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Plug flow and brecciation in volcanic
conduits can emerge from shear-induced
crystal migration in otherwise
Newtonian magmas

Check for updates

Jérémie Vasseur 1 , Fabian B. Wadsworth2, Donald B. Dingwell 1 & Yan Lavallée1

In theEarth, the flowof crystal-bearingmagma is thought to be non-Newtonian and shear thinning, but
the physical origin for this is poorly understood. We use hydro-granular theory to show that the
decoupledmigration of crystals toward conduit coresduringmagmaascent is a tenablemicrophysical
mechanism for plug flow, emergent in an otherwise purely Newtonian crystal-bearingmagma.We use
a numerical conduit model to define the flow development length beyond which crystal migration
dominates and strain localises near conduit margins. Applied to magma ascent scenarios, we show
that this crystal-migration strain localisation only develops in high crystallinity magmas or magmas
ascending in very narrow cracks/conduits. In all other scenarios, crystals do not contribute to non-
Newtonian behaviour and suchmagmas are usually strictly Newtonian. The ascent of very crystal-rich
domemagmacould beassociatedwith strain localisation andcrystal depletion at the conduitmargins,
lubricating ascent through the crust.

Magma rheology is a first-order control on crustal magma ascent
dynamics and the style of eruption at the Earth’s surface1. From a
material perspective, magmas are silicate melts in which solid crystals
and gas bubbles/pores are suspended, such that continuum models for
the multiphase rheology of this mixture are required2. While the
microphysical effect of suspended bubbles is relatively well understood
and based on theory3,4, crystal-bearing magma rheology remains
empirical5,6. There are outstanding questions about the role played by
non-Newtonian effects2,7,8 and how these might be upscaled to real
magma flow conditions.

Proximal volcanic structures (e.g., lava domes), resulting from
crystal-rich magmas, ubiquitously exhibit textural evidence for strain
localisation near conduit/flowmargins9–11, argued to result from a rate-
dependent or non-Newtonian behaviour of magma shearing under
complex, transient conditions11–13. Numerical models for crystal-
bearing magma ascent and eruption typically assume Newtonian
rheology for the effect of crystals on magma viscosity14–16, such that the
crystal-bearing magma rheology depends only on the crystal volume
fraction ϕ and several empirical constants6. By contrast, existing
rheological data show that both non-magmatic suspensions of solid
particles8,17,18 and magmatic suspensions of solid crystals5–7,19–23 can

exhibit apparent non-Newtonian bulk shear-thinning behaviour – a
relative drop in suspension viscosity at high shear strain rates relative to
low shear strain rates24. The origin of this shear thinning is poorly
understood and, in some cases, may be a compound effect of an
unrelaxed melt response25,26, viscous heating27, or cracking of the
crystals or magma28,29. Therefore, magma ascent models likely use
overly simplistic crystal-bearing magma rheology compared with
observations of microphysical phenomena. A primary outstanding
issue is that of the ultimate microphysical cause of non-Newtonian
behaviour in crystal-bearing magmas30.

Here, we draw on models for non-magmatic particle suspension
dynamics and use shear-induced particle migrationmodels built for the
generalised flow of particle suspensions in confined geometries such as
slots and pipes31,32. We aim to explore how the physical movement of
crystals relative to the viscous melt – termed shear-inducedmigration –
can result in a more complex bulk response, perhaps more consistent
with the complexities observed in rheological tests on magma. Our
principal aims are to (1) provide a tenable microphysical origin for plug
flow and associated strain localisation arising from crystal effects, and
(2) develop the upscaling required to apply this to the conditions of
magma ascent.
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Results
A hydro-granular micro-physical model shows that homo-
geneous crystal-bearing magmas are Newtonian
Using a novel experimental apparatus in which the value of particle volume
fraction ϕ in a flowing suspension could change as a function of the bulk
shear strain rate _γ, ref. 17 found that the particle suspensions appear to be
Newtonian even at very high ϕ. In their experiments, a permeable plate
separates the particle-bearing suspension froma region of clear fluid, so that
fluid can pass between the suspension zone and the clear fluid zone. This
porous plate is held at a fixed pressure P normal to the plate such that the
resulting particle normal stress σn – the particle-particle repulsive stress that
arises from particle interactions – is directly equal to the constant P. During
flow imposed by shear stress τ, the permeable plate moves up and down,
transferring fluid into or out of the suspension region. This apparatus
showed that when the volume of the shearing system is not fixed and when
instead P is fixed, suspensions dilate or contract under shear such that ϕ is a
function of τ (or, equivalently, of _γ).

The observationsmade by the authors of ref. 17 led them to infer that if
particles are permitted to organise themselves during flow, and the sus-
pension is allowed to dilate or contract locally, then the rheology is uni-
versally Newtonian, even at very high ϕ. The implication is that more
traditional rheologymeasurements – in which the suspension’s crystallinity
is fixed – yield apparent non-Newtonian results only because of local
reorganisationwithin the sample itself thatdevelops intoheterogeneity.This
further implies that it is possible that shearing samples at high ϕ in fixed-ϕ
geometries have been internally heterogeneous at steady state and that the
rheological determinations are not indicative of the behaviour at any given
local ϕ:Importantly, ref. 17 found that Newtonian behaviour extended to
values ofϕ thatwerewithin a fewper cent ofϕj, whereϕj is the upper limit of
ϕ beyond which the system is jammed and cannot flow as a suspension
(sometimes termed a ‘maximum packing’).

Based on their experiments, ref. 17 identified that the timescale
characteristic of particle movement in the fluid is λp ¼ ηf =σn, where ηf is
the viscosity of the liquid suspending the particles. The timescale char-
acteristic of the shearing motion is λf ¼ 1= _γ. The ratio of these time-
scales is termed the ‘viscous number’ J ¼ λp=λf ¼ ηf _γ=σn such that at
J≫ 1, the hydrodynamic timescale is short relative to the time for viscous
particle rearrangement, and so the particles are driven into a homo-
geneous sheared configuration. By contrast, at J≪ 1, the particle rear-
rangement timescale is short compared with the shearing timescale, and
so σn acts to dilate or contract the particle pack and particle rearrange-
ments dominate. By developing a system in which P, and so σn; could be
held constant, the novelty of their experiments was that ref. 17 could
experimentally constrain how σn depends on the properties of the system
and proposed

σn ¼ ηf _γ
ϕj
ϕ
� 1

� ��2

ð1Þ

where ϕj ¼ 0:585 was observed directly for spheres17. This description
matches experimental data across the range of ϕ from dilute (ϕ ! 0) to
concentrated (ϕ ! ϕj) regimes17,31,33,34. Injecting Eq. 1 into the scaling for
the viscous number (see above) results in a functional form for J that only
depends on ϕ as J ϕ

� � ¼ ðϕj=ϕ� 1Þ2 (note that, for ϕ≥ ϕj, J ϕ
� � ¼ 0).

