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Abstract 

Background  Distributed statistical analyses provide a promising approach for privacy protection when analyzing 
data distributed over several databases. Instead of directly operating on data, the analyst receives anonymous sum-
mary statistics, which are combined into an aggregated result. Further, in discrimination model (prognosis, diagnosis, 
etc.) development, it is key to evaluate a trained model w.r.t. to its prognostic or predictive performance on new inde-
pendent data. For binary classification, quantifying discrimination uses the receiver operating characteristics (ROC) 
and its area under the curve (AUC) as aggregation measure. We are interested to calculate both as well as basic indica-
tors of calibration-in-the-large for a binary classification task using a distributed and privacy-preserving approach.

Methods  We employ DataSHIELD as the technology to carry out distributed analyses, and we use a newly developed 
algorithm to validate the prediction score by conducting distributed and privacy-preserving ROC analysis. Calibration 
curves are constructed from mean values over sites. The determination of ROC and its AUC is based on a generalized 
linear model (GLM) approximation of the true ROC curve, the ROC-GLM, as well as on ideas of differential privacy (DP). 
DP adds noise (quantified by the ℓ2 sensitivity �2(f̂ ) ) to the data and enables a global handling of placement num-
bers. The impact of DP parameters was studied by simulations.

Results  In our simulation scenario, the true and distributed AUC measures differ by �AUC < 0.01 depending heav-
ily on the choice of the differential privacy parameters. It is recommended to check the accuracy of the distributed 
AUC estimator in specific simulation scenarios along with a reasonable choice of DP parameters. Here, the accuracy 
of the distributed AUC estimator may be impaired by too much artificial noise added from DP.

Conclusions  The applicability of our algorithms depends on the ℓ2 sensitivity �2(f̂ ) of the underlying statistical/
predictive model. The simulations carried out have shown that the approximation error is acceptable for the majority 
of simulated cases. For models with high �2(f̂ ) , the privacy parameters must be set accordingly higher to ensure suf-
ficient privacy protection, which affects the approximation error. This work shows that complex measures, as the AUC, 
are applicable for validation in distributed setups while preserving an individual’s privacy.
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Introduction
Medical research needs trust that the use of confiden-
tial patient data follows principles of privacy protection. 
However, depending on the released data, breaches of 
the patient’s privacy may occur [16]. Even when a patient 
gives informed consent that the researcher can have 
access to his/her pseudonymized patient data, it is neces-
sary to keep data in a protected environment and to pro-
cess it accordingly. Privacy-preserving modeling protects 
sensitive patient data [1].

Typically, multi-center studies in medicine or epidemi-
ology collect the data in a central study database and per-
form the analyses in a specifically protected environment 
following the informed consent of the study subjects. 
However, this requires an administratively challenging 
and time-consuming trustworthy data-sharing process.

Using only anonymous and aggregated data for analy-
sis can alleviate the administrative load for data sharing. 
Distributed data networks in clinical studies allow to lev-
erage routinely collected electronic health data and thus 
streamline data collection. Non-disclosing distributed 
analysis is an important part of this concept. It enables 
statistical analyses without sharing individual patient 
data (IPD) between the various sites of a clinical study or 
sharing IPD with a central analysis unit. Non-disclosing 
distributed analyses protect patient data privacy and 
enhance data security, making this a potentially advanta-
geous approach for medical research involving sensitive 
patient data. However, algorithms are needed to support 
robust multivariable-adjusted statistical analysis without 
the need to centralize IPD.

As a part of the German Medical Informatics Initiative1 
(MII) the Data Integration for Future Medicine (DIFU-
TURE) consortium [21] undertakes distributed data net-
work studies and provides tools as well as algorithms for 
non-disclosing distributed analyses. DIFUTURE’s spe-
cific objective is to provide digital tools for individual 
treatment decisions and prognosis and to develop dis-
tributed algorithms for the discovery and validation of 
prognostic and predictive rules. In the following paper, 
we investigate how the area under the curve (AUC) and 
its confidence intervals (CIs) proposed by DeLong et al. 
[6] behave if the computed AUC uses a generalized linear 
model (GLM) approach of Pepe [19] in a distributed dif-
ferential privacy framework. We can also determine and 
view the ROC using distributed analyses.

