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Abstract 

Background Physical inactivity and subsequent muscle atrophy are highly prevalent in neurocritical care and are 
recognized as key mechanisms underlying intensive care unit acquired weakness (ICUAW). The lack of quantifi-
able biomarkers for inactivity complicates the assessment of its relative importance compared to other conditions 
under the syndromic diagnosis of ICUAW. We hypothesize that active movement, as opposed to passive movement 
without active patient participation, can serve as a valid proxy for activity and may help predict muscle atrophy. To 
test this hypothesis, we utilized non-invasive, body-fixed accelerometers to compute measures of active movement 
and subsequently developed a machine learning model to predict muscle atrophy.

Methods This study was conducted as a single-center, prospective, observational cohort study as part of the MINCE 
registry (metabolism and nutrition in neurointensive care, DRKS-ID: DRKS00031472). Atrophy of rectus femoris muscle 
(RFM) relative to baseline (day 0) was evaluated at days 3, 7 and 10 after intensive care unit (ICU) admission and served 
as the dependent variable in a generalized linear mixed model with Least Absolute Shrinkage and Selection Operator 
regularization and nested-cross validation.

Results Out of 407 patients screened, 53 patients (age: 59.2 years (SD 15.9), 31 (58.5%) male) with a total of 91 avail-
able accelerometer datasets were enrolled. RFM thickness changed − 19.5% (SD 12.0) by day 10. Out of 12 demo-
graphic, clinical, nutritional and accelerometer-derived variables, baseline RFM muscle mass (beta − 5.1, 95% CI − 7.9 
to − 3.8) and proportion of active movement (% activity) (beta 1.6, 95% CI 0.1 to 4.9) were selected as significant 
predictors of muscle atrophy. Including movement features into the prediction model substantially improved perfor-
mance on an unseen test data set (including movement features:  R2 = 79%; excluding movement features:  R2 = 55%).

Conclusion Active movement, as measured with thigh-fixed accelerometers, is a key risk factor for muscle atrophy 
in neurocritical care patients. Quantifiable biomarkers reflecting the level of activity can support more precise pheno-
typing of ICUAW and may direct tailored interventions to support activity in the ICU. Studies addressing the external 
validity of these findings beyond the neurointensive care unit are warranted.

Trial registration DRKS00031472, retrospectively registered on 13.03.2023.
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Background
Intensive care unit acquired weakness (ICUAW) 
describes a neuromuscular dysfunction secondary to 
critical illness and its treatment with consecutive gener-
alized weakness. Data on prevalence for ICUAW show 
considerable variation due to diverse patient demograph-
ics and heterogenous methodology. However, with a sys-
tematic review pinpointing the median prevalence at 43% 
[1], its ubiquity in critical care is evident. Moreover, the 
impact resulting from ICUAW is profound and long-last-
ing, with patient outcomes significantly compromised for 
up to five years after discharge [2–6]. Therefore, ICUAW 
is acknowledged as a key component of post intensive 
care syndrome (PICS), highlighting its importance in the 
continuum of long-term recovery following critical care 
[7, 8].

ICUAW needs to be recognized as a clinical syndrome, 
rather than a specific disease entity. As such, it exhibits 
great heterogeneity and partially overlapping pathologies, 
which has diluted research findings and made the iden-
tification of treatable targets challenging in the past [9–
12]. Relevant and common entities include critical illness 
myopathy (CIM), critical illness polyneuropathy (CIP) 
as well as critical illness polyneuromyopathy (CIPNM) 
as an overlap syndrome [9, 11, 12]. Electrophysiological 
methods including nerve conduction studies (NCS), elec-
tromyography and direct muscle stimulation have been 
successfully used to establish biomarkers for CIM, CIP 
and CIPMN [9, 13, 14]. Muscle atrophy due to mechani-
cal unloading is also being recognized as a critical com-
ponent of ICUAW. However, measurable biomarkers to 
assess the extent of inactivity of muscles are lacking.