Therefore, the interpretation of this scaling is that J controls the equilibrium
ϕ via dilation or contraction of the pack of particles locally.

Given that this picture of particle suspension rheology depends on the
normal stress σn and not just the shear stress τ, ref. 17 drew an analogy with
granular rheology and introduced a friction coefficient μ ¼ τ=σn, which,
along with J and ϕj, controls the rheology. By using the ‘friction’ concept,
ref. 17 could unify the dilute regime when ϕ is small, where friction comes
from internal friction in the fluid suspension, with the concentrated regime
at high ϕ, where friction comes dominantly from particle-particle contacts
and the lubricationof thefluid is less important. That is, viscous suspensions
and dry granular media can be unified by using the friction coefficient.

The friction coefficient μ can be understood as the sum of (1) a con-
tribution arising from particle contacts μc similar to that of dry granular
media and (2) a hydrodynamic contribution μh arising from the dilute
regime. Using the dataset of ref. 17, ref. 31 proposed a semi-empirical
function that relates μ, ϕ, and J (which is a modification of the original
function proposed by ref. 17)

μ ¼ μ1 þ
ϕj
β

1� ϕ

ϕj

 !

|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}
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� �
1� ϕ

ϕj

 !2
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μh

ð2Þ

where μ1 ¼ 0:3 is the value of μ at ϕ ¼ ϕj, and β ¼ 0:158 is the so-called
compressibility of the particle pack31,32. The value β is justified because
ϕ μ ¼ 0
� � ¼ ϕj þ μ1β ¼ ϕm, where ϕm is the maximum packing of a pack

of compressed particles more organised than a loosely jammed pack at ϕj
(i.e.,ϕm > ϕj).Using the values givenhere,ϕm ¼ 0:632 is consistentwith the
limiting value found for spheres in a flowing but fixed-ϕ setup18.With these
inputs, Eq. 2 provides an excellent description of these data when converted
to the dimensionless space of μ; ϕ, and J (Fig. 1).

Recast as the more familiar ‘relative viscosity’ �η � η=ηf ¼ μ=J this
model (Eq. 2) is consistent in terms of functional form with most previous
theoretical models2

�η � η

ηf
¼ 1

J
μ1 þ

ϕj
β

1� ϕ

ϕj

 !" #
þ 1þ 5

2
ϕþ ϕ

ϕj

 !
1� ϕ

ϕj

 !
ð3Þ

where η is the shear viscosity of the particle suspension. By design, Eq. 3
converges to the Einstein viscosity �η ¼ 1þ 5ϕ=2 atOðϕÞ and diverges with
ðϕj � ϕÞ�2 at ϕ ! ϕj, like alternative models such as the ref. 35 scal-

ing �η ¼ ð1� ϕ=ϕjÞ�2.

In Fig. 1, we follow refs. 17, 31 and show the results of applying the
hydro-granular theory to experimental results for the rheology of suspen-
sions of spherical particles in viscous liquids. We find that Eq. 2 accurately
describes how the relevant stresses μ are related to the particle volume
fraction ϕ (via the compressibility β, the viscous number JðϕÞ, and the limit
jamming fraction ϕj). While our analysis of μðJ; ϕÞ should be limited to the
few cases of experimental datasets where σn is known17,33, by converting
μðJ; ϕÞ to �ηðϕÞ (see Eq. 3), we can plot additional published data and test
Eq. 3 across a broader range of ϕ (Fig. 1d). We find generally good agree-
ment, albeit with some data scatter at ϕ≈ ϕj, which is likely due to the
heterogeneity effects that may be prevalent in fixed-ϕ rheometry at high ϕ
(discussed above).

The analysis provided in Fig. 1 constrains the driving force for the
dilation or contraction of a particle suspension under shear. By design, the
experiments underpinning this formulation17 were at constant σn. In con-
trast, in magmatic scenarios, the initial ϕ at the base of a conduit is more
typically considered constant, and σn can vary spatially and with time. In
such a fixed initialϕ scenario, σn will drive particlemovement relative to the
liquid so that spatial gradients of σn are minimised31,32 by inducing spatial
gradients in ϕ. This framework in which particle-particle pressures arise in
fixed-ϕ systems, predicts that under shear in a confined geometry such as a
pipe or a slot, particleswill migrate from regions of high relative shear strain
rates at the walls, toward regions of low or zero relative shear strain rates at
the centreline, inducing gradients ofϕ, and therefore gradients of viscosityη.
The consequence of such a theory in which particles organise in response to
flow, is that plug flow and strain localisation can be an emergent property of
an otherwise Newtonian rheology.

Upscaling to conduit flow conditions: a continuum model for
crystal migration under an evolving crystal-crystal pressure
The local–orhomogenous– behaviour of packs of particles can be predicted
in full using the hydro-granular framework provided (Fig. 1). This rheology
predicts that the volume fraction of the solid phase – crystals in the case of
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magmaflow– can locallydilate (i.e., a decrease in localϕ) or compact (i.e., an
increase in local ϕ) in response to changes in the crystal-crystal interaction
stress σn (Eqs. 1–2). Therefore, this differs from typical approaches to
crystal-bearing magma rheology in which the volume fraction ϕ is con-
sidered homogeneous and fixed for a given packet of magma. The result of
thedifferent approachusedhere (Fig. 1) is that any conduitflowmodelmust
then be set up such that the relative motion of crystals and melt can be

tracked in response to local variations in σn both laterally across the conduit
and vertically down-flow. To do this, we implement a numerical confined
flow model31. This model assumes that both the liquid and solid compo-
nents are incompressible and neutrally buoyant, and then takes the con-
tinuity equations for the solid phase and themixture such that a relative slip
velocity can be defined. Together with momentum and drag force balance
equations, this permits a full solution to be found. The full model is
described in the “Methods” section and elsewhere31. Here, we note the
characteristic scales that dictate the regimes of behaviour