The concept of differential privacy was operational-
ized by Dwork [7]. An algorithm is considered to be dif-
ferential private if an observer cannot determine based 
solely on the output whether a particular individual’s 

information was used in the computation. Differential 
privacy ensures protection of patient data privacy, as dif-
ferential private algorithms are more likely to resist iden-
tification and re-identification attacks [8] than alternative 
approaches.

The ROC curve and its AUC in pooled IPD testing data 
as well as assessing the quality of calibration  [27] is the 
state-of-the-art of prognostic/predictive validation tech-
niques in a binary classification setting. In general, IPD 
transfer requires specific patient consent, and data pro-
tection laws apply. Here, we present a non-disclosing 
distributed ROC-GLM, which we use to calculate the 
ROC curve, its AUC, and the respective CIs. These meth-
ods and their implementation in DataSHIELD frame-
work [10] allow analyses in which IPD does not leave its 
secured environment. This way, only noisy IPD under dif-
ferential privacy or anonymous and aggregated statistics 
are shared, thereby preventing the identification of indi-
viduals. We also demonstrate that assessing the calibra-
tion of binary classification rules based on distributed 
calculation is a straightforward task.

We motivate our approach by looking at the binormal 
classification case, where individuals with negative or 
positive outcome have N (µ0, σ

2
0 ) or N (µ1, σ

2
1 ) distrib-

uted scores with µ0 < µ1 . With a = (µ1 − µ0)/σ1 and 
b = σ0/σ1 it holds that ROC(t) = �(a+ b ·�−1(t)) and 
AUC = �(a/(1+ b2)0.5) . In the case of non-normal 
score distribution, the ROC-GLM allows to approximate 
the respective ROC and AUC by using the same expres-
sions where a and b are estimated from a probit regres-
sion. Furthermore, the ROC-GLM approach allows a 
simultaneous estimation of ROC curves and AUCs over a 
set of subgroups defined by covariates [19].2

Contribution  The work herein proposes new privacy-
preserving algorithms adapted to the distributed data 
setting for the ROC-GLM [18], the AUC derived there-
from, and its CIs for that AUC. To validate the algo-
rithms, we provide a simulation study to assess estima-
tion accuracy. We compare the results with those from 
the standard procedure. Furthermore, we apply the pro-
posed algorithms to validate a given prognostic rule on 
data of breast cancer patients.

We describe how the concept of the distributed ROC 
analysis can be incorporated into the ROC-GLM by  
using differential privacy. We generate privacy-preserving  
survivor function that can be communicated without 

1  www.​mediz​ininf​ormat​ik-​initi​ative.​de

2  Note, that the estimation of a ROC-GLM is not unbiased in the non-
normal case. We provide an illustrative counterexample in Appendix  A.6. 
which uses gamma-distributed score values in the outcome groups.

http://www.medizininformatik-initiative.de
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the threat of privacy breaches. Furthermore, we outline 
a distributed Fisher scoring algorithm [14] that estimates 
parameters for the ROC-GLM. In addition, we describe 
a privacy protecting distributed calibration approach and 
demonstrate that distributed GLM model building does 
not impose specific algorithmic challenges. Furthermore, 
we introduce a distributed version of the Brier score [5] 
and the calibration curve [28]. The bycatch of the princi-
ples described is a privacy protected version of the binor-
mal ROC and its AUC.

Related literature
Boyd et al. [3] calculate the AUC under differential pri-
vacy using a symmetric binormal ROC function. How-
ever, our approach is more general and allows extension 
to non-parametric data with multiple covariates. While 
they derive the AUC from the ROC parameters, we 
also use integration techniques. In addition, we provide 
CIs for the AUC. Ünan et  al. [25] use homomorphic 
encryption to calculate the ROC curve. Their approach 
does not provide CIs or an extension to multiple covar-
iates. To the best of our knowledge, a modified ROC-
GLM algorithm for non-disclosing distributed analyses 
has so far not been developed.