In this regard, it is important to note that activity arises 
from active movement, as opposed to passive movement 
during mobilization without active patient participation. 
Hence, we postulate that establishing a proxy for activ-
ity can be achieved by applying non-invasive, body-fixed 
accelerometers to the lower extremities of critically ill 
patients while prospectively excluding episodes with pas-
sive mobilization such as intrahospital transports, physi-
otherapy and patient positioning. By introducing these 
biomarkers as continuous measures of active movement 
and incorporating these variables into a machine learning 
model, we aimed to predict rectus femoris muscle atro-
phy, as measured by ultrasound up to day 10 of intensive 
care unit (ICU) treatment. Based on the hypothesis that 
neurocritical care patients exhibit a higher prevalence of 
inactivity due to disorders of consciousness and motor 
deficits, we specifically included patients with acute brain 
injury in this trial.

Methods
Study design, setting and clinical management
This study was designed as a single-center, prospective, 
observational cohort study as part of the MINCE regis-
try (metabolism and nutrition in neurointensive care, 
DRKS-ID: DRKS00031472, retrospectively registered on 
13.03.2023) at a tertiary academic center (LMU Univer-
sity Hospital, Munich, Germany). Reporting follows the 
Strengthening the Reporting of Observational Studies 
in Epidemiology (STROBE) reporting guidelines. This 
study was approved by the local ethics committee (LMU 
Munich, project number 22-0173, 11.04.2022). Written 
consent was obtained from all participants or their next 
of kin. The study recruited from April 2022 to March 
2024 and included patients within 48 h after ICU admis-
sion with age ≥ 18 years, neurologic disease as admitting 
diagnosis, and expected ICU length of stay ≥ 10  days. 
Patients with pre-existing neuromuscular disease, renal 
replacement therapy, pregnancy, pre-existing neoplastic 
disease, recent hospitalization (hospital stays longer than 
three days in the last three months, ICU treatment within 
the last three months), pre-existing confinement to bed, 
and pre-existing frailty (Clinical Frailty Scale > 3) were 
excluded.

Patients were mobilized at the treating physicians’ dis-
cretion. If indicated, patients received physiotherapy for 
20–40 min/day on six days of the week and were reposi-
tioned and transferred from bed to chair regularly by the 
nursing staff. Nutritional therapy was conducted accord-
ing to the European Society of Parenteral and Enteral 
Nutrition (ESPEN) guidelines, with caloric and protein 
targets of 25  kcal/kg/day and 1.3  g/kg/day, respectively 
[15]. As a reference, body weight as measured with bed 
scales was used for non-obese patients, and ideal body 
weight was used for patients with a body mass index 
(BMI) > 30 kg/m2 [15]. During the acute phase of illness 
(days 1–3), hypocaloric nutrition (70% of energy expendi-
ture (EE)) was aimed for. From day 4 on, isocaloric (100% 
of EE) nutrition was implemented.

Data collection
Clinical data prospectively collected on the ICU included 
age, sex, body mass index (BMI), admission diagno-
sis, cumulative protein and calorie deficit, duration of 
mechanical ventilation, ICU length of stay (LOS), daily 
Sepsis-related Organ Failure Assessment score (SOFA) 
and SOFA without Glasgow Coma Scale (GCS) score 
(mSOFA), Acute Physiology and Chronic Health Evalu-
ation (APACHE II) score on ICU admission, Nutrition 
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Risk in Critically ill score (NUTRIC) on admission, pre-
morbid modified Rankin Scale (pmRS) and Glasgow Out-
come Scale Extended (GOSE) at ICU discharge.