�t ¼ tU0

H
;�y ¼ y

L
;�z ¼ z

H
;�vy ¼

vy
δU0

;�vz ¼
vz
U0

;

�_γ ¼ _γL
U0

; �τ ¼ τL
ηf U0

; �p ¼ pδL
ηf U0

; �ps ¼
psL
ηf U0

; �pf ¼
pf δL

ηf U0
; �q ¼ qL2

U0a2

ð4Þ

where a bar above a parameter denotes a dimensionless – or scaled –
variable, and the subscripts ‘s’ and ‘f’ refer to solid and fluid, respectively. t is
the time,U0 is the inlet velocity,H is a vertical length scale taken here to be
H ¼ L3=a2, y is the horizontal position (y � x for a ‘slot’ geometry and
y � r for a ‘pipe’ geometry), L is the conduit width (either the dyke half-
width in the case of a ‘slot’geometryL � W or the cylindrical conduit radius
in the case of a ‘pipe’ geometry L � R), z the vertical position, vy and vz are
themixture velocities in the two directions, _γ and τ are the local shear strain
rate and stress, respectively, p is the pressure, q is the relative phase flux,
and a is the crystal size (taken as a characteristic radius). Here, δ ¼ L=H ¼
a=L
� �2

is a characteristic aspect ratio of the flow. We note that in real
magmatic scenarios, the crystals are not necessarily neutrally buoyant and
that density differences may be important, especially when considering the
relative phase flux, as done here. Future work should consider density
contrast and buoyancy effects.

We solve the system of equations to predict both flow in a dyke (i.e.,
‘slot’ geometry) and a cylindrical conduit (i.e., ‘pipe’ geometry) to illustrate
the principal features of the shear-induced particle migration process
(Fig. 2). These solutions are cast in dimensionless form, such that the lengths
and pressures involved are all scaled by characteristic parameters (Eq. 4).
Themodel shows that the inlet crystal volume fractionϕ0 ¼ ϕ z ¼ 0ð Þ at the
base of the slot or pipe is uniformbutdevelops down-flowvia shear-induced
migration. Both thedegree towhich this particle organisationoccurs and the
distance down-flow that is required to reach fully developed flow depend on
ϕ0 and thegeometry (dykeor cylindrical conduit) onnoothervariables once
the normalisations inEq. 4 are established.Therefore, the results in Fig. 2 are
universal for a given ϕ0 inlet value. Ref. 31 showed that this solution is well-
validated against directmeasurements of particle organisationat steady state
in flow along a pipe36. Both those experimental results and the continuum
fluid dynamic solution show that (1) particles move during flow from the
wall regions to the centre-line region, (2) the velocity profile blunts to
produce plug flow even with locally Newtonian rheology, and (3) the plug
density (i.e., the ϕ in the plug) increases above ϕj toward a random close

Fig. 1 | Validating the microphysical constitutive description for hydro-granular
rheology used here. a The ratio of stresses μ ¼ τ=σn as a function of the viscous
number J ¼ ηf _γ=σn (Eq. 2). The arrow indicates where a deviation of the data from
the theory can be observed and only occurs for systemswhere the particle suspension
is assumed to be at fixed ϕ, such that the deviation can be interpreted to be associated
with the formation of textural heterogeneity during shear. This implies that J > 0:01
is the critical viscous number for homogeneous rheometry experimentation at the
traditional fixed ϕ: b The particle volume fraction ϕ as a function of J . c The particle
volume fraction ϕ as a function of μ, showing the role played by β in the formulation
(see inset)31. d The equivalent formulation as shown in (a–c), but cast as the more
familiar normalised viscosity �η ¼ η=ηf as a function of ϕ (Eq. 3). In (a–c) we show
the constitutive model μðJÞ, JðϕÞ, and μðϕÞ given by Eq. 2 and in the text17,31. We also
plot two types of data: (1) as solid symbols, we plot data for packs of spheres
performed in apparatuses in which P is either constant or measured17,33, and (2) as
unfilled pale symbols, we additionally show a range of data for particle suspension
rheology18,65–69 forwhich ϕwas imposed and notP (i.e., traditional rheometry). In (d)
we also show the ref. 35 model advocated for magmatic suspensions2.
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pack ϕm ≈ 0:632 – the higher density predicted for more ordered packs18,37.
This demonstrates that a continuum model that upscales the local homo-
geneous rheology as the origin of the pressures driving particle motion, can
predict bulk larger-scale heterogeneous effects including flow-driven orga-
nisation of particles.

The model used here has been validated against previous pipe- and
slot-flow data36,38,39 including in high-resolution magnetic resonance ima-
ging experiments of pipe flow32. These detailed validation steps provide
confidence that the conduit model described here can be used to make
predictions about real-world particle migration scenarios where particle
migration is driven by shear-induced processes. In all cases tested the data
and the predictions match well. When combined with the existing micro-
structural validation of these ideas (see Fig. 1), we propose that thismodel is
sufficiently robust to upscale to magmatic conduits.

Discussion
Application to magmatic systems
The analysis in the previous section demonstrates that it takes a finite
distance of flow for particle suspensions to organise themselves (Fig. 2). If
the flow distance in a real scenario is less than the distance required for
organisation tooccur, then the suspensionwill effectively remain close to the
uniform initial particle volume fraction, and the bulk average flow will be
Newtonian. However, if there is sufficient distance available for the

suspension to organise itself via particle migration, then the bulk behaviour
across the slot or pipe will be apparently non-Newtonian, even though the
local rheology imposed here is strictlyNewtonian. Therefore, a key question
in the application to magmatic conditions is: under what conditions do
magmatic flows travel a sufficient distance to organise? This question is key
to upscaling from the concept of particle – or crystal – migration to the
effective rheology of magmas in the crust.

