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Abstract 

Background:  Mining the vast pool of biomedical literature to extract accurate responses 
and relevant references is challenging due to the domain’s interdisciplinary nature, 
specialized jargon, and continuous evolution. Early natural language processing (NLP) 
approaches often led to incorrect answers as they failed to comprehend the nuances 
of natural language. However, transformer models have significantly advanced the field 
by enabling the creation of large language models (LLMs), enhancing question-answer-
ing (QA) tasks. Despite these advances, current LLM-based solutions for specialized 
domains like biology and biomedicine still struggle to generate up-to-date responses 
while avoiding “hallucination” or generating plausible but factually incorrect responses.

Results:  Our work focuses on enhancing prompts using a retrieval-augmented archi-
tecture to guide LLMs in generating meaningful responses for biomedical QA tasks. 
We evaluated two approaches: one relying on text embedding and vector similarity 
in a high-dimensional space, and our proposed method, which uses explicit signals 
in user queries to extract meaningful contexts. For robust evaluation, we tested these 
methods on 50 specific and challenging questions from diverse biomedical topics, 
comparing their performance against a baseline model, BM25. Retrieval performance 
of our method was significantly better than others, achieving a median Precision@10 
of 0.95, which indicates the fraction of the top 10 retrieved chunks that are relevant. We 
used GPT-4, OpenAI’s most advanced LLM to maximize the answer quality and manu-
ally accessed LLM-generated responses. Our method achieved a median answer qual-
ity score of 2.5, surpassing both the baseline model and the text embedding-based 
approach. We developed a QA bot, WeiseEule (https://​github.​com/​wasim​aftab/​Weise​
Eule-​Local​Host), which utilizes these methods for comparative analysis and also offers 
advanced features for review writing and identifying relevant articles for citation.

Conclusions:  Our findings highlight the importance of prompt enhancement meth-
ods that utilize explicit signals in user queries over traditional text embedding-based 
approaches to improve LLM-generated responses for specialized queries in special-
ized domains such as biology and biomedicine. By providing users complete control 
over the information fed into the LLM, our approach addresses some of the major 
drawbacks of existing web-based chatbots and LLM-based QA systems, including hal-
lucinations and the generation of irrelevant or outdated responses.
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Background
Retrieving precise answers and relevant references from large volumes of text is still a 
crucial but challenging task in biomedical research. The complexity of this endeavor 
arises from several characteristics and challenges inherent to biomedical literature. The 
language used is highly specialized and includes numerous acronyms, technical jargon, 
standardized nomenclature, and complicated medical terms. Moreover, the biomedical 
domain is ever evolving, featuring constant improvements and breakthroughs. Because 
of this rapid advancement, new information is constantly being added, making it difficult 
for retrieval systems to stay up to date. Furthermore, biomedical information is shared in 
various formats such as research papers, clinical trial reports, patent documents and so 
on. The structural complexities of each of these formats make it difficult to extract and 
interpret information with accuracy.

In addition to these challenges, biomedical literature uses synonyms, and highly con-
text-dependent phrases which adds yet another level of complexity. Because language 
usage varies significantly, ambiguities may arise that make it challenging for information 
retrieval systems to understand the precise context or meaning intended in a query. Fur-
thermore, biomedical research often intersects with other disciplines such as statistics, 
physics, and computer science etc. Therefore, to deliver thorough and pertinent infor-
mation, retrieval systems must be able to integrate and understand concepts from these 
many domains.

Early NLP approaches which primarily used a mixture of rule-based algorithms, statis-
tical analysis, and classical machine learning techniques made progress in solving these 
issues [1–4]. However, their ability to comprehend subtleties and context of complex 
biomedical texts was often limited, and they struggled to capture long-term dependen-
cies in the text. This frequently resulted in inaccurate or irrelevant responses.

The emergence of transformer models has revolutionized the field of NLP. A much 
richer understanding of context and linguistic nuances has been made possible by 
Transformers, which process entire text sequences simultaneously. These models rely 
on utilizing deep learning and a novel use of self-attention mechanisms to process 
sequences of text [5]. Transformer-based models have demonstrated potential in captur-
ing long-term dependencies in text, better interpreting context, and comprehending the 
nuances of natural language, resulting in improved accuracy and relevance in generated 
responses compared to earlier models [6–8].

The development of LLMs have further enhanced QA tasks, building upon the revolu-
tionary developments initiated by early transformer models [6–9]. LLMs are instances of 
foundational models that are pre-trained on large amounts of unlabeled and self-super-
vised data, meaning the model learns from patterns in the data to produce generalizable 
and adaptable output. LLMs are applied particularly to text and text-like entities such as 
codes. These models can be tens of gigabytes in size and trained on enormous amounts 
of text. For instance, GPT-3 from OpenAI, is pre- trained on a corpus of 45 terabytes of 
text corpora from the web most likely encompassing scientific and biomedical literature 
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[8]. In the context of biomedical QA, LLMs can generate answers to complex questions 
by leveraging their extensive pre-training and with an increase in the number of parame-
ters, they typically demonstrate enhanced performance [8, 10]. These parameters essen-
tially represent the size of an LLM’s “brain,” and currently, there is a competitive trend in 
creating LLMs with bigger brains. Among many available LLMs, OpenAI’s GPT-3 and 4 
have gathered significant attention after their chatbot ChatGPT became widely recog-
nized [11]. ChatGPT offers a browser interface for easy access to OpenAI’s LLMs, but 
these models can also be accessed via Application Programming Interfaces (APIs) for 
more customized applications such as querying a large pool of personalized information. 
However, training LLMs daily with newly added information is prohibitively expensive. 
As a result, a major issue with LLMs is that they may yield outdated responses due to 
not keeping up with latest literature. While OpenAI has integrated Bing search capabili-
ties for ChatGPT plus subscribers to closely align responses with the currently available 
information on the web, this feature is presently limited to web-based access only, even-
tually limiting its applicability to nontrivial NLP tasks such as biomedical QA. Moreo-
ver, even with dynamic web access, ChatGPT plus users are limited to the initial search 
results as speed would become a bottleneck. In fact, for many complex queries, Chat-
GPT with Bing search takes longer time to generate answers. In addition, LLMs suffer 
from hallucination which in the current context refers to the phenomenon where the 
model generates responses that may sound plausible but are not factually correct.

Other web-based conversational search engines space include Perplexity.ai, which 
aims to generate answers using LLMs such as GPT-3.5, 4 and Claude, Mistral Large, and 
their in-house model which is currently experimental [12]. Though Perplexity.ai sup-
ports querying custom knowledge base via file uploads for premium users, it has restric-
tions on the number and size of the files. Therefore, the knowledge base of these chatbots 
that aim to cater all domains, are substantially limited to the information that is available 
freely on the web. This limitation can significantly affect the quality of responses from 
QA systems, especially in rapidly evolving fields like biology and biomedicine.