Background
Throughout this paper, we consider binary classifica-
tion, with 1 for a case with the trait(s) of interest (i.e., 
“diseased”, “success”, “favorable”) and 0 for the remain-
ing cases (i.e., lacking trait(s) of interest, “healthy”, 
“no success”, “unfavorable”). Furthermore, f (x) ∈ R 
is the true score based on a true but unknown func-
tion f for a patient with a feature vector x (the indi-
vidual realization of an underlying random vector 
X  ). In this paper, the score can also express a pos-
terior probability with f (x) ∈ [0, 1] . The function 
f is estimated by a statistical (classification) model 
f̂ : Rp → R . The estimated individual score for a sub-
ject with feature or covariate vector x ∈ Rp is f̂ (x) . 
The training or validation data set used to fit or vali-
date f̂  is denoted as D = {(x1, y1), . . . , (xn, yn)} with 
yi ∈ {1, 0} . The score f̂ (x) and a threshold value c ∈ R 
are used to define a binary classifier: �[c,∞)(f̂ (x)) . 
On an observational level, x1,i and x0,i indicate the ith 
observation that corresponds to a positive or nega-
tive output y. The number of observations in D with 
output 1 and 0 are denoted by n1 and n0 . The set of 
scores that corresponds to the positive or negative 
output is denoted by F1 = {f̂ (x1,i) | i = 1, . . . , n1} and 
F0 = {f̂ (x0,i) | i = 1, . . . , n0} , with F1,i = f̂ (x1,i) and 
F0,i = f̂ (x0,i).

ROC curve and AUC​
To quantify the quality of a binary classifier, we use the 
true positive rate (TPR) and false positive rate (FPR) with 
values between 0 and 1: TPR(c) = P(f (X) ≥ c | Y = 1) 
and FPR(c) = P(f (X) ≥ c | Y = 0) for threshold 
c ∈ R  [18]. These probability functions are also known as 
positive or negative  survivor functions S1(c) = TPR(c) 
and S0(c) = FPR(c) . The ROC curve is defined as 
ROC(t) = S1(S

−1
0 (t)) . The AUC as a measure of discrimi-

nation between the two distributions of the positive and 
negative class is given as AUC =

1
0 ROC(t) dt [30].

Empirical calculation of the ROC curve and AUC​
The calculation of the empirical ROC curve uses the empir‑
ical survivor functions Ŝ1 and Ŝ0 . These functions are based 
on the empirical cumulative distribution functions (ECDF) 
F̂1 of F1 and F̂0 of F0 : Ŝ1 = 1− F̂1 and Ŝ0 = 1− F̂0 . 
The set of possible values of the empirical TPR and 
FPR are given by S1 = {Ŝ1(f̂ (x0,i)) | i = 1, . . . , n0} and 
S0 = {Ŝ0(f̂ (x1,i)) | i = 1, . . . , n1} and are also called place‑
ment values. These values standardize a given score relative 
to the class distribution [19]. The set S1 represents the posi-
tive placement values and S0 the negative placement values.

The empirical version of the ROC(t) is a dis-
crete function derived from the placement values  
S1 ⊆ {0, 1/n1, . . . , (n1 − 1)/n1, 1} and 
S0 ⊆ {0, 1/n0, . . . , (n0 − 1)/n0, 1} . The empirical AUC 
is a sum over rectangles of width 1/n0 and height 
Ŝ1(f̂ (x0,i)) ([19], p.106):

Equation (1) is the empirical analogue of the expecta-
tions of the placement values, i.e. AUC = E(S1(f (x))) . 
The term f̂ (x0,i) is the score of the estimated statistical 
model for the negative output x0,i . The empirical AUC is 
a function of the empirical survivor function Ŝ1 evaluated 
at the score values for all negative outputs x0,i.

The empirical AUC is equivalent to the Mann-Whit-
ney U-statistic and inherits the respective distributional 
properties. For a sufficient large sample of n0 and n1 , it 
converges to the normal distribution.

CI for the empirical AUC​
CIs are calculated following [6]. The variance of the 
empirical AUC is determined by:

An asymmetric confidence interval which guar-
antees values within the interval (0,1) is derived 

(1)ÂUC = n0
−1

n0∑

i=1

Ŝ1(f̂ (x0,i)).

(2)v̂ar(AUC) =
v̂ar(S1)

n0
+

v̂ar(S0)

n1
.
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from a symmetric confidence interval for logit AUC 
ciα(logit(AUC)) using the logit−1 transformation (p 107, 
[19]):

The term �−1 denotes the quantile function of the 
standard normal distribution. The term of the standard 
error is a direct consequence of the application of the 
delta rule to logit(AUC).