Ultrasound of the upper thigh (rectus femoris mus-
cle, RFM) and temporalis muscle (TM) was performed 
bilaterally using a 20  MHz linear probe (MyLabOmega, 
Esaote, Genoa, Italy) upon admission, and on days 3, 
7 and 10. As previously described [16, 17], the site of 
measurement for RFM was marked in the lower third of 
the connecting line between the anterior superior iliac 
spine and the upper edge of the patella with a perma-
nent marker to ensure reproducibility between meas-
urements (Supplementary Fig.  1). Measurements were 
conducted according to a local protocol that empha-
sized minimal compression during RFM sonography and 
called for individual adjustments of depth and gain to 
optimally visualize the surface of the femur and to delin-
eate fascial borders, respectively. Measurement of TM 
followed the protocol as described by Maskos et al. [17] 
Three repeated measurements were performed by one 
of six raters (TP, LG, LR, AM, JB, SI), using the built-in 
software of the ultrasound machine to measure muscle 
thickness. The mean value of the repeated measurements 
was used for further analysis. Reliability of repeated 
ultrasound measurements is reported in Supplementary 
Table 1.

Tri-axial accelerometers (range ± 16  g; sampling rate 
12.5  Hz; Axivity Ltd., Newcastle upon Tyne, UK) were 
attached within 48 h of admission to both upper thighs 
with transparent adhesive tape. Skin inspections and 
minor adjustments to the sensor placement were per-
formed every third day to prevent any pressure damage. 
To exclude any passive movement not contributing to 
the patient’s activity, episodes with physiotherapy, intra-
hospital transports, or repositioning by nursing staff 
were prospectively documented and excluded from the 
recorded data. The sensor data was extracted and ana-
lyzed by an author (MW) not involved in the patients’ 
clinical management and blinded for the ultrasound 
measurements.

As a positive control, accelerometers were attached to 
healthy individuals (n = 3). Static placement of sensors 
served as a negative control (Supplementary Table 2).

Accelerometer data processing
OmGUI version 1.0.0.11 software was used to download 
the raw acceleration data from the devices. MATLAB 
(Mathworks Inc., Natick, USA, release R2022a, version 
9.12.0) was used for data processing. Periods of active 
movement were identified following a previously estab-
lished procedure that has been already used for activ-
ity recognition in ICU settings [18, 19]. Accordingly, 
recorded time series from each axial component (x, y, 

z) were first down-sampled to 10  Hz and subsequently 
high-pass filtered (4th order Butterworth filter, cutoff 
frequency at 0.2 Hz) to remove baseline offset and low-
frequency effects reflecting static postural orientation. 
Filtered time series were segmented into non-overlap-
ping 5 s windows for subsequent motion feature extrac-
tion. Signal magnitude area (SMA) was then computed 
for every window [19] to identify activity bouts (AB) 
using a defined threshold of SMA ≥ 0.135 g [18]. Across 
all identified AB, the mean intensity (AB-intensity) and 
duration (AB-duration) as well as the variability (stand-
ard deviation, SD) of these features were calculated. The 
distribution of motion features across ABs is log-normal, 
which required estimating mean and SD via a maximum 
likelihood technique [20]. The overall movement inten-
sity, the proportion of active movement (%active) and 
ABs per hour were calculated based on the entire dura-
tion of the recording (Fig. 1).

Predictive modeling and statistical analysis
As the dataset includes multiple observations (both legs) 
per patient and exhibits linearity as evaluated by explora-
tory data analysis, a generalized linear mixed model 
(GLMM) to account for intra-patient correlation by using 
individual patients as a random effect was chosen. Given 
the numerous independent variables of interest, includ-
ing demographic, clinical, and activity-related features, 
a rigorous approach to model selection and validation to 
prevent overfitting was required. Therefore, we employed 
regularization with Least Absolute Shrinkage and Selec-
tion Operator (LASSO), which penalizes the GLMM 
model via L1-norm and in effect shrinks the weight of 
non-contributing features to zero.