Researchers affiliated to institutes and universities typically have access to vast 
amounts of research content via institutional subscriptions. Additionally, they often 
obtain research papers through networks of fellow researchers in other universities, 
accumulating extensive personal libraries over time. Querying this huge pool of litera-
ture is beyond the capabilities of current web-based chatbots, indicating a gap in the 
applicability of these tools for thorough question answering.

More recently, researchers have proposed prompt engineering (PE) approaches for a 
variety of use cases to improve responses generated by an LLM [13–15]. A “prompt” 
refers to a textual input provided by the user to instruct and/or guide an LLM to gener-
ate meaningful responses. Prompt engineering is mainly about providing as much con-
text as possible with providing few examples (few-shot learning) to enhance an LLM’s 
understanding of a given use-case. However, PE leverages pre-trained knowledge base 
wired into the parameter space of an LLM, which can lead to issues like outdated or 
fabricated responses mentioned earlier. Therefore, its effectiveness is somewhat limited 
in certain applications such as question answering (QA) especially within specialized 
domains like biomedicine. To address these issues, researchers have proposed prompt 
enhancement strategies (PESs) that utilize a retrieval-augmented generation (RAG) 
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based architecture to dynamically extract contexts from a vast pool of information to 
augment user’s prompt [16]. This augmented/enhanced prompt then serves as the 
knowledge base for an LLM to seek answers.

In this manuscript, we focused on improving information retrieval for biomedical 
QA tasks by utilizing RAG-based PES. Within open domains QA tasks, PES based on 
retrieval-augmented architecture is a popular approach. It mainly relies on text embed-
ding and similarity of vectors in a high dimensional space to extract contexts for prompts 
[17–19]. While this PES provided substantial progress toward addressing the aforemen-
tioned LLM-related issues, we found it fell short, particularly when dealing with spe-
cialized biomedical questions. For the biomedical domain, there are just very few RAG 
based frameworks such as Almanac and MedRAG which aim to create improved prompt 
for given queries [20, 21]. MedRAG is a medical QA toolkit that utilizes predefined cor-
pora and for PubMed QA mainly comprising only abstracts from PubMed. However, for 
comprehensive QA, especially in closed domains like the biomedical one, the abstract 
information alone is often insufficient. Almanac, another QA framework, focuses on 
clinical medicine by dynamically extracting contexts through web searches. The relevant 
articles found are broken into smaller pieces and stored in a vector database to facilitate 
information retrieval. However, similar to ChatGPT with Bing search, user experience 
can suffer due to real time article searching and information retrieval approach adopted 
by Almanac. Additionally, Almanac requires curated clinical calculators to perform opti-
mally, which demands effort and medical expertise from the user, making it more suit-
able for clinical/medical domain than general biomedical domain. Moreover, both the 
Almanac and MedRAG are command line tools which limits their accessibility for indi-
viduals with low computational skills.

To address these limitations, we developed an easy-to-use GUI framework called Wei-
seEule,1 where we adopt a prompt enhancement method based on retrieval-augmented 
architecture. Unlike retrieval methods using similarity of vectors, WeiseEule uses 
explicit signals from user queries to extract relevant contexts from the vast pool of bio-
medical literature. For comprehensive QA, our tool not only retrieves article abstracts 
but it also allows retrieving contexts from full texts. Furthermore, we offer article rec-
ommendation feature, which may aid in review or grant writing as well as focused read-
ing. Additionally, our framework is open source and highly modular, providing advanced 
users the flexibility to add or remove features easily.

Methods
The conceptual underpinning of our algorithm is depicted in Fig. 1. The idea is to first 
create a knowledge base from research papers. Then using prompt enhancement tech-
niques based on retrieval-augmented architecture (see sub section  “Context retrieval 
based on vector similarity ranking (PES1)”, “Context retrieval based on keyword fre-
quency ranking (PES2)”) construct relevant prompts that can be sent to LLM for gener-
ating answers to user questions. In the following sub sections, we describe the details of 
the prompt enhancement approaches.

1  WeiseEule: /ˈwaɪ.zə ˈɔɪ.leɪ/
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Knowledge base

A crucial step in our strategy is to generate a knowledge base (KB), which helps users 
to have total control of information that goes into the LLM and massively reduces the 
chances of hallucinations. To build a custom KB one can download articles from Pub-
Med in text format or utilize already accumulated PDFs in a personal digital library. A 
critical task here is to break the article text into smaller pieces (chunks) so that they can 
fit into a prompt. Also, breaking down text into smaller chunks enable LLMs to focus 
on smaller, contextually meaningful units rather than complete documents, which can 
enhance performance. In WeiseEule, we employ RecursiveCharacterTextSplitter from 
LangChain, a package that uses a hierarchical structure to split text into more managea-
ble, cohesive pieces [22]. It starts splitting at higher-level structures, like paragraphs and 
sentences and, then works recursively down to lower-level structures, such as words or 
characters, if needed. The goal of the splitter is to maintain readability and logical flow 
by keeping chunks below a user-defined maximum length. If initial splits exceed the size 
limit, the process keeps going at a finer granularity until the chunks fit the size require-
ments. This technique complies with size restrictions while maintaining the text’s natu-
ral flow and meaning, making it suitable for further processing. Each of these chunks 
then need to be converted into sequence of numbers so that they can be used during 
text embedding-based PES (described below, Sections “Text to Numbers” and “Context 
Retrieval based on vector similarity ranking (PES1)”). Those vectors are subsequently 
pushed into a vector database (DB) for high performance access. Key to our KB creation 
is the concept of namespace (see Fig. 2). A Namespace serves as a container to hold rele-
vant information in place. For example, if a user asks a query about dosage compensation, 
which refers to the mechanism organisms use to balance gene expression across different 
biological sexes, the answer will likely be in publications that list dosage compensation as 

Fig. 1  WeiseEule pipeline—The WeiseEule pipeline is designed to facilitate a seamless QA experience, 
combining namespace creation and the generative capacity of LLMs with strategic prompt design. Three 
necessary steps required to set up the knowledge base are indicated in red circles. Users can choose 
between PES1 and PES2 approaches to retrieve contexts
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a keyword. Therefore, if one accumulates all those research articles and put them in a 
virtual container, it then forms a namespace, provided it also receives a name tag, e.g., 
`dosage compensation articles`. Thus, a namespace with the chunks and vectors serves 
as a custom knowledge base for the prompt enhancement strategies discussed in this 
manuscript. For namespace generation, the WeiseEule app also downloads full texts, 
whenever they are available on the PubMed Central (PMC) server. For articles behind 
paywalls, WeiseEule offers namespace generation by allowing PDF uploads (See the sub-
section ‘Namespace creation’ under the section ‘Salient features of the WeiseEule App’ 
under Results). As mentioned earlier, researchers at institutes and universities often 
have access to an extensive research content through institutional subscriptions and 
their networks of colleagues at other universities, which make it possible to obtain the 
PDFs for non-open access articles. Otherwise, the app only considers the abstracts for 
those articles. Next, the app saves the article records including PubMed ID (PMID), title, 
abstract, body text (when available) and citation information in a local SQLite DB. The 
local SQLite DB functions as a local literature database/store and monitors which article 
chunks are pushed into the cloud-based vector DB. This helps in preventing that records 
from the local DB are redundantly pushed into the vector DB, facilitating the mainte-
nance of unique records in every namespace inside the vector DB.

