systematic review and meta-analysis to create a 
metanarrative of the current association between metabolites 
and UGC. In conclusion, summarizing the metabolic profile 
of patients with upper GI tumours using LC-MS/MS and 
1H NMR spectroscopy resulted in the identification of an 
upper GI cancer-specific signatures driven by increased con-
centrations of BCAA, lysine, FAD, Acetyl-CoA, adenosine, 
citrulline, sphinganine, linoleic acid, putrescine, and TMAO 
as well as decreased concentration of asparagine, glutamine, 
aconitate, short-chain acylcarnitines, ATP, SM (OH) 22:1, 
linolenic acid, HCA, HDCA, and erythrose-4-phosphate in 
plasma, tumour tissue and tissue from the TME compared 
to healthy controls. The necessity of an investigation of the 
relationship between the metabolome and oncological out-
come parameters has been highlighted by the results of this 
systematic review and meta-analysis.

How this study might affect research, practice 
or policy

These data demonstrate the promising potential for plasma 
and tissue metabolome analyses to dissect the molecular 
mechanisms of metabolic plasticity of tumours and develop 
a precise oncological and patient-tailored management of 
UGC as well as a first approach to metabolism-based can-
cer therapy. However, further analyses with larger patient 
cohorts are required to validate this observation. According 
to the results of our meta-analysis especially BCAA and 
TMAO as well as certain phosphatidylcholines should be 
implicated into the diagnostic procedure of patients with 
UGC.
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