First, multicollinearity among predictors was mitigated 
by excluding variables with a variance inflation factor 
(VIF) exceeding 5 (removing AB per hour and SOFA) 
[21]. Next, standardization (z-score normalization) of 
the remaining prediction variables (age, sex, baseline 
RFM muscle mass, mSOFA, calorie deficit, protein defi-
cit, overall intensity, %active, AB-intensitylog-mean, AB-
durationlog-mean, AB-intensitylog-SD, AB-durationlog-SD) 
was performed to ensure equal weights and comparable 
units. To allow testing on unseen data, a stratified split 
was executed to divide the data into training (80%) and 
test (20%) sets. The training set was further used for opti-
mizing the hyperparameter of GLMM-LASSO using a 
machine learning approach with nested cross-validation 
(Fig.  2) [22]. Model performance was evaluated on the 
test set using mean squared error, root mean squared 
error, mean absolute error, R-squared (squared correla-
tion method, R2) and a plot depicting actual versus pre-
dicted values.
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To illustrate the level of uncertainty of the model 
coefficients, bootstrapping with 10,000 resamples 
was performed to estimate the bias-corrected and 
accelerated (BCa) confidence intervals for the model 
coefficients.

Additionally, and to test the relevance of leg move-
ment on TM as a muscle group unaffected by thigh 
movement, we used a linear regression model for the 
prediction of TM atrophy at day 10 including all demo-
graphic, clinical and nutritional variables as well as 
%active as independent variables. To compare %active 
between healthy individuals and the neurointensive 
care unit (NICU) cohort, a two-tailed t-test was per-
formed. Further, we identified patients with unilateral 
upper motor neuron damage and corresponding motor 
deficits to investigate the contribution of upper motor 
neuron lesion on muscle atrophy. To compare the mag-
nitude of muscle atrophy and to account for within-
subject correlation, we used Generalized Estimating 
Equations (GEE) with post hoc pairwise comparisons 
and Bonferroni adjustment.

Summary statistics for continuous variables are pre-
sented as means with standard deviation (SD) for 
normally distributed data and as medians with inter-
quartile ranges (IQR) for non-normally distributed 
data, with normality assessed using Quantile–Quantile 
plots and Shapiro–Wilk test. Categorical variables are 
summarized as frequencies and percentages.

Fig. 1 Accelerometer-derived features. Body motion was monitored using tri-axial accelerometers bilaterally attached to the upper thigh (1). Raw 
triaxial accelerometer recordings were first offset eliminated, and the time series were segmented into non-overlapping 5 s windows. The signal 
magnitude area was computed for every window (2). Bouts of dynamic activity were identified based on the threshold ≥ 0.135 g (3) and a set 
of motion features was computed for every bout of activity (4). Finally, the average and distribution of motion features across all bouts of activity 
were computed (5). acc = acceleration

Fig. 2 Nested-cross validation of a regularized GLMM model. After 
standardization and a stratified 80/20 split, the training data set 
was partitioned into 4 folds (outer loop). Within each outer fold, 
an inner loop of 2 folds was used for hyperparameter tuning. The 
hyperparameter (lambda) that minimized the mean squared error 
in the inner loop was selected. The model with this optimal lambda 
was then evaluated on the validation fold of the outer loop. This 
process was repeated for all 4 outer folds, resulting in an optimal 
lambda for each fold. The final model was chosen using the average 
of the optimal lambdas from all outer folds. Finally, the performance 
of this final model was assessed using the unseen test set. 
GLMM = generalized mixed effects model; lasso = least absolute 
shrinkage and selection operator
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All analyses were performed using R (2023.06.1 + 524) 
using ‘stats’, ‘psych’, ‘ggplot2’, ‘dplyr’, ‘lme4’, ‘nlme’, 
‘geepack’, ‘multcomp’, ‘emmeans’, ‘MASS’, ‘svglite’ 
‘glmmLasso’,‘caret’ and ‘boot’, packages. ChatGPT (ver-
sion 4) was used for error handling, repetitive program-
ming, and overall optimization of code in R.