In a vector DB, there can be multiple namespaces generated from different topics, the 
namespacing approach helps in organizing heterogeneous knowledge bases in a single 
vector DB or in one cloud account. However, for namespacing to function correctly, 
the next step is to convert the text chunks within a namespace into vectors as described 
below.

Text to numbers

The transformation of text into embedding vectors is called text embedding. There 
are specialized models, called text embedders, responsible for this [6, 23, 24]. This 
conversion retains the text’s semantic meaning (Fig. 3A), ensuring the LLM captures 
relationships between different text parts. Text embeddings are a type of representa-
tion that allows words with similar meanings to be represented similarly (Fig. 3B). It 

Fig. 2  Namespacing. The concept of namespacing is foundational to our knowledge management 
approach. Within vector databases, namespaces serve as virtual containers that store relevant information. 
Each record in a namespace is a composite data structure that can hold a variety of metadata, such as the 
text chunk, its corresponding vector representation, and bibliographic references to its original source
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is a projection of text into a high dimensional latent space resulting in compression 
of text into a list of floating-point numbers (vector). This is typically done by learn-
ing dense/compressed representation through context. In this study, we compared 
four different text embedders:

•	 Text-embedding-ada-002: It is an improved version of previous generations of 
embedding models such as text-search-davinci-*-001 and text-search-curie-*-001 
etc. from OpenAI [25]. This model was trained on large amount of data from 
general domain texts such as Wikipedia [26].

•	 BioBERT-v1.1: This model was obtained after pre-training the Bidirectional 
Encoder Representations from Transformers (BERT) language model on large 
amount biomedical text [27].

•	 BioGPT: This model was obtained after pre-training Generative Pre-trained 
Transformer (GPT) model on massive number of abstracts and titles from Pub-
Med articles [28]. The pre-training was performed on GPT-2 model architecture.

•	 MedCPT (Medical Contrastive Pre-trained Transformer): MedCPT is specifi-
cally designed for zero-shot biomedical information retrieval from PubMed [29]. 
It was trained on an extensive number of query-article pairs from PubMed logs.

Once the chunks are converted into vectors, they need to be stored in a vector DB 
for faster and efficient querying. The aim is to efficiently extract chunks relevant to 
construct high quality prompt for a given query. This approach forms the core of the 
prompt enhancement approach discussed in the next section.

Context retrieval based on vector similarity ranking (PES1)

To store the vectors, we choose Pinecone DB because it provides ultra-low query latency 
even with large number of vectors [30] and offers a free tier which allow users to quickly 

Fig. 3  How an LLM understands texts—An LLM interprets texts by first turning them into embedding 
vectors. A The conversion aims to preserve the semantic meaning of the text by making the LLM to 
capture as much as possible the connections between various text parts. B Text embeddings are a type of 
representation that allows words with similar meanings to be represented similarly
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prototype and test their applications. When a user asks a question, it is converted to a 
vector which is then searched in vector DB to extract chunks that have high similarity 
with the query vector. The cosine similarity Sθ (q, c) between a query vector (q) and the 
vector corresponding to some chunk (c) is given by Eq. (1)

where the numerator computes the dot product between the two n-dimensional vectors 
q and c, while the denominator calculates the product of their Euclidean lengths [31]. 
The main reasons to use cosine similarity as a metric to compute similarity between vec-
tors is as follows:

a.	 Semantic similarity: It measures the cosine of the angle between the two embedding 
vectors which effectively captures the semantic similarity between them [32].

b.	 Normalization: It considers the direction of the vectors rather than their magnitude 
by normalizing for the length of the vectors. This is especially helpful in text min-
ing applications where the frequency (and thus the magnitude) of words can vary 
significantly, while it is the directional similarity that conveys meaningful semantic 
relationships [31].

In vector DB, every vector points to a corresponding chunk. Thus, by identifying top 
k similar vectors, we can extract these chunks to construct the user prompt. In this 
prompt engineering approach, we first extract the top k relevant chunks, then wrap them 
around the user query. The LLM is subsequently instructed to find the answer within 
these chunks only, and if the answer is not found then respond with ‘I don’t know’ (see 
Fig. 4A).

However, it is important to note that this choice of top k is very much dependent on 
the context lengths provided by LLMs (Table 1). Therefore, ideally the top chunks should 
contain relevant information to provide a satisfactory answer to the question. Yet, this 
is not always the case (See Results, section “PES1 struggles with optimal prompt gen-
eration in relatively large knowledge bases”), which makes the QA bot perform poorly. 
Thus, we developed a second prompt enhancement approach, as described in the next 
section.

Context retrieval based on keyword frequency ranking (PES2)

In order to find the most relevant chunks for a given query, we implemented a strat-
egy that extracts keywords from the user’s query and ranks paragraphs/chunks 
higher if they contain a higher keyword count. The keyword extraction can be done 
either manually or automatically. Using well-designed and explicit instruction head-
ers within the prompt, it is possible to make an LLM function as automatic keyword 
extractor (see Fig.  4B). Our QA bot implementation offers both options. For auto-
mated extraction, the LLM outputs the keywords as a python list. However, in some 

(1)Sθ (q, c) =

∑n
i=1 qi.ci

√

∑n
i=1 q

2
i .

√

∑n
i=1 c

2
i



Page 9 of 26Aftab et al. BMC Bioinformatics          (2024) 25:281 	

scenarios, it might be necessary to exclude certain keywords or combine adjacent 
keywords into a single item. In such cases a manual approach is more appropriate. 
For manual extraction, queries are prefixed with a ‘#’ symbol for ease of programming 
and keywords are marked using double asterisks. For example, #Find all results that 
connect **NuA4** with **meiosis**.

The approach is based on the consideration that chunks that have a higher fre-
quency of the extracted keywords are more likely to contain useful contextual infor-
mation to generate a high-quality response. For example, suppose the upper table 
in Fig.  5 was obtained after ordering chunks using cosine similarity-based ranking. 
According to our considerations, the second row should clearly have come first. To 
correct that, we re-ranked the chunks by elevating the most relevant chunks based 
on keyword frequencies, ensuring key information surfaces to the top (Fig. 5, lower 
table). To illustrate our approach further, we present additional examples of ranking 

Fig. 4  Architecture of our prompt—Custom instructions in the header guides an LLM to produce desired 
outcomes. A Reinforces an LLM to produce improved responses by combining the elements of information 
retrieval and generative AI. B Exploits LLM’s zero-shot reasoning capability to transform it into an automatic 
keyword extractor module

Table 1  LLMs and their context lengths

*Assuming generated answer length is ≤ 2000 characters

Model Context lengths Max fit

GPT-3 4 K tokens ≈ 16 K chars 8 chunks (7 
context + 1 
answer*)

GPT-4 8 K tokens ≈ 32 K chars 16 chunks 
(15 con-
text + 1 
answer*)
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variants in Fig. 6. In one mode, we only keep chunks in which all keywords appear at 
least once and in the other we rank chunks based on the cumulative frequency of all 
keywords. In addition, other kinds of ranking are also possible, as described below.

a.	 None fixed: A chunk is ranked higher if it contains all the three keywords over a 
chunk that does not. Even if the total frequency count is the same or even higher. 