To answer the question posed here, we can assess the axial flow
development length that is characteristic of the transition from a Poiseuille-
type velocity profile relatively near the inlet to a blunted velocity profile once
flow has developed to full organisation (see the insets to Fig. 2). The critical
scaling is the length scale from the slot or pipe base to the point at which the
flow is fully developed – a length termed the development length Ld . This
can be captured by the scaling31

Ld /
L3

a2
J ϕ0
� �

S ϕ0
� �

κ ϕ0
� � ð5Þ

where S ϕ
� �

is a so-called inelastic storage coefficient that arises from the
rheology, and κ ϕ

� �
is a dimensionless scaling for the effective permeability

of melt between the crystals that influences the crystal mobility. Here,
κ ϕ
� � ¼ 2 1� ϕ

� �α
=ð9ϕÞ with α ¼ 5:1 as an experimentally validated

value31,40. The parameter S ϕ
� �

relates to μ and is S ϕ
� � ¼ � μ=ϕ

� �
dϕ=dμ

Fig. 2 | Normalised conduit model outputs for shear-induced crystal migration
and the development of plug flow. a–d The result for flow in a dyke geometry.
e–h The result for flow in a cylindrical conduit. The inlet crystal volume fraction is
homogeneous at �z ¼ 0 and is set to ϕ0 ¼ 0:2 in (a, e) ϕ0 ¼ 0:3 in (b, f) ϕ0 ¼ 0:4 in
(c, g) and ϕ0 ¼ 0:5 in (d, h). Insets: The radial distribution of vertical mixture

velocities at four different snapshots of vertical position at�z ¼ 0 (blue line),�z ¼ 0:01
(orange line), �z ¼ 0:1 (green line), and �z ¼ 1 (red line), illustrating the blunted
velocity profile characteristic of plug flow development and lubricated conduit
margins.
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(described in the “Methods” section). Importantly, J , S, and κ are only
functions of the particle volume fraction ϕ.

The development length Ld can be predicted by Eq. 5 and is a measure
of the vertical flow distance required for crystal migration to play a sub-
stantial role in modifying the flow rates of crystal-bearing magma. By
compiling L and ϕ0 for realistic magmatic conduit flow scenarios and by
taking a wide range 10�5 ≤ a≤ 10�3 m for suspended crystal sizes in
magmas, we can use Eq. 5 to estimate Ld . For those same systems, we use
petrologic estimates of storage depthsmeasured from the Earth’s surface1 as
a first-order conservative constraint on the natural flow distance available
between shallow storage and an eruption, termed Lf . The key test we apply
here is whether or not Ld is shorter than the length available Lf .

We find that where ϕ is very close to ϕj, Ld ≲ Lf ; a regime in which
crystal migration will occur, plug flow will develop, and strain localisation
will be the outcome at the conduit walls (Fig. 3). Thisϕ≈ϕj state is typical of
dome-forming lavas41. The shear-induced migration regime of magma

ascent is also accessible for very narrow conduits; for example, if a conduit is
less than 1m in diameter, shear-induced crystal migration is likely even at
moderate to low ϕ: Outside of the high-ϕ concentrated and semi-mushy
magmas, at most ϕ and L applicable in the crust, Ld ≫ Lf (Fig. 3) and Ld is
around 4–12 orders of magnitude in excess of the conduit lengths. In turn,
this implies crystalmigration is not likely to occur for these low ormoderate
crystallinities because there simply is not the flow distance available to fully
develop plug flow. Therefore, for these cases, a Newtonian contribution of
crystals to the bulk magma rheological in the crust is sufficient.

We can also compute Ld for some experimental approaches, which
allows us to rationalise why apparent shear thinning is reported in such
work18. To do so, we take L in Eq. 5 as the gap width in the rheometer used,
and a to be the experimental particle size. To take one example, ref. 18
reports strains in excess of 200 in a parallel plate set up with a 1.5-mm gap
width and 35-mm diameter. This implies that the minimum rotational
distance is ~22m, which is within the range where migration can occur

Fig. 3 | Applications of the conduit flow model (Fig. 2) to volcanic and experi-
mental scenarios. a, bThe result of an application to a typical basaltic conduit using
inputs for Kilauea volcano (USA) of ϕ0 ¼ 0:1, a ¼ 600 µm, R ¼ 20 m, and Lf ¼ 2
km, where a shows the dimensional up-conduit development of ϕ (as per Fig. 2) and
b shows the up-conduit development of the values of the crystal volume fraction at
the wall ϕw , the mixture pressure gradient∇p, and the gap-averaged strain rate _γ

	 

,

all normalised to the inlet values of those metrics. c, d The same as in (a, b) but for a
typical case of a silicic conduit, here using input values for Mt Unzen (Japan) of
ϕ0 ¼ 0:55, a ¼ 300 µm, R ¼ 25 m, and Lf ¼ 7:5 km. In (b, d), we use hatching to
show the region of the system greater than Lf , which is, therefore, inaccessible; this
implies that shear-induced migration is unlikely in both scenarios. e A compilation

of these findings for a range of volcanic conduits in the upper crust where we
compare Lf from literature values for total estimated conduit lengths1 with themodel
predictions for the length required for shear-induced crystal migration Ld : Overall,
these results highlight that crystal-richmagmas can haveLf values that intersect with
a range of possible Ld results. We note that there is substantial uncertainty in ϕj for
natural magmas. f The same result as in (e) but for experimental rheometry,
demonstrating that in many cases (e.g., ref. 18) the shearing distance (computed
from minimum strains) is sufficient to induce migration during their experiment,
explaining why they appear to find shear thinning in what should otherwise be a
Newtonian condition (cf. ref. 17).
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(Fig. 3). For this reason, we anticipate that shear-induced migration of
particles and the associated development of heterogeneity in samples during
flow is a tenable explanation for the shear thinning observed by ref. 18. If
correct, these experiments align with the other approaches discussed
herein17.