Results
Patient characteristics
Out of 407 patients screened, 53 with a total of 91 avail-
able accelerometer datasets were enrolled in this study 
(Fig.  3). Clinical baseline characteristics are presented 
in Table 1. Of all patients included in the analysis, mean 
age was 59.2 years (SD 15.9) and 31 (58.5%) were male. 

Cerebrovascular diseases were the most frequent ICU 
admission diagnoses (86.8%, 46/53). Mean ICU length of 
stay was 17.0 days (IQR 8.0), while the mean duration of 
mechanical ventilation was 15.6 days (SD 9.2). During the 
observation period, patients met 62.6% (SD 18.4) of the 
caloric goals and 57.9% (SD 21.6) of protein goals accord-
ing to the ESPEN guidelines.

Active movement and muscle atrophy during ICU 
treatment
Muscular atrophy as measured with ultrasound was more 
pronounced in RFM compared to TM (-19.5% (SD 12.0) 
versus -15.3% (SD 11.1) at day 10) (Fig. 4A). Active move-
ment of NICU patients as indicated by proportion of 

Fig. 3 Screening and study inclusion. ICU = Intensive Care Unit;
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active movement (%active) over time is infrequent, par-
ticular at early stages of the ICU stay. While mean %active 
stays low over the entire time, some patients exhibit 
higher activity starting around day 3. (Fig.  4B). Com-
pared to healthy individuals, NICU patients demonstrate 
a significant reduction in active movement (%active: 
healthy individuals 13.3 (SD 0.8) vs. NICU patients 0.84 
(SD 1.08), p < 0.001) (Supplementary Tables 2 and 4). No 
adverse events were observed in association with the 
placement of accelerometers in the ICU setting (Supple-
mentary Table 3).

Predictive models for muscle atrophy
The machine learning model based on a total of 12 demo-
graphic, clinical, nutritional and accelerometer-derived 
variables selected baseline RFM muscle mass (beta 
− 5.1, 95% confidence interval (95% CI) − 7.9 to − 3.8) 
and %active (beta 1.6, 95% CI 0.1 to 4.9) to explain 79% 
 (R2 = 79%) of the occurring variance in muscle wasting in 
an unseen test data set (Fig. 5, A and B). Thus, for every 
standard deviation increase in baseline RFM (2.6  mm), 
RFM thickness at day 10 is estimated to decrease by 
another 5.1 percentage points (49.5% relative change). 
In contrast, a standard unit increase in %active (1.1%) 
is projected to result in 1.6 percentage points less RFM 
atrophy at day 10 (relative change 15.5%). Ignoring 
movement features as predictors for RFM muscle atro-
phy results in substantially worse model performance 
 (R2 = 55%) (Fig.  5C, Supplementary Table  6). RFM atro-
phy was not significantly different between immobile 
limbs with upper motor neuron lesions (UMNL) and 
immobile limbs without UMNL. However, muscle atro-
phy was markedly decreased in limbs with active move-
ment (Supplementary Fig. 2). Thigh-fixed accelerometer 
data did not contribute significantly to a model predict-
ing TM atrophy (Supplementary Table 5).

Table 1 Baseline characteristics

IQR = inter-quartile range; SD = standard deviation; ICU = intensive care unit; 
BMI = Body Mass Index; RFM = rectus femoris muscle; APACHE II = Acute 
Physiology and Chronic Health Evaluation; SOFA = Sequential organ failure 
assessment; NUTRIC = Nutrition Risk in Critically ill score; pmRS = premorbid 
modified Rankin Scale; LOS = length of stay; GOSE = Glasgow Outcome Scale—
Extended

Parameter n = 53

Age (years), mean (SD) 59.2 (15.9)

Male, n (%) 31 (58.5)

BMI (kg/m2), median (IQR) 27.2 (6.2)

Baseline RFM thickness (mm), mean (SD) 10.3 (2.6)

APACHE II score at ICU admission, median (IQR) 17.0 (4.5)

SOFA score (without GCS) at ICU admission, mean (SD) 4.5 (2.1)