Fig. 5  Re-ranking chunks—‘NuA4’ and ‘meiosis’ are keywords extracted from a query: Find all results that 
connect NuA4 with meiosis. Each row represents a paragraph or chunk from research papers, with columns 
displaying both individual and total frequencies of the keywords. The upper table shows chunks that are 
initially ranked according to cosine similarity computed between the query and each chunk in the vector 
DB. The bottom table depicts the re-ranking of the same chunks based on their keyword frequencies. The 
ranking starts at 0, indicating that the topmost relevant chunk is ranked at the 0th position

Fig. 6  Variants of ranking criteria—Each row represents a text chunk, columns indicate both individual and 
total frequencies of three keywords: k1, k2 and k3. The left table presents chunks initially ranked according 
to cosine similarity. The successive tables on the right depict the re-ranking of these chunks under different 
ranking criteria: without any fixed keywords (None Fixed), with one keyword (‘k3’) is fixed, and with multiple 
keywords (‘k1’, ‘k3’) fixed, respectively
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When two chunks have nonzero values for all keywords, the one with higher ‘total_
count’ is ranked higher. In this mode equal importance is given to all the keywords.

b.	 One fixed: More importance is given to chunks that have nonzero values in the fixed 
keyword column which in this case is ‘k3’. This way of ranking chunks is based on 
Boolean expressions (k1 OR k2 AND k3), similar to searches in PubMed.

c.	 Multiple-fixed: This mode prioritizes chunks containing nonzero values for several 
specified keywords. Extending the one-fixed approach, it allows for finer chunk eval-
uations by focusing on multiple key terms. Thus, this method ranks chunks higher 
when they contain all designated fixed keywords, thereby enhancing specificity in 
data sorting.

Once the chunks have been extracted and a context for answering the user query is 
created, processing takes place via LLM.

Processing queries by accessing LLMs via API

The extracted context is wrapped around the user query and a prompt for LLM is cre-
ated. We use the API services from OpenAI for customized interaction. In the prompt 
header, the LLM is explicitly instructed to look for the answer only within the given 
context and if the answer cannot be found then it should return appropriate response, 
such as ‘I don’t know’ (see Fig. 4A). Thus, by instructing the model to search within the 
provided passages, we give it access to both the latest and most relevant data, while 
also leveraging the LLM’s contextual understanding and ability to generate human-like 
responses.

Our pipeline (Fig. 1) can be divided into two main modules: one for designing relevant 
prompts and the other for generating meaningful responses. At the heart of the prompt 
enhancement module lies the text embedding, which aims to capture the essence of text 
in a compressed representation that can be utilized to obtain relevant contexts. At the 
same time, the core to the answer generation module is the LLM responsible for genera-
tion human like responses. As users of AI models, we are bound by certain constraints: 
For instance, creating a proprietary LLM is currently prohibitively expensive for most 
users. Despite that, we can still influence the outcome of user queries by tweaking the 
other aspects of our pipeline. Our hypothesis is that text embedding has a significant 
impact on the final response generated by LLMs. This is because we determine the con-
text for our prompts through these embeddings and their similarities with the query.

Experiments: influence of text embedding on answer quality

Before discussing the experiment, it is important to briefly note some of the key aspects 
of text embedding. Vector embeddings can be seen as a form of compression, a way of 
capturing the essence of text, i.e., semantic similarity between words or sentences in 
a format that a machine can understand and manipulate. It has been shown that the 
dimensionality of embeddings can impact model’s understanding of semantic relation-
ships [24, 32]. There are several text Embedder models available, and they embed the 
texts into different dimensions. For example, the OpenAI model embeds text into 1536 
dimensions. A larger number of dimensions might capture more information, but it also 
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requires more computational resources to process and store. Higher-dimensional vec-
tors might also include dimensions that capture noise rather than useful information, 
leading to overfitting. Conversely, reducing the dimensionality might lead to informa-
tion loss, but it can help focusing on the most important aspects of the text’s properties 
and result in models that are more efficient and less prone to overfitting. Consequently, 
there is a trade-off which a practitioner needs to optimize. Also, text embeddings are 
domain sensitive because the meaning of words can differ based on context. For exam-
ple, “cell” in a biology text refers to a basic unit of life, but in a telecom context, it refers 
to a cellular network. Therefore, researchers have published several embedding models 
that are fine-tuned/re-trained on data from a specific domain, such as BioBERT which 
is BERT model pre-trained on large-scale biomedical texts. BioGPT is a GPT model in 
its core but again trained on vast amounts of texts from biomedical literature. The latest 
addition to the biomedical domain specific model is MedCPT, which is a hybrid model 
that includes both a retriever and a re-ranker component that are pre-trained on large 
number of query-article pairs from PubMed search logs.

Based on these facts, we hypothesized that different text embedder models can influ-
ence the quality of answers generated by LLMs. We therefore assessed which of the four 
models: BioBERT, BioGPT, MedCPT and text embedder ADA from OpenAI works 
best for our knowledge management use case. The experiments were performed as fol-
lows: we first created a knowledge base in which publications from a specific topic are 
stored after recursively splitting them into small chunks of 2000 characters (chars; as 
depicted by the small boxes in Fig. 7). This specific chunk size was determined arbitrar-
ily. Experimenting with various chunk sizes may be helpful to evaluate how they influ-
ence the quality of the generated answers. We then formed a question, already knowing 
which chunks contain the answer, which we refer to as key chunks. Next, we modified 
our knowledge base to contain only one key chunk (while the rest were non-key chunks) 
and we asked which embedding model can yield vectors corresponding to the key chunk 
and our query, so that the similarity between them is the highest. In other words, we 
evaluated which embedding model can rank the key chunk the highest, keeping in mind 
LLMs like GPT-3 and GPT-4 can only consider the top 8 and 16 chunks, respectively 

Fig. 7  Experiment to determine optimal embedding model—Text from research papers is broken into 
smaller chunks to construct a knowledge base. A key chunk (which contains the answer) is highlighted 
within a red rectangle. The objective is to evaluate which embedding model assigns the highest rank to the 
key chunk
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(see Table  1). This entails that any chunk ranked lower than these thresholds will be 
missed by the corresponding LLMs.