Statistical testing can be conducted based on that 
CI. For example, the hypothesis H0 : AUC ≤ a0 vs. 
H1 : AUC > a0 with a significance level of α can be tested 
by checking whether logit(a0) < a , ∀a ∈ ciα to reject H0.

The ROC‑GLM
The ROC-GLM interprets the ROC curve as a GLM ([19], 
Section 5.5.2): ROCg (t|γ ) = g(γ h(t)) , with link function 
g : R → [0, 1], η �→ g(η) , coefficient vector γ ∈ Rl , and 
covariate vector h : R → Rl , t �→ h(t) = (h1(t), . . . , hl(t))

T . 
In general this estimator is not unbiased (see for example 
Appendix A.6).

Estimating the ROC-GLM uses an intermediate data 
set DROC-GLM = {(uij ,h(tj)) | i = 1, . . . , n1, j = 1, . . . , nT } 
with covariates h(tj) , a set of thresholds T = {t1, . . . , tnT } , 
and binary response uij ∈ {0, 1} , uij = �

(Ŝ0(F1,i),∞)
(tj) =

�(−∞,F1,i](Ŝ
−1

0
(tj)) . The simplest ROC-GLM uses the 

two-dimensional vector h(t) with h1(t) = 1 and 
h2(t) = �−1(t) . Setting the link function to g = � results 
in the binormal form ROCg (t|γ ) = �(γ1 + γ2�

−1(t)) . 
It is equivalent to a probit regression with response 
variable uij and covariate �−1(tj) . A common strategy 
for choosing the set of thresholds T is to use an equi-
distant grid.

(3)

ciα(logit(AUC)) = logit(ÂUC)±�−1

(
1−

α

2

) √
v̂ar(AUC)

ÂUC

(
1− ÂUC

) .

The estimated ROC curve ROCg (t|γ̂ ) results 
from the estimated model parameters γ̂ . The AUC 
from the ROC-GLM ÂUCROC-GLM is the integral 
ÂUCROC-GLM =

∫ 1
0 ROCg (t|γ̂ ) dt . Here, we use the 

R-function integrate  [20] or the explicit formula 
AUC = �(a/(1+ b

2)0.5) . Figure  1 visualizes the single 
steps of the ROC-GLM algorithm.

Differential privacy
Differential privacy (DP) is a theoretical framework which 
provides formal guarantees to restrict privacy leakage of 
individual information when statistical analysis is per-
formed on the data [9, 26]. One of the most prominent 
DP approaches adds noise r to a deterministic algorithm 
to obtain a randomized version M : X �→ Y with domain 
X  (e.g., X = Rp ) and target domain Y (e.g., Y = R in 
regression). Formally speaking a mechanism M is (ε, δ)
-differential private, if for any subset of outputs R ⊆ Y , 
the property P(M(x) ∈ R) ≤ exp(ε)P(M(x′) ∈ R)+ δ 
holds for two adjacent inputs.3 The value of ε controls 
how much privacy is guaranteed. Intuitively, this means 
that for a small ε , applying the randomized algorithm M 
on two datasets that only differ in one data point, the typ-
ical output (i.e. a high probability) of M for both datasets 
has to be nearly the same while a larger value of ε would 
allow that the typical output could differ more. The value 
of δ can be interpreted as the probability that ε-differen-
tial privacy is broken (see [8]). Hence, δ has to be set to 
a small value that should be at least less than the inverse 
number of data points. We provide an interpretation of 
the privacy parameter ε in Appendix A.3.

Fig. 1  The ROC-GLM(D) procedure starts with the data (D) and a model f for predicting scores Y. It calculates the survivor function Ŝ
D̄

 
and determines the intermediate data DROC-GLM . The probit regression estimates the parameters

3  In theory, multiple definitions of adjacent inputs exist. Throughout this 
article, adjacent inputs are based on a histogram representation x̃ ∈ N

p and 
x̃
′ ∈ N

p of two input vectors x and x ′ . Two inputs are adjacent if the ℓ1 norm 
of x̃ and x̃ ′ is equal to one: adjacent x , x ′ ⇔ �x̃ − x̃