NUTRIC score at ICU admission, mean (SD) 3.4 (2.0)

No disability at ICU admission (pmRS = 0), n (%) 40 (75.5)

pmRS = 1, n(%) 7 (13.2)

pmRS = 2, n(%) 6 (11.3)

ICU admission diagnosis, n (%)

 Intracerebral hemorrhage 21 (39.6)

 Ischemic stroke 8 (15.0)

 Subarachnoid hemorrhage, non-traumatic 17 (32.1)

 Meningitis/Encephalitis/other neuro-infectious disease 3 (5.7)

 Status epilepticus 2 (3.8)

 Guillain-Barré syndrome 1 (1.9)

 Cerebral venous sinus thrombosis 1 (1.9)

Medical nutritional management

 Calories administered/calories prescribed up to day 10, 
% [SD]

62.6 (18.4)

 Protein administered/protein prescribed up to day 10, % 
[SD]

57.9 (21.6)

ICU admission to sensor placement (hours), median [IQR] 42.8 (10.3)

ICU LOS, days, median (IQR) 17.0 (8.0)

Duration of mechanical ventilation, days, mean (SD) 15.6 (9.1)

Hospital LOS, days, median (IQR) 21.0 (15.0)

ICU mortality, n (%) 5 (9.6)

GOSE at hospital discharge, median (IQR) 4 (3–5)

Fig. 4 Active movement and muscle atrophy during ICU treatment. 
Muscle atrophy at days 3, 5 7 and 10 relative to day 0 for RFM 
and TM (A). Proportion of active movement (%active) over time (B). 
ICU = Intensive Care Unit;
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Discussion
In this prospective cohort study, we used thigh-fixed 
accelerometers to establish movement features as pre-
dictive biomarkers for muscle atrophy in neurocritical 
care patients. Proportion of active movement (%active) 

demonstrated a significant protective effect against mus-
cle wasting and improved the precision of muscle atro-
phy prediction in an unseen test data set. To the best 
of our knowledge, this is the first quantifiable and vali-
dated measure that provides information on the relative 

Fig. 5 Prediction of MRF muscle atrophy with and without movement features. Standardized coefficients and 95% confidence intervals (asterisks 
indicate significant predictors) of the regularized regression models with  (modelmovement+, A) and without movement features  (modelmovement−, 
C). Out of all demographic (age, sex), clinical (baseline RFM muscle mass, mSOFA), nutritional (calorie deficit, protein deficit) and movement 
variables (intensity, %active, AB-intensitylog-mean, AB-durationlog-mean, AB-intensitylog-SD, AB-durationlog-SD), the depicted 10/12 independent variables 
for model  modelmovement+ and 4/6 independent variables for  modelmovement− were selected for the final models, respectively. Significant predictors 
in  modelmovement+ included baseline RFM muscle mass (beta − 5.1, 95% confidence interval (95% CI) − 7.9 to − 3.8) and %active (beta 1.6, 95% CI 
0.1 to 4.9). For  modelmovement-, only baseline RFM muscle was found as a statistically significant predictor (beta − 4.6, 95% CI − 7.6 to − 3.9). Scatter 
plots with regression line of predicted versus actual muscle wasting (grey dots: training data; black dots: unseen test data) for  modelmovement+ (B) 
and  modelmovement- (D), respectively  (R2: 0.79 vs. 0.55, RMSE: vs. 8.4 vs. 10.7 mm; MAE: 6.2 vs. 8.0 mm). mSOFA = SOFA without GCS;
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importance of inactivity for muscle atrophy in critically 
ill patients.

It is crucial to distinguish between immobility and 
inactivity, especially within the ICU context, as inactiv-
ity can occur despite mobilization efforts due to a lack 
of active patient participation (passive movement). To 
address this, we excluded periods such as physiother-
apy, intrahospital transports, and patient positioning, 
from our analysis. Therefore, we consider the move-
ment features as surrogates for activity rather than meas-
ures of mobility. Importantly, and as a limitation of this 
approach, movement sensors are unable to capture any 
muscle activity without movement via isometric contrac-
tions (active immobility).