Our result implicates high crystallinity dome magmas as a magmatic
scenario in which shear-induced crystal migration can occur over possible
ascent distances (Fig. 3). For very crystal-rich domes, the prediction of
shear-induced migration would be that the dome margins would be rela-
tively depleted in crystals relative to theflow core and the extent of depletion
would depend on the ratio Lf =Ld and the conduit inlet crystallinity ϕ0.
Features observed in dome deposits from the 1991–1995 Mt Unzen erup-
tion or the 2004–2008 Mt St Helens eruption show relatively high strain
conduit margin facies that could be consistent with this prediction9,10. The
second regime in which crystal migration can occur over the flow lengths
available is magma flow in narrow conduits or dykes. Outside of the con-
ditions explored here (high crystallinity or narrow conduits and dykes), the
crystal contribution tomagmaflow is predicted to be aNewtonian one. This
suggests that in situations for which crystal migration is not operative,
Newtonian constitutive models for shear viscosity in crystal-bearing
magmas6 are sufficient to capture the crystal effect. Finding real magmatic
examples where evidence for crystal migration is preserved is likely to be
hampered by cooling-induced lateral crystallinity variations. However, if a
given magmatic scenario is likely to be subject to migration (i.e., narrow
dykes or high crystallinitymagmas), then it will be important to deconvolve
migration-induced crystallinity variations from cooling-induced crystal-
linity variations.

Gravitational spreading of crystal-rich conduit cores
We find that crystals can migrate toward conduit cores, especially for
conduits that have a high initial crystallinity and/or for narrow dykes/
conduits (Fig. 3). However, because magmatic crystals are typically
denser than the melt phase (by a density ratio of up to Δρ≈ 600 kg.m−3;
see ref. 42), gravity can act to spread the dense crystals out and minimise
the lateral variations in ϕ that we predict. To check this, we compare the
lateral variations in hydrostatic pressure with the lateral gradient of the
normal stress σn: By tracking these two gradients in pressure – one
driving crystal migration and the other opposing migration – we can
assess the conditions under which crystal migration will be operative in
magmatic cases. Taking Mt Unzen as a test case, we find that if the melt
viscosity and inlet velocities are at the high end of the range permitted by
published predictions (i.e., U0 ≥ 0:01 m.s−1 and ηf ≥ 10

7 Pa.s; see ref. 1)
and if the conduit is moderately narrow (i.e., R≈10 m; see refs. 43,44)
then migration can occur without significant gravitational spreading (see
“Methods” section). If instead, the melt viscosity and the inlet velocity are
lower, then gravitational spreading becomes important and can coun-
teract the migration physics invoked herein. This is consistent with our
finding that for volcanoes such as Kilauea, migration is negligible anyway
because the real-world conduit/dyke is simply too short for development
of migration to onset (Fig. 3). If the conduitwere long enough, then at the
low melt viscosities required for Kilauea and the higher relative Δρ of
mafic systems, gravitational spreading would certainly be important, and
migration could not occur. By definition, the lateral gradient in the
normal stress σn driving migration always becomes small as flow fully
develops, such that gravitational spreading will always ‘take over’ as flow
fully develops. However, one of our key findings is that in nature, the
conditions for fully developed flow are rarely, if ever, reached because the
real-world conduits are not sufficiently long.

The findings explored here allow us to reiterate that migration is
particularly important for systems at which (i) the conduit is nominally
narrow, (ii) the melt viscosity, the crystallinity, and the inlet velocities are
relatively high; and (iii) there is sufficient vertical length from storage to the
surface so that development of migration profiles can occur. For systems
that do not fit these three requirements, the flow is Newtonian and not
influenced by migration.

Brittle localised brecciation of crystal-bearing magma at
conduit walls
Here, we use this conduit model to predict the brittle onset of shear brec-
ciation in cylindrical conduit-filling magma. The brittle onset is found by
tracking the bulk (i.e., crystal-bearingmixture) strain rate _γ ¼ dvz=dr at all
locations in the conduit flow simulations and comparing this with the
viscoelastic threshold for localised failure _γc ¼ WicG=½ηfLðϕÞ�, whereWic
is the critical constant for melt failure (taken from the linear viscoelastic
theory associated with the Weissenberg number Wi, and with a value
constrained to beWic ¼ 0:01; see refs. 20, 25, 26, 45), G≈ 10 GPa is the shear
modulus of magmatic liquids46, andL ϕ

� �
is the so-called lever function25

that accounts for the amplification of the melt strain rate around crystals.
Ref. 25 gives two options for the definition ofL ϕ

� �
, both consistent with

available data, and so here we take the minimal modelL ϕ
� � ¼ �η ϕ

� �
(see

Eq. 3). If the local mixture strain rate _γ exceeds this constraint of the critical
strain rate _γc, then themelt between the crystals is predicted tobreak, and the
magma can be considered brecciated.

Given that the velocity gradients in the radial direction are always
steepest at the conduit walls, shear failure occurs first at that location.
Whether or not rupture occurs depends on the inlet velocityU0 such that at
low relativeU0 values, no shear failure occurs, and flow is purely viscous at
all conduit locations. Conversely, at high relative U0 values, shear failure
occurs at the conduit walls. These two possibilities are separated by a critical
value ofU0 above which rupture occurs. In Fig. 4, we plot the ratio between
these critical values and the conduit radius R, giving a conduit strain rate
U0=R.Wefind that for a given inlet crystallinityϕ0, the critical condition for
shear failure is an inverse function of the melt viscosity ηf with a pro-
portionalityU0=R / η�1

f .We use this observation of how these parameters
are related to fit an emulator function to the simulation results of the form
U0=R ¼ CGηβf .Here,C andβ arefit parameters for a range ofϕ0 values.We
then find that, remarkably, β is always a constant corresponding to β ¼ �1
and thatC is a continuous, monotonic function of ϕ0 for which we, in turn,
propose the scalingC ϕ0

� � ¼ C0ð1� ϕ0=ϕjÞα withbest-fitC0 ¼ 2:6× 10�3

andα ¼ 1:75 (see inset to Fig. 4). [Wenote that ref. 16 found thatβ ¼ �0:9,
which leads to issues around the units of C (i.e., that they are (Pa.s)−0.1),
whereas our β ¼ �1 implies that C is dimensionless.]