′�1 = 1 (cf., [9]).
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We add normally distributed noise r to f̂  to obtain a 
private version of the estimated scores f̂ (x) (i.e. Gaussian 
mechanism): M(x) = f̂ (x)+ r . Hence, the obfuscated val-
ues of the survivor function F̃1 = {M(x1,i) | i = 1, . . . , n1} 
and not the original score values F1 are used for further 
calculations. The noise r follows a zero-mean Gaussian 
N (0, τ 2) , where its variance is set to the minimal value 
that guarantees a certain level of privacy. Balle and Wang 
[2] propose the analytic Gaussian mechanism which 
searches numerically for a minimal value of τ such that 
a defined level of privacy ( ε , δ ) for a given ℓ2-sensitivity 
is achieved. The sensitivity of an algorithm is defined as 
�2(f̂ ) = supadjacent x, x′ �f̂ (x)− f̂ (x′)�2 . Within this work, 
we first calculate the ℓ2-sensitivity of the prediction model 
f̂  to determine possible values of the privacy parameters 
(see Correctness of the AUC inferred from ROC-GLM and 
distributed ROC-GLM  section). Given these parameters, 
we subsequently determine the minimal required amount 
of noise τ for the analytic Gaussian mechanism. We provide 
further details and a visualization of the Gaussian mecha-
nism in Appendix A.2.

Distributed ROC‑GLM
General principles
A total of K data sets are distributed over a network of 
K sites: D(1), . . . ,D(K ) . Each data set D(k) consists of n(k) 
observations (x(k)i , y

(k)
i ) . The jth component of the ith fea-

ture vector of the kth site is denoted by x(k)j,i  . The ith out-
come on site k is y(k)i  . We assume (1) the single data have 
empty intersections and (2) the union of the distributed 
data is a subset of the full but inaccessible data set:

Instead of calculating the ROC-GLM for one local data 
set, we want to calculate the ROC-GLM on K distributed 
data sets D(1), . . . ,D(K ) . All shared information must 
comply with the following non-disclosing principles: 

A1	� Given the value q, the privacy level, an aggregation 
a : Rd �→ R , v → a(v) is admissible for sharing the 
value a(v) if d ≥ q ∈ N . The privacy level requests 
a minimum number of values on which a(v) is 
derived. In the distributed setup, the aggregation 
a(v(k)) with n(k) unique values in v(k) shared from 
each of the K sites can then be further processed. 
Values a(v(k)) can be shared if n(k) ≥ q.

A2	� Differential privacy  [7] is used to ensure non- 
disclosive IPD via a noisy representation.

(4)D =

K⋃

k=1

D(k), n = n(1) + · · · + n(K )

Distributed Brier score and calibration curve  Cali-
bration of a probabilistic (or scoring) classifier is 
often addressed by the Brier score  [5] or a calibration 
curve  [28]. Both can be calculated by considering crite-
rion A1.

Brier score: The Brier score ( BS ) is the mean squared 
error of the true 0-1-labels and the predicted probabili-
ties of belonging to class 1. For the Brier score, the score 
f̂ (x) ∈ [0, 1] is given as posterior probability. The Brier 
score is calculated by:

Hence, having a prediction model f̂  at each of the K 
sites, we can calculate the Brier score by: 

1	 Calculating the residuals e(k)i  based on the true label 
y
(k)
i  at site k and the predicted probabilities f̂ (x(k)i ) : 

e
(k)
i = y

(k)
i − f̂ (x

(k)
i ) , ∀i = 1, . . . , n(k).

2	 Calculating asum(e(k) ◦ e(k)) , with e
(k) = (e

(k)
1

, . . . , e
(k)

n(k)
)T ∈ R

nk , 
the element-wise product ◦ , and aggregation 
asum(v

(k)) =
∑n(k)

i=1 v
(k)
i .

3	 Sending asum(e(k) ◦ e(k)) and n(k) (if nk ≥ q ) to the host, 
who finally calculates BS = n

−1
∑

K

k=1
asum(e

(k) ◦ e(k)).