The relevance of inactivity, as compared to immobil-
ity, as the variable of interest in this context is further 
exemplified by clinical trials on electrical muscle stimula-
tion (EMS) and interventions focusing on early (passive) 
mobilization. The current evidence highlights the efficacy 
of EMS [23, 24], whereas mobilization trials demon-
strated limited efficacy and raised safety concerns [25–
31]. While the latter often involve passive mobilization 
without genuine patient activity, EMS generates muscle 
activity without requiring mobility. Considering the data, 
a reasonable strategy to prevent muscle atrophy in criti-
cally ill patients may involve first measuring the extent of 
active movement with accelerometers to identify those at 
risk, and subsequently promoting activity (with or with-
out mobilization) based on the patient’s stability.

The pathophysiology of mechanical unloading lead-
ing to atrophy has so far only been systematically stud-
ied and quantified outside the ICU. Studies with cast 
immobilization of the lower extremity for two weeks in 
healthy adults and examination of astronauts after 8 days 
of space flight revealed a 5% and 6% decrease in quadri-
ceps muscle mass, respectively [32, 33]. A recent meta-
analysis analyzing the general ICU population estimated 
muscle atrophy to be around 16% at day 10 for RFM [34]. 
In comparison, our data demonstrate a more pronounced 
rate of RFM atrophy, showing a 19.5% decrease by day 10. 
While additional factors such as CIP, CIM, and CIPNM 
certainly contribute to the higher rate of atrophy in ICU 
patients, the residual activity in cast immobilization 
(via isometric contractions) and during space flight (via 
active movement with reduced muscle activity) may also 
account for the observed differences.

Given that no or passive movement was described 
in more than 70% of patients in the first 48  h, and still 
more than 40% after two weeks, in the TEAM trial [26], 
it is plausible to assume that inactivity also significantly 
contributes to ICUAW in the general ICU population. 
Yet, as disorders of consciousness and focal-neurological 
deficits are major barriers to mobilization and activity 

[26], this might be even more relevant for neurointen-
sive care patients. Although our accelerometer data are 
not directly comparable to the ICU mobility scale used 
in the TEAM trial, it indicates extremely infrequent 
periods of active movement for most patients over a 
10-day observation period, reaching only 6% (0.84/13.3) 
of the activity level of healthy individuals. These num-
bers are parallelled by data from González-Seguel et al., 
who found mechanically ventilated patients to be inac-
tive during the ICU stay in over 96% of the time [35]. 
This, coupled with the prominence of movement fea-
tures as predictors of muscle atrophy in our prospective 
cohort, further strengthens the significance of inactivity 
in (neuro-) critical care. Other studies within the ICU 
have investigated accelerometry primarily in the context 
of sleep, circadian rhythm, and sedation levels. However, 
these studies exhibit limitations, such as narrow observa-
tion periods and the absence of well-defined thresholds 
for activity measurement [36–39].

Accelerometer-derived data have also been validated as 
biomarkers for muscle atrophy outside the ICU setting. 
In a study with almost 500 elderly participants, Sanchez-
Sanchez et  al. investigated the association of physical 
activity as measured with hip-worn accelerometers and 
sarcopenia. Here, higher physical activity correlated with 
better performance in sarcopenia-related scores [40]. 
Similarly, Foong et  al. showed a positive association of 
accelerometer-derived physical activity with muscle mass 
and muscle strength [41].