Results
PES1 struggles with optimal prompt generation in relatively large knowledge bases

In our first setup, the knowledge base contained just 7 publications and one known key 
chunk from one paper which we refer as the key paper. Our query was: Find all results 
that connect NuA4 with meiosis. We found that both BioBERT and BioGPT ranked the 
key chunk 2nd and MedCPT ranked it 1st. OpenAI’s ADA, though, ranked it 9th. So, 
if we use ADA with GPT-3’s limit, then the key chunk would be missed and hence the 
answer.

Next, we further evaluated whether this pattern persisted with larger namespaces, 
using the same query as above. Hence, in our second experiment, we created a larger 
knowledge base comprising approximately 200 papers, including the key paper from the 
first experiment. For the same query, we compared the retriever performance of differ-
ent embedder models based on the top ten retrieved chunks. Again, MedCPT outper-
formed the others by placing the key chunk at the 3rd position while no other embedder 
model was able to retain the key chunk within their top ten retrieved chunks. The closest 
one was BioBERT that placed the key chunk at the 29th position which was beyond the 
reach of both GPT-3 and GPT-4’s context limits. Furthermore, we inspected the chunks 
ranking above the 29th place and found that they lacked sufficient context to answer 
the question as effectively as the key chunk. This demonstrate that the choice of embed-
ding has a significant impact on the answer. Thus, to further assess the retrieval power 
of PES1, we selected MedCPT, the best performing embedder model, and evaluated it 
on questions covering a diverse range of concepts within chromatin and computational 
biology (See Table 2). Some of the questions are listed in Table 3. In this test, PES1 did 
not perform well, as for most of the questions it gave “I don’t know” (Wrong) answers 
and, for some of the questions the answers were either not complete, lacking depth and 
comprehensibility. Upon inspecting the top ten retrieved chunks for each question, we 
found that the key chunks containing the answer was missing for most of the questions. 
These observations highlighted the need for boosting the key chunk’s visibility. There-
fore, to address this issue, we developed PES2.

Table 2  Queries from various biomedical topics used to evaluate PES1 and PES2

Query Topic

Imaging mass spectrometry and LCMS based proteomics (IMS_LCMS)

Dosage compensation (DC)

Applications of knowledge graphs in biomedical problems (KG)

SWR1 and NuA4 complex (SWR1_ NuA4)

Application of vision transformers for biomedical image classification (ViT_Image)

Query topics are color-coded for clearer categorization and abbreviations are given to efficiently refer them in the text.
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PES2 improves prompts by boosting the visibility of relevant chunks

We applied PES2 to our previous knowledge base comprising approximately 200 papers, 
using the same query as before. As shown in Fig. 8A, the re-ranking process significantly 

Table 3  Comparison of LLM-generated responses based on PES1 or PES2 for questions from topics 
described in Table 2.

Question PES1 PES2

What specific mitochondrial factors and proteins associated with the late stages of 

spermatogenesis were identified as significantly reduced in the testis of AROM+ mice, 

and how do these findings correlate with the observed infertility phenotype?

Wrong Good

What specific functionalities does the ImShot R package offer for the analysis of IMS

and LC–MS data, and how do these functions enhance the flexibility and utility of the 

software for different user needs?

Good Better

What are the functional consequences of substituting the CXC domain of MSL2 

between D. melanogaster and D. virilis, and how does this affect the assembly and 

targeting of the dcc in these species?

Wrong Excellent

how does the piRNA 21ux-1 regulate the expression of xol-1 mRNA and protein in the 

germline of C. elegans and what are the downstream effects on dosage compensation 

and sex determination?

Good Excellent

How does the MPASL model utilize knowledge graph hierarchy propagation to 

enhance gene representation, and what is the significance of this approach in the 

context of synthetic lethality prediction in human cancer?

Poor Better

How does the SubGE-DDI framework integrate text features from PubMedBERT with 

subgraph features from the knowledge graph, and what are the different feature fusion 

methods evaluated in this study?

Wrong Good

What is the impact of deleting the SWR1 gene on mutation rates at the URA3 and 

CAN1 loci in yeast strains, and how does this effect vary with the presence or absence 

of EXO1?

Wrong Excellent

What experimental evidence supports the hypothesis that H2A.Z deposition by SWR-

C enhances replication fidelity by facilitating EXO1-dependent excision of 

mismatches generated by DNA polymerase δ?

Wrong Excellent

#what are the benefits of using the **Swish activation** function in the hidden layers 

of the **FV-EffResNet** model compared to **ReLU** and LeakyReLU, and how 

does it impact the model's performance on **finger vein** datasets?

Better Poor

#How does the **skin lesion** classification model **HI-MViT** handle spatial 

features that are local in the image? †

Poor Better

Due to space constraints, only 10 questions are shown while the answer, citation columns are omitted. The complete 
responses generated by LLM for all 50 questions are available in the supplemental file (See Additional file 1). Queries are 
color-coded to indicate their connection with diverse topics, as illustrated in Table 2. †Manually marking keywords (See the 
above section titled "Context Retrieval based on Keyword Frequency Ranking (PES2)" under Methods) aided in obtaining a 
better response for this query.
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improved the position of the key chunk, lifting it from the 29th to the 1st place (ranking 
of zero indicating the highest position). This performance surpassed the initial ranking 
given by BioBERT and matched the retrieval performance of top-performing embedding 
algorithm MedCPT when using PES1, for this moderately-sized knowledge base. Next, 
we applied PES2 to answer a more challenging and specific question: What specific mito-
chondrial factors and proteins associated with the late stages of spermatogenesis were 
identified as significantly reduced in the testis of AROM + mice, and how do these find-
ings correlate with the observed infertility phenotype? This time, we used a much larger 
knowledge base comprising approximately 1000 papers. We compared the retrieval 

Fig. 8  Ranking chunks by keyword frequencies (using PES2) ranks key chunk(s) higher—A Top ten chunks 
retrieved using the BioBERT model for the query Find all results that connect NuA4 with meiosis, with a ranking 
of zero indicating the highest position. The first two columns show the frequencies of extracted keywords: 
NuA4 and meiosis in each chunk. The key chunk (highlighted using red rectangle), originally ranked 29th 
using cosine similarity scores, is elevated to 1st after applying the keyword frequency-based ranking method. 
The knowledge base size is moderate, with approximately 200 papers. B Top ten chunks retrieved using the 
MedCPT model for the query What specific mitochondrial factors and proteins associated with the late stages of 
spermatogenesis were identified as significantly reduced in the testis of AROM + mice, and how do these findings 
correlate with the observed infertility phenotype? with a ranking of zero indicating the highest position. The 
first 5 columns show the frequencies of extracted keywords: mitochondrial factors(k1), proteins(k2), late stages 
of spermatogenesis(k3), testis(k4), and AROM + mice(k5) in each chunk. The key chunks (highlighted using 
red rectangles), originally ranked 308th and 33rd using cosine similarity scores, are elevated to 2nd and 8th 
positions, respectively, after applying the keyword frequency-based ranking method. The knowledge base 
size is large, with approximately 1000 papers
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performance with MedCPT, as it had performed reasonably well in the moderately-sized 
knowledge base. Interestingly, MedCPT failed to retrieve the key chunks into its top ten 
retrieved chunks, in this larger knowledge base. Applying PES2 improved the ranking of 
the key chunks, elevating them from 308th and 33rd to 2nd and 8th positions (counting 
0 as first), respectively, as depicted in Fig. 8B. Additionally, PES2 also ranked up other 
relevant chunks which were low-ranking before.