We propose that our failure solution for U0=R is useful for predicting
the conditions under which conduit brecciation will occur at the conduit
inlet. In Fig. 4,we show somenaturalmagma conditions of ηf andU0=R. To
find these, we refer to ref. 1, who find that across most silicic compositions
(andesite, dacite, and rhyolite), the ascent velocity range for effusive erup-
tions spans approximately 10�5 ≤U0 ≤ 10

�1 m.s−1, which defines our
conditions of interest. We use 5 ≤R≤ 50 m and a range 106 ≤ ηf ≤ 10

8 Pa.s
for wet rhyolite ascending the crust47. In this case, our model predicts that
shear brecciation is likely if ϕ0 is high. For comparison, we additionally plot
the same case but for 109 ≤ ηf ≤ 10

11 Pa.s, which corresponds to a similar
ascent scenario but one in which the melt has degassed, perhaps due to
bubble nucleation and growth (although note that we are not simulating the
effect of bubbles explicitly). In this case, amuchwider range ofϕ0 values is in
the regimewhere ascent-driven brecciationwill occur (note that if ηf ≳ 1010

Pa.s, brecciation is inevitable for almost all crystallinities). The boxes for
natural conditions given in Fig. 4 are informed by natural case studies but
designed to be general guides to silicic magma ascent. Note that we simply
find the critical strain rate for brecciation at the wall, and do not explicitly
model the dynamics offlowof brecciatedmagma (i.e., we take the sameone-
way coupling approach as ref. 16).

Conclusions
The model we present here is a ‘toy model’ for exploring a process and
assessing its impact on conduit flow feeding volcanic eruptions. That is, we
do not aim to simulate natural processes in full. Instead, we aim to make a
quantitative assessment of whether crystal migration is likely to affect
conduit flow, or not. The conclusion of this assessment is that magma flow
in narrow or very long conduits in the crust may be subject to crystal
migration and that this effect will be most prevalent for relatively high
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crystallinitymagmas forwhich the crystal-crystal pressures are high.Where
this could happen, we conclude that it will influence strain localisation and
brittle brecciation onsets at conduitmargins (Fig. 4). In scenarios where this
is unlikely to happen, we conclude that the crystal contribution to magma
rheology will likely be Newtonian (see ref. 25). An important limitation in
the construction of our ‘toy model’ for crystal motion in conduits is that we
do not consider the effect of density differences between the melt and the
crystals, which could play an important additional role in determining their
relative velocity. While the vertical pressure gradient dominates over the
density-derived horizontal gradients, for horizontalmotion of crystals, such
density contrasts could be important and warrant study in the future.

While the crystal contribution to magma rheology may be Newtonian
inmany cases, we acknowledge that other effects can render themagma as a
whole non-Newtonian (e.g., due to bubble deformation at intermediate
conduit capillary number3). Our analysis potentially explains why some
experiments have seen non-Newtonian effects (particularly at high
crystallinity5,7,18,28) and that this is potentially associated with migration-
induced and evolving sample crystallinity heterogeneity.

Themigration physics implemented, upscaled, and explored heremay
explain how crystal heterogeneity and banding occur in frozen dyke
outcrops48 and the physics of lithic or xenolith movements49. When con-
sidering banding picked out by crystallinity changes that cannot be
accounted for by cooling-induced crystallisation, more complex crystal
migration scenarios than envisaged heremay be responsible. For example, if
migration occurs during continued flowwith a pulsatory inlet velocity such
thatU0 ¼ f ðtÞ where t is time. Similarly, xenolith and lithic motion will be
subject to the same pressure σn as described here for crystals, albeit for a
typically larger radius a. These more complex scenarios should be assessed
and explored using our model. Additionally, our model provides a
mechanism forhowphenocrystsmay ‘swim together’ andmeet inflow.This
process is usually called ‘synneusis’ but is rarely explained on physical
grounds. For example, shear-induced crystal migration could explain how
0.6mm olivine crystals come to meet and form >1mm olivine crystal
aggregates in the Kilauea system50.

An important feature of crystal-bearing magmas is that the crystal
populations typically have bimodal size distributions with relatively large
phenocrysts and relatively small microlites or nanolites. Given that crystal
size is a key input to the development length explored here Ld / a�2, we
acknowledge that phenocrysts andmicrolites will behave differently when it

comes to flowdevelopment andmigration.While our scaling outputs for Ld
include a range of crystal sizes from microlites to phenocrysts, we do not
account for the interactions between crystals or large and small relative sizes.
Such complex interactions could affect the phenomenologyof themigration
behaviour51 and are not accounted for here. This problem would be best
addressed by using experimentation to examine the phenomenon of
migration for bimodal particle sizes.

In natural magma flow, bubble deformation3,4,52, compressibility
effects, syn-transport crystal growth, crystal-melt density differences, crystal
plastic deformation53, viscous dissipation as heat54, melt shear thinning due
to unrelaxed melt structure effects25, and brittleness29 all remain candidates
for conduit flow effects that would manifest as additional contributions to
plug flow development. Importantly, most of these effects are underpinned
by theoretical models and so can be upscaled along with the crystal
migration effects described here, culminating in both a full theoretical
picture ofmagmaflowdynamics in conduits, but also in a regime- or phase-
picture of the conduit conditions that would permit the regime of ascent
dynamics to be identified for individual conduit scenarios. The crystal
migration effect – analysed in isolation here – needs to be embedded in
future conduit flow models if ascent rates and conduit dynamics are to be
fully predictable. A challenge will be to explore how other phases, such as
bubbles or cracks, influence crystal migration.

Methods
Conduit model
Here, we provide a workflow for the conduit model presented in the main
text and adapted from ref. 31 (developed for shear-induced particle
migration in slot and pipe flow), the initial and boundary conditions for the
solution, and our solution method. Defining vs and vf as the local average
solid and fluid Eulerian velocities, respectively, u ¼ ϕvs þ 1� ϕ

� �
vf as the

mixture velocity, and assuming incompressibility of both fluid and solid
phases and steady flow, the continuity equations for the conservation of
mass and momentum are

1
ϕ
vs�∇ϕþ ∇ � vs ¼ 0

∇ � u ¼∇ � qþ vs
� � ¼ 0

∇ � σþ ρg ¼∇ � τ�pI
� �þ ρg ¼ 0

ð6Þ

Fig. 4 | The predicted conditions required for
brecciation at conduit walls during silicic magma
ascent. For a given ϕ0 and ηf there is a single critical
U0=R value above which the strain rate dvz=dr at
r ¼ ±R exceeds the criterionWicG=½ηfLðϕÞ�; here,
these critical values of U0=R are plotted as a con-
tinuous function of ηf and colour-coded for ϕ0. We
pick out two values of ϕ0=ϕj to plot as thin dotted
black lines (ϕ0=ϕj ¼ 0:50 and ϕ0=ϕj ¼ 0:95). We
plot two boxes designed to represent ‘wet’
magmas1,47 and nominally ‘dry’ magmas1,45, respec-
tively, for silicic effusive eruptions (see text).We also
plot the ref. 16 solution U0=R ¼ 10�4Gη�0:9

f as the
white dashed line (note that in print, ref. 16 quote
their law as U0=R ¼ 10�2Gη�0:9

f , whereas we find
that to reproduce their curve, we require the pre-
factor to be 10�4 and not 10�2). The full solutions
are well-matched by an emulator function U0=R ¼
C ϕ0
� �

G=ηf with C ϕ0
� � ¼ C0ð1� ϕ0=ϕjÞα , for

which the best-fits are C0 ¼ 2:6× 10�3 and
α ¼ 1:75. In the inset, we plotCðϕ0Þ as points for our
full solution and as a continuous curve for our
emulator function.
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where q¼ u� vs ¼ 1� ϕ
� �ðvf � vsÞ is the relative phase slip velocity, σ is

the mixture stress tensor (sum of the fluid and particle stress tensors), ρ is
the mixture density, g is the acceleration due to gravity, τ is the
mixture deviatoric stress, p is the mixture pressure and I is the identity
matrix. For negligible Reynolds number q ¼ ða2κðϕÞ=ηf Þð∇ � σ f � ρf gÞ ¼
�ða2κðϕÞ=ηf Þð∇pf Iþ ρf gÞ, for which σ f is the fluid stress tensor, pf is the
fluid pressure, and ρf is the fluid density. In the main text, we neglect the
gravity terms (see below ‘Effects of body forces arising from gravity’) and so
Figs. 2–4 do not include this effect. Projecting Eq. 6 onto Cartesian (i.e., slot
flow) coordinate system and using the characteristic scales introduced in
Eq. 4 results in

1
ϕ

�vx
∂ϕ

∂�x
þ �vz

∂ϕ

∂�z

� �
� ∂�qx

∂�x
� δ

∂�qz
∂�z

¼ 0

∂�vx
∂�x

þ ∂�vz
∂�z

þ ∂�qx
∂�x

þ δ
∂�qz
∂�z

¼ 0

∂�τxx
∂�x þ δ ∂�τxz

∂�z � 1
δ
∂�p
∂�x ¼ 0

∂�τzx
∂�x

þ δ
∂�τzz
∂�z

� ∂�p
∂�z

¼ 0

ð7Þ

and, similarly, the relative phase slip vector can be decomposed in

�qx ¼ � κ

δ

∂�pf
∂�x

¼ �κ
1
δ

∂�p
∂�x

� ∂�ps
∂�x

� �

�qz ¼ �κ
∂�pf
∂�z

¼ �κ
∂�p
∂�z

� δ
∂�ps
∂�z

� � ð8Þ

Assuming that a is much smaller than the half-widthW of the conduit (i.e.,
δ≪ 1), Eq. 8 reduces to

�qx ¼ �κ
∂�τxx
∂�x

� ∂�ps
∂�x

� �
¼ �κ

∂�σn
∂�x

�qz ¼ �κ
∂�p
∂�z

ð9Þ

Similarly, Eq. 7 reduces to

∂�τzx
∂�x

¼ ∂�p
∂�z

ð10Þ

for the conservation of momentum, implying that �τ ¼ ∇�p
�� ���x (defined as

�τ � �τzx with ∇�p
�� �� � ∂�p=∂�z

�� ��), and to

∂�σn
∂�z

¼ �σn
S�vz

∂�qx
∂�x

� �vx
�vz

∂�σn
∂�x

þ �σn
�τ

�vx
�vz

∂�τ

∂�x
þ ∂�τ

∂�z

� �
ð11Þ

and
∂�vx
∂�x

¼ � ∂�qx
∂�x

� ∂�vz
∂�z

ð12Þ

for the conservation of mass. The rheological description given in the main
text gives

∂�vz
∂�x

¼ �σnJ ð13Þ

In cylindrical coordinates (i.e., pipeflow), projectingEq. 6 onto the axes
and using the characteristic scales introduced in Eq. 4 results in

1
ϕ

�vr
∂ϕ

∂�r
þ �vz

∂ϕ

∂�z

� �
� 1
�r
∂

∂�r
�r�qr
� �� δ

∂�qz
∂�z

¼ 0

1
�r
∂

∂�r
�r�vr
� �þ ∂�vz

∂�z
þ 1
�r
∂

∂�r
�r�qr
� �þ δ

∂�qz
∂�z

¼ 0

1
�r
∂
∂�r �r�τrr
� �þ δ ∂�τrz

∂�z � 1
δ
∂�p
∂�r ¼ 0

1
�r
∂

∂�r
�r�τzr
� �þ δ

∂�τzz
∂�z

� ∂�p
∂�z

¼ 0

ð14Þ

and, similarly, the relative phase slip vector can be decomposed in

�qr ¼ � κ

δ

∂�pf
∂�r

¼ �κ
1
δ

∂�p
∂�r

� ∂�ps
∂�r

� �

�qz ¼ �κ
∂�pf
∂�z

¼ �κ
∂�p
∂�z

� δ
∂�ps
∂�z

� � ð15Þ

Again assuming δ≪ 1 (i.e., a is much smaller than the radius R of the
conduit), Eq. 15 reduces to

�qr ¼ �κ
1
�r
∂

∂�r
�r�τrr
� �� ∂�ps

∂�r

� �
¼ � κ

�r
∂

∂�r
�r�σn
� �

�qz ¼ �κ
∂�p
∂�z

ð16Þ

Similarly, Eq. 14 reduces to

1
�r
∂

∂�r
�r�τzr
� � ¼ ∂�p

∂�z
ð17Þ

for the conservation of momentum, imply that �τ ¼ 1
2 ∇�p
�� ���r (defined as

�τ � �τzr with ∇�p
�� �� � ∂�p=∂�z

�� ��), and to

∂�σn
∂�z

¼ 1
�r

�σn
S�vz

∂

∂�r
�r�qr
� �� �vr

�vz

∂�σn
∂�r

þ �σn
�τ

�vr
�vz

∂�τ

∂�r
þ ∂�τ

∂�z

� �
ð18Þ

and

1
�r
∂

∂�r
�r�vr
� � ¼ � 1

�r
∂

∂�r
�r�qr
� �� ∂�vz

∂�z
ð19Þ

for the conservation of mass. Eq. 13 then becomes

∂�vz
∂�r

¼ �σnJ ð20Þ

Solving Eqs. 9–13 or 16–20 require initial and boundary conditions. At
the inlet z ¼ 0, we assume a uniform distribution of crystals ϕ ¼ ϕ0 across
the system, as well as a uniform axial velocity, resulting in a parabolic flow,
following Poiseuille’s law, such that �vz ¼ 3 1� �x2