The exercise stimulus, as the ultimate determinant for 
activity, can be delineated into two primary variables: 
volume and intensity. In exercise physiology, the vol-
ume of exercise is traditionally quantified by the number 
of repetitions performed, while intensity is commonly 
measured by the force exerted during exercise [42]. In our 
ICU cohort, we utilized proportion of active movement 
(%active) and AB-durationlog-mean as proxies for exercise 
volume. For critically ill patients, the force generated can-
not be measured pragmatically. We therefore introduced 
movement intensity (resultant acceleration magnitude) 
as a surrogate of exercise intensity. The LASSO regu-
larization used to address the high number and potential 
co-linearity of parameters revealed %active as an approx-
imation of exercise volume as a relevant predictor, while 
surrogates of intensity were not selected. Thus, intensity 
may either be irrelevant considering the uniform force 
generated by patients moving against gravity and not 
against resistance, or movement intensity is not a valid 
biomarker of the exercise intensity.

Besides proportion of active movement, baseline mus-
cle mass was predictive of muscle atrophy. This finding is 
in line with studies in healthy participants. Here, higher 
age with lower baseline muscle mass showed significantly 
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less pronounced atrophy. However, older participants 
with lower baseline muscle mass suffered from greater 
loss of muscle strength after immobilization [43–45]. 
Furthermore, variations in atrophy can be observed 
across muscle and fiber types. Anti-gravity muscles with 
high proportions of slow type 1 fibers, such as RFM, 
seem to exhibit a selective vulnerability [45], which is in 
line with our data demonstrating pronounced atrophy of 
RFM over TM.

The strengths of our study include the selection of a 
neurointensive care population devoid of frailty, spe-
cifically targeting individuals at high risk of muscle atro-
phy without pre-existing muscle wasting. However, the 
study’s focus on neurocritical care may limit its gen-
eralizability and further research is needed to confirm 
the applicability of our results to more diverse patient 
populations. The extent of neurogenic atrophy mediated 
via various damage to the lower motor neuron was not 
explicitly measured in our study but can be assumed to be 
minimal given the demographics of our cohort. As that 
general ICU cohorts also experience lower motor neuron 
lesions due to critical illness or its treatments, this con-
founder is likely to be similar across groups. For UMNL, 
we do not expect neurogenic atrophy, as it does not result 
in direct muscle denervation. Supporting this pathophys-
iological hypothesis, we could not observe any differ-
ence in the extent of muscle atrophy between immobile 
limbs with upper motor neuron lesions (UMNL) and 
immobile limbs without UMNL. However, muscle atro-
phy was markedly decreased in limbs with active move-
ment, suggesting no role for UMNL as a mediator for 
atrophy. We ensured high data quality by filtering out 
passive mobilization and prospectively collecting clini-
cal data. Furthermore, our analysis is underpinned by a 
strong statistical framework leveraging machine learn-
ing to identify the most important predictors and using 
unseen data to validate these findings. Further limitations 
of our study are primarily rooted in the fact that muscle 
morphology does not necessarily equate to function. We 
used muscle ultrasound, a widely adopted and validated 
surrogate for ICUAW [34, 46, 47], instead of the Medi-
cal Research Council Sum Score (MRC-SS), as the lat-
ter is often deemed infeasible in the general ICU cohort, 
and even more so in neurocritical care. Additionally, we 
decided against including measures of the upper extremi-
ties because muscle volume is challenging to determine 
via ultrasound due to variability in muscle thickness rela-
tive to positioning, difficult anatomical landmarks, and 
less pronounced atrophy compared to the lower extremi-
ties. Instead, we focused on the RFM as the established 
sonographic gold standard, along with the TM as a mus-
cle group unrelated to the movement captured by the 
accelerometers.

Conclusion
Active movement, as a surrogate of muscle activity, 
can be quantified using non-invasive, thigh-fixed accel-
erometers and adds value for the prediction of mus-
cle atrophy in neurocritical care patients. Establishing 
movement-derived biomarkers enables better pheno-
typing of ICUAW, thereby providing a foundation for 
tailored interventions and should be included as covari-
ates in trials on ICUAW in the future. Studies address-
ing the external validity of these findings beyond the 
neurointensive care unit are warranted.
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