Performance evaluation

To further evaluate PES1 and PES2, we assessed the quality of answers generated by the 
LLM for 50 questions (see Additional file  1). These questions were selected from the 
diverse range of topics presented in Table 2. For this evaluation, we designed an experi-
ment simulating a “needle-in-the-haystack” scenario, as follows: For questions related to 
a specific topic, we created a knowledge base or namespace containing a large number 
of papers, where papers on the specific topic were in the minority, and the majority were 
related but from different topic(s). For example, for questions related to IMS_LCMS, 
we created a large namespace with approximately 1000 papers. Of these, only 6 papers 
were specific to it while the rest covered related but different topics, such as dosage com-
pensation. For robust evaluation, we created separate namespaces comprising a large 
number of papers for each query topic mentioned in Table  2. The article distribution 
among the query topic (QT) and other topics (OT) in these namespaces is summarized 
in Table 4. For this set of 50 questions, we used GPT-4o, which is the most advanced 
model from OpenAI. We then asked specific questions derived from papers belonging to 
different query topics, we refer those papers as key papers. These papers were minorities 
in every namespace (See Table 4), thereby simulating a “needle-in-a-haystack” setup.

We then employed PES1 and PES2 to seek answers to those questions, evaluating their 
retrieval performance using the following criteria: For every query, we computed the 
fraction of the top ten retrieved chunks that originated from the key papers, for each 
retriever (PES1 and PES2). In other words, we estimated the retrieval precision of differ-
ent retrievers for each question, as given in the following equation:

For a more robust evaluation, we also compared PES1 and PES2 with BM25 which 
is a commonly used baseline model in information retrieval and NLP. It is a ranking 

(2)Precision@10 =

Number of relevant chunks in top 10 retrieved chunks

10

Table 4  Article distribution within namespaces

QT → Query Topic (Acronyms are defined in Table 2); OT → Other Topic

TP → Total papers; PQT → Papers from Query Topic

KP (%) → Percentage of key papers in a namespace

Namespace QT OT TP PQT KP (%)

1 IMS_LCMS Dosage compensation 946 6 0.63

2 DC Chromatin proteomics 1437 5 0.35

3 KG Dosage compensation 945 5 0.53

4 SWR1_NuA4 Dosage compensation 945 5 0.53

5 ViT_Image SWR1 and NuA4 423 8 1.89
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function that evaluates document relevance to a query by combining term frequency, 
inverse document frequency, and document length normalization [33, 34]. Due to its 
simplicity and efficiency, it is a robust and reliable method for comparing more com-
plex or novel approaches. The retriever precision results are plotted in Fig. 9A, clearly 
showing that PES2 is the best and BM25 is the worst performing retriever for these 50 
questions.

Furthermore, we manually evaluated the quality of LLM-generated answers for 
every question from each retriever using the following criteria: relevancy, clarity/
comprehensibility, and depth of information/completeness. We then categorized the 
generated answers into five categories: Wrong (0), Poor (1), Good (2), Better (3), and 
Excellent (4). The corresponding category scores are given in between parenthesis 
with “Excellent” answers receiving the highest score of 4 and the “Wrong” answers 
receiving the lowest score of 0. The categories were defined as follows:

Wrong: “I don’t know” answers.
Poor: Incomplete answers lacking depth, informativeness, specificity, or clarity.
Good: Clear and comprehensible answers.

Fig. 9  Evaluating performances of BM25, PES1, and PES2—A Based on Precision@10: For each query, we 
computed (using Eq. 2) the fraction of the top ten retrieved chunks that originated from the key paper 
for each retriever. PES2 demonstrated the highest precision among the three retrievers, with a median of 
0.95. B Based on LLM-generated answer qualities: We determined the quality of LLM-generated answers 
through manual assessment. For the quantitative evaluation, we categorized the generated answers into five 
categories: Excellent (4), Better (3), Good (2), Poor (1), and Wrong (0). Using PES2 led to the highest quality 
answers among the three retrievers, with a median score of 2.5
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Better: More informative, comprehensible, and specific answers.
Excellent: Comprehensive and highly informative answers.

The results that are plotted in Fig.  9B, using the scores for each question, for each 
retriever, indicate that PES2 produced high quality answers for most of the 50 questions, 
outperforming the other methods.

During the evaluation, the input prompt consisted of the following three pieces of 
information (see Fig. 4A):

(a)	 Header: This contains instructions that an LLM is supposed to follow.
(b)	 Context: This is where the context to answer a question is placed.
(c)	 Question: This is a placeholder for user questions.

As shown in Fig. 4A, we explicitly instructed the LLM in the header not to make up 
an answer and seek it only within the provided context and if, and only if, an answer is 
not contained in the context then respond with ‘I don’t know’. It is clear from Table 3 
and the supplemental Table (see Additional file 1) that PES1 struggled to generate mean-
ingful prompts as it responded with ‘I don’t know’ or generated poor answers for most 
of the questions. Furthermore, the information content in contexts retrieved by PES1 
was not relevant enough to produce good quality answers for several questions. This was 
even worse for questions that seek extremely specific details. On the other hand, with 
PES2, we obtained good quality answers to the majority of the questions. We provided 
all the detailed answers along with their references in the supplementary table (Addi-
tional file 1). Furthermore, the parameter settings used to evaluate both PES1 and PES2 
in the WeiseEule app are provided in Additional file 2, which also includes step-by-step 
instructions for setting up WeiseEule as a localhost application on user machine.

Salient features of the WeiseEule app

The WeiseEule app was designed to facilitate efficient information retrieval from bio-
medical articles. Here are some of its key features:

(a) 	Namespace creation: This feature allows users to fetch PubMed articles on the 
topic(s) of interest and create a namespace in vector DB that serves as a query-
able knowledge base. The app provides a textbox for inputting keywords. For exam-
ple, if a user is interested creating namespace for Alzheimer’s knowledge base, then 
this can be typed in the provided input box, followed by selecting a date range 
(See Fig. 10A), and finally hit the GO button. Then the app will download papers 
in which the keywords appear either in the titles or in the abstracts, provided they 
were published within the given date range.

	 One advantage of the date range feature is that users can update their namespaces 
periodically or whenever they want. To update the existing namespace with lat-
est research papers, users need to first select a namespace on the app GUI and 
then input the keywords and a date range, and hit the GO button. Currently, the 
namespace update is done manually, however, in the future, we will make this fea-
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ture automatic. In addition, users can also use their PDFs to create namespaces. 
The namespace creation from user uploaded PDFs is currently done using a Python 
script which comes with the WeiseEule App repository. Step by step instructions 
on how to use the script is given in Additional file 2. In the next version of the app, 
we will also support this feature directly via app GUI.