� �
=2 in Cartesian coor-

dinates and �vz ¼ 2 1� �r2
� �

in cylindrical coordinates. A no-slip condition
is imposed at the walls of the conduit (i.e., �vx ¼ �vr ¼ �vz ¼ 0). The
numerical procedure follows three steps to advance the solution from �z to
�z þ Δ�z, which are repeated until an arrest criterion is met (e.g., �z ¼ 1). In
the first step, Eq. 11 or 18 is solved for �σn using a backward time, centred
space finite-difference scheme coupled with a relaxed fixed-point iteration
method assuming a boundary of symmetry at �x ¼ �r ¼ 0 and �qx ¼ �qr ¼ 0
at �x ¼ �r ¼ 1. As a second step, themixture pressure gradient ∇�p

�� �� is found
using a sub-iterative procedure ∇�p

�� ��ðiþ1Þ ¼ ∇�p
�� �� ið Þ= �vz

	 
ðiÞ
via the global

continuity condition �vz
	 
 ¼ 1 with the gap-averaged vertical velocity given

by �vz
	 
 ¼ �R 10J�σn�xd�x and �vz

	 
 ¼ �R 10J�σn�r2d�r in Cartesian and cylind-
rical coordinates, respectively, since J is a function of ∇�p

�� �� via μ. As a third
step, ϕ is retrieved using Eq. 2, and finally, �vx or �vr and �vz by integrating
Eq. 12 or 19 and Eq. 13 or 20, respectively.

Flow development length
To compute Ld via Eq. 5, we have to first use Eq. 2 to compute μ. Next, we
require dμ=dϕ to compute S ϕ

� �
, and so we differentiate Eq. 2 to find an

analytical form as

dμ
dϕ

¼ � 1
β
� J

2
ϕ
þ 5
2

� �
� 2
ϕj

J þ 5
2
ϕj þ 2

� �
J
1
2

� �
1� ϕ

ϕj

 !
ð21Þ
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Then this allows us to compute S ϕ
� � ¼ � μ=ϕ

� �
dϕ=dμ for a given ϕ0. In

turn, we can then use Eq. 5 as given in the main text to compute the flow
development length for any given inlet crystal volume fraction ϕ0 (see Fig. 3
for example calculations across all ϕ0).

Justification of volcanological parameters
The inputs to the dimensional form of the conduitmodel (Fig. 3a–d) are the
inlet crystallinity ϕ0, the crystal size a, the conduit radius R, and the conduit
length Lf . For Kilauea, we take ϕ0 ¼ 0:1 (ref. 55), a ¼ 600 µm (referring to
olivine phenocrysts; ref. 50),R ¼ 20m (ref. 55), andLf ¼ 2 km(ref. 55). For
Mt Unzen we take ϕ0 ¼ 0:55 (ref. 7), a ¼ 300 µm (ref. 56), R ¼ 25m
(ref. 57), and Lf ¼ 7:5 km (ref. 58). Then, for the general scaling given in
Fig. 3e, we do two things: (1) we compute the development length for some
generic volcanological parameters (the grey shaded area), and (2) we show
the conduit length Lf and crystallinity ranges for some key volcanoes. For
the former, the grey shaded area is Ld bounded by 2:5≤R ≤ 50 m and
10�5 ≤ a≤ 10�3m. For the latter, we use inputs ϕ0 and Lf only. When Lf is
not directly available, we rely instead on petrologic estimations of storage
pressures. For Etna, we take 0:05≤ ϕ0 ≤ 0:15 (ref. 55), and Lf ¼ 9 km
(ref. 55). For Volcán de Colima, we take 0:5≤ ϕ0 ≤ 0:7 (ref. 59), and
3≤ Lf ≤ 7 km (ref. 58). For Mt Pelée we take 0:4≤ ϕ0 ≤ 0:55 (ref. 60), and
Lf ¼ 17:5 km (ref. 58). For Mt St Helens, we take 0:4≤ ϕ0 ≤ 0:72 (ref. 61),
and 8:5≤ Lf ≤ 11:5 km (refs. 62,63). For Santiaguito, we take
0:35≤ ϕ0 ≤ 0:47 (ref. 64), and 6≤ Lf ≤ 7:5 km (ref. 64).

Effects of spreading arising from gravity
For simplicity, we omit the effect of gravity in our simulations (cf. Eq. 6). To
justify this, we compute two competing driving pressure gradients in our
systems. First, the pressure gradient driving crystal migration is
∇pm / �dσn=dx. Second, the pressure gradient that would be acting to
spread the crystals under gravity is∇pg / ΔρgðLf � zÞdϕ=dx, where Δρ ¼
ρs � ρf is the density contrast between the crystals and the melt phase. The
subscripts ‘m’ and ‘g’ refer to ‘migration’ and ‘gravity’, respectively. If we use a
crystal density of 2600 kg.m−3 and amelt density of 2000 kg.m−3, we can look
for which of these pressure gradients is larger in our simulations. If
∇pm <∇pg , then gravitational spreading of the central plug of crystals will
outcompete the pressures acting to keep the plug intact, andmigrationwill be
reversed or not occur at all. We performed checks on all of our dimensional
simulation outputs to check if ∇pm >∇pg : There are conditions for which
∇pm <∇pg but these appear to be the preserve of systems that have very
narrow conduit dimensions down to a conduit width of around 1m, and/or
relatively lowmelt viscosity (i.e.,≲107 Pa.s).These effectsdonot influenceour
primary finding that in naturemigration is rarely acting and that instead, the
contribution of crystals to conduit flow is Newtonian.

Code availability
The conduit flow model Cython code is provided a supplementary file
package, including a guidance documentation.
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