(b) 	Answer questions with source and context: In the chat panel (See Fig. 10B), users 
can query a namespace after selecting an LLM and the relevant namespace from the 
dropdown menu in the sidebar (See supplementary Fig. S3) in the sidebar. Answers 
are backed by references and the contexts used to generate them (See Fig. 10B). The 
app also allows users to experiment with different PES methods, LLMs and chat 
completion settings (See supplementary figures S3, S4).

Fig. 10  Salient features of the WeiseEule app—A Users can download article texts from PubMed by entering 
keywords in the provided search box. This feature enables users to create namespaces/knowledge bases with 
the articles published during specified date ranges. B Users can query a selected namespace with relevant 
questions. Answers are supported by original references, and the contexts used to produce the answer are 
also provided. C Users can find relevant PubMed articles corresponding to their keywords/queries. This panel 
shows the top ten relevant PMIDs matching the query: Side effects associated with COVID-19 vaccines. PMIDs 
are sorted in descending order based on their relevance scores computed through a combination of vector 
similarities and deeper semantic comparisons
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(c)	  Find relevant articles: This feature helps users to find articles relevant to a set of 
keywords or queries in the Search panel. The app presents the search results as 
an interactive table with three columns: the first column lists the PubMed IDs 
(PMIDs) relevant to the query/keyword(s), the second column shows the corre-
sponding article titles, and the third column presents the relevance score, which 
indicates how closely the abstracts of the retrieved PMIDs match the query/
keyword(s). This score is determined through a combination of vector similarities 
and deeper semantic comparisons [29], and it is used to sort the retrieved PMIDs in 
descending order (See Fig. 10C).

	 We anticipate this feature to be useful in multiple use cases. For instance, if a user is 
writing a review on COVID-19 and wants to discuss about the vaccines and their 
side effects, in a section of the manuscript. By using the WeiseEule app, the user 
can retrieve PMIDs, and the corresponding article titles ranked according to their 
relevance to the query (as exemplified in Fig.  10C). Thus, this allows the user to 
focus on the most relevant publications, a feature that is particularly valuable for 
reviewing topics with extensive literature. In addition, the app provides a summary 
of the selected abstracts, and the PMIDs are hyperlinked to their respective pages 
on PubMed. Hence this also allows the user to verify the results, as well as down-
load the citation files easily.

	 This feature can also help users to identify publications that can be cited to support 
text they have already written. To this end, the user formulates a search query by 
entering text parts they want to support with a citation in the Search panel. The 
app will then return a list of articles most relevant to the search keywords/query, 
from which the user can select suitable articles to cite. Note that since the ‘Find rel-
evant articles’ feature only provides access to the relevant abstracts, it is more suit-
able for assistance during review or grant writing or to find articles to cite. On the 
other hand, the ‘Answer questions with source and context’ feature described earlier 
is more suitable for seeking very specific information buried inside the full text of 
articles.

	 To implement this feature, we used the embeddings of PubMed articles from NCBI, 
generated using the MedCPT article encoder. On their FTP server,2 NCBI organ-
ized the embedding files into batches, each containing about 1 million articles. For 
instance, batch 0 includes PMIDs ranging from 0 to 999999. However, each batch 
may not contain exactly 1 million articles due to some articles being missing. Apart 
from embeddings files for each batch, the FTP link also provides two additional 
files necessary to implement this feature. One file is for the 1 million PMIDs corre-
sponding to the embedding vectors, and the other one is a python dictionary map-
ping these PMIDs to their abstracts. These files are large, with each batch averaging 
approximately 4 GB. Currently, there are 38 such batches of data corresponding to 
approximately 38 million PubMed articles. Searching this entire dataset is chal-
lenging, so we restricted the search feature to one batch (1 million articles), at a 
time. Users need to download the files and keep them in the MedCPT_Embeddings 

2  https://​ftp.​ncbi.​nlm.​nih.​gov/​pub/​lu/​MedCPT/​pubmed_​embed​dings/

https://ftp.ncbi.nlm.nih.gov/pub/lu/MedCPT/pubmed_embeddings/


Page 21 of 26Aftab et al. BMC Bioinformatics          (2024) 25:281 	

folder, inside the app folder, and mention the batch number when using the search 
feature. For example, if the search query is “Side effects associated with COVID-19 
vaccines” and users wants to search batch 36, they should enter “Side effects associ-
ated with COVID-19 vaccines #36” in the panel.

	 However, we acknowledge that batch-wise searching is time consuming and sub-
optimal and for some queries may not yield the best hits. Therefore, we are work-
ing on Elasticsearch implementation for this feature to be incorporated in the next 
WeiseEule release. Elasticsearch is a powerful search and analytics engine designed 
for efficient handling of large volumes of data [35]. It is particularly useful for appli-
cations involving complex search queries and full-text search across massive data-
sets, which closely matches our use case.

(d)	  Flexible software design: A key feature of WeiseEule app is the flexible nature of 
its software design, consisting of two main components: Frontend and Backend. 
Frontend manages the user interface (UI) for different features, while the backend 
implements the logic to actualize these features. The two ends communicate via 
WebSocket protocol which provides full duplex communication, meaning either 
end can send messages at any time (See Fig.  11). This setup enables the LLM to 
stream responses token by token from the backend to the frontend, enhancing the 
user experience significantly. Moreover, the code for UI and the corresponding API 
endpoints are completely segregated and modular, making it fast and easy to add or 
remove UI features or API endpoints.

Discussion
Performance of PES1

Our experiment with different embedding models in PES1 highlights an interesting 
aspect of text embedding. The performance of BioBERT, BioGPT, MedCPT, and Ope-
nAI’s ADA in ranking key chunks from biomedical literature can be influenced by a 
number of factors, including their design, training data, and algorithms.

Fig. 11  Flexible design of the WeiseEule app—The WeiseEule app features a flexible software design 
with two main components: the frontend, which handles the user interface (UI), and the backend, which 
implements the logic for various features. These components communicate via WebSocket protocol, 
enabling full-duplex communication for real-time data exchange. This architecture allows the LLM to stream 
responses efficiently from the backend to the frontend, significantly enhancing the user experience. The 
modular and segregated code structure of the UI and API endpoints facilitates quick and easy addition or 
removal of features
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BioBERT’s performance

BioBERT was pretrained on a large corpus of biomedical texts, which likely gives it an 
edge in understanding and contextualizing biomedical queries. However, it ranked the 
key chunk much lower (29th place) in a bigger knowledge base than it did in a smaller 
setting (2nd place). This suggests a limitation in its retrieval capabilities as the complex-
ity of knowledge base increases. This indicates that, as the size of the knowledge base 
grows, even a domain-specific model like BioBERT might struggle with the increased 
diversity and complexity of the data, leading to lower quality information retrieval.

BioGPT’s performance

BioGPT, similar to BioBERT, is tailored for biomedical content but there is an impor-
tant distinction: the focus of the BERT model is to understand the meaning of words in 
relation to the entire text, whereas GPT excels at text generation and completion. So, as 
a generative model, BioGPT approaches embedding of texts differently which in turn 
influences ranking.

MedCPT’s performance

MedCPT is designed for zero-shot biomedical information retrieval and excels at cap-
turing complex semantic relationships within texts. However, in some “needle-in-the-
haystack” situations, where the objective is to find specific information within a large 
corpus, it might underperform. Most of the questions in our evaluation set were specific, 
for example,

•	 What specific mitochondrial factors and proteins associated with the late stages of 
spermatogenesis were identified as significantly reduced in the testis of AROM + mice, 
and how do these findings correlate with the observed infertility phenotype?

Or

•	 What experimental evidence supports the hypothesis that H2A.Z deposition by 
SWR-C enhances replication fidelity by facilitating EXO1-dependent excision of mis-
matches generated by DNA polymerase δ?

The “I don’t know” or “Poor” responses from PES1 (using MedCPT embedding model) 
to many such questions indicate that, in scenarios requiring highly specific information 
needs, MedCPT embeddings may contain semantically related but contextually less rel-
evant information, which would reduce precision.

OpenAI’s ADA performance

Being the worst performer, OpenAI’s ADA highlights a broader issue with using gen-
eral-purpose embeddings in domain-specific tasks [36–38]. ADA is trained on a variety 
of texts, not just on biomedical literature. The comparison of ADA with targeted mod-
els like BioBERT or MedCPT highlights that, generalist training approaches appear to 
limit the model’s ability to understand and prioritize the complexities of biomedical text, 
resulting in poorer performance in specialized tasks. ADA’s ranking of the key chunk 
beyond the reach (9th place) of GPT-3 even for such small set of chunks emphasizes 
the challenge that generic embeddings face in highly specialized domains. Fine tuning 
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ADA on a large biomedical corpus may make it more sensitive to the specific cues that 
indicate relevance in biomedical texts but doing that comes with additional expenses in 
terms of expertise, time, and money.

Performance of BM25

To rank documents, BM25 uses term frequency-inverse document frequency (TF-
IDF), and document length normalization. Although this method works well for 
numerous general information retrieval tasks, it might not be appropriate for highly 
specific queries. We speculate that BM25 may have had difficulties in our “needle-
in-the-haystack” scenario because the number of related but less relevant papers far 
outweighed the number of important papers. Thus, it may be difficult to achieve the 
necessary nuanced relevance using the straightforward term frequency model.

Performance of PES2

By re-ranking text chunks based on the frequency of specific keywords extracted 
from user queries, PES2 prioritizes content that is apparently more relevant to the 
users’ informational needs.
Strengths of the keyword frequency-based re-ranking

a.	 Improved relevance: The results show that our re-ranking strategy significantly 
improves the relevance of retrieved chunks compared to the embedding-based 
approaches which mainly rely on cosine similarity measures in vector space. PES2 
more efficiently surfaces information that users are likely to find helpful by directly 
aligning the retrieval process with the explicit keywords in user queries.

b.	 Simplicity and efficiency: In contrast to intricate NLP methods that necessitate sub-
stantial computational power and advanced AI models, keyword frequency analysis 
is reasonably easy to apply and computationally effective. This approach is therefore 
particularly appropriate for applications where quick response times are essential or 
resources are scarce.

c.	 Flexibility: The approach offers considerable flexibility, allowing for easy adjustment 
of the re-ranking algorithm to accommodate different keyword selection schemes or 
to incorporate more relevance signals as needed.

The PES2 approach represents a promising advancement toward the creation of 
more relevant and responsive biomedical question-answering systems. This method 
provides a practical trade-off between retrieval effectiveness and computational effi-
ciency by emphasizing the explicit signals supplied by user queries. However, realiz-
ing its full potential will require addressing its current limitations:

a.	 Handling of synonyms and related terms: A drawback of the PES2 approach is its 
dependence on precise keyword matches, which might leave out domain specific 
nuance like synonyms and related terms. In biomedical texts one keyword may have 
multiple synonyms, for example, Heterochromatin protein 1, Hp1a and Su(var)205 
all refer to the same entity.
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b.	 Typos and Spelling Variations: Spelling errors can have a substantial impact on the 
retrieval process and may result in the exclusion of valuable information.

c.	 Contextual relevance: Although keyword frequency can be used as a stand-in for rel-
evance, it does not take the context of a keyword’s appearance into consideration. 
As a result, this approach may give preference to sections that have a high keyword 
density but provide little insight into the user’s actual query.

To address these limitations, future work could investigate the integration of semantic 
analysis techniques to better understand the context and meaning behind user queries. 
We could also explore integrating query expansion techniques which, in association with 
resources such as the Unified Medical Language System (UMLS) could help broaden-
ing the search query for biomedical texts by including synonyms or related terms. This 
could increase the likelihood of finding relevant chunks, even in cases where the exact 
keywords are misspelled. Typos and slight variations in the user’s query can be explored 
by fuzzy matching algorithms. To locate close matches to the keywords in a database, 
methods such as Levenshtein distance (a type of edit distance) can be employed. This 
way, relevant chunks can still be retrieved based on the closest matches to the intended 
keywords, even if misspelled. To improve contextual relevance, future work could 
include the integration of knowledge graphs. The graph can be used to enable seman-
tic search functions. Understanding the semantic relationships between entities can be 
done by looking at the graph’s structure rather than just depending on keyword frequen-
cies. This can help in ranking chunks not just by the occurrence of keywords but by the 
relevance of the context in which those keywords appear.

Conclusions
Our findings emphasizes the importance of integrating external knowledge with genera-
tive AI to improve biomedical QA tasks. Through our proof-of-principle study, we demon-
strated the significance of prompt enhancement strategy based on explicit signals in user’s 
query over traditional text embedding based context retrieval approaches. This method not 
only improved retrieval precision, with a median Precision@10 of 0.95, but also significantly 
enhanced the quality of LLM-generated answers, achieving a median quality score of 2.5.

We also highlighted the importance of namespaces in streamlining the search, ena-
bling users to experiment with different chunk sizes for enhanced precision in answers. 
This feature in the WeiseEule app enables users to create custom knowledge bases by 
fetching full texts from PubMed and user-uploaded PDFs, providing complete control 
over the information that goes into the LLM. Additionally, the app includes an article 
recommendation feature to assist users during review or grant writing, and in finding 
articles that can be cited to support already written text.

Lastly, our method presents a viable strategy to strike a balance between retrieval effi-
ciency and computational demands. Moving forward, unlocking the full potential of this 
method will depend on addressing its current constraints. However, the insights derived 
from this investigation hold promise for broadening the horizons of NLP research and 
its application in solving complex QA challenges, especially in specialized fields like 
biology and biomedicine.
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