Calibration curve: To calculate a calibration curve, we dis-
cretize the domain of the probabilistic classifier f̂  in [0, 1] 
into nbin bins (for example, nbin + 1 equidistant points pi 
from 0 to 1 to construct the nbin bins bl = [pl , pl+1) for 
l = 1, . . . , nbin − 1 and bnbin = [pnbin , pnbin+1] for l = nbin ). 
The calibration curve is the set of 2-dimensional points 
pcal,l = (pfl , tfl) , with tfl = |Il |

−1
∑

i∈Il
yi as the true 

fraction of yi = 1 in bin bl and pfl = |Il |
−1

∑
iIl

f̂ (xj) 
as the predicted fraction for outcome 1 in bl . The set Il 
describes the observations for which the prediction f̂ (xi) 
falls into bin bl : Il = {i ∈ {1, . . . , n} | f̂ (xi) ∈ bl} . A prob-
abilistic classifier f̂  is well-calibrated if the points pcal,l 
are close to the bisector.

In the distributed setup, the points pcal,l are con-
structed by applying the distributed mean to both points 
for each bin at each site: 

1	 Set all b1, . . . , bnbin , and communicate them to the 
sites.

2	 Calculate the values c(k)l,pf = asum({f̂ (x
(k)
i ) | i ∈ I

(k)
l }) 

and c(k)l,tf = asum({y
(k)
i | i ∈ I

(k)
l }) for all l = 1, . . . , nbin.

3	 Send {(c(k)
l,tf , c

(k)

l,pf, |I
(k)

l
|) | k = 1, . . . ,K , l = 1, . . . , nbin} to 

the host if |I(k)
l | ≥ q.

(5)BS = n−1
n∑

i=1

(
yi − f̂ (xi)

)2
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4	 The host calculates the calibration curve pcal,l by 
aggregating the elements tfl = (

∑
K

k=1
|I

(k)

l
|)−1

∑
K

k=1
c
(k)

l,tf
 

and pfl = (
∑

K

k=1 |I
(k)

l
|)−1

∑
K

k=1 c
(k)

l,pf
 for l = 1, . . . , nbin.

The distributed ROC‑GLM  Two aspects are of rele-
vance when building the distributed version of the ROC-
GLM (distrROCGLM): (1) The distributed version of the 
empirical survivor function and (2) a distributed version 
of the probit regression. Figure  2 shows details of the 
general procedure. The starting point of the distributed 
ROC-GLM is the private data D(1), . . . ,D(K ) on the K 
sites.

The global survivor function Ŝ0 is approximated by S̃0 
(Approximating the global survivor functions  section) 
using principle A2. The computation of S̃0 depends on 
the level of privacy induced by the (ε, δ) DP parameters 
(Differential privacy  section). The accuracy of the AUC 
as well as its CI depends on the choice of ε and δ . The 
global survivor function S̃0 is transmitted to each of the K 
sites and allows calculation of a local version of the inter-
mediate data set D(k)

ROC-GLM (see The ROC-GLM section). 
The distributed probit regression complies with princi-
ple A1 and produces the distributed ROC-GLM param-
eter estimates (see Distributed GLM  section). Using 
the ROC-GLM of these parameters, denoted by R̃OCg , 
allows calculation of the approximated AUC, denoted by 
ÃUCROC-GLM =

∫ 1
0 R̃OCg (t|γ̂ ) dt . Finally, the CIs can 

be calculated based on a variance estimation, which also 
complies with principle A2 (see Distributed CIs for the 
AUC based on the Score function section).

The distributed GLM model building  Distributed 
GLM  section describes the federation of the Fisher 

Scoring algorithm and explains how it can be applied 
under principle A2. Therefore, distributed privacy pro-
tected GLM model building does not pose specific 
challenges.

Approximating the global survivor functions
The privacy-preserving calculation of the global negative 
survivor function Ŝ0 needs special attention. It is pro-
hibited to directly communicate score values F (k)

0  from 
the local sites to the central analyst. Instead, we propose 
to calculate an approximation S̃0 : First, we determine 
the ℓ2-sensitivity of the prediction model f̂  and set the 
value of ε and τ . Then, we generate a noisy representa-
tion F̃ (k)

0 = F
(k)
0 + r

(k) of the original score values F (k)
0  

at each site. Second, the noisy scores are communicated 
to the host and pooled to F̃0 =

⋃K
k=1 F̃

(k)
0  to calculate an 

approximation S̃0 of the global survivor function. Third, 
(ε, δ) DP allows sharing S̃0 with all sites. Forth, the local 
sites calculate the global placement values and create 
the intermediate data set used by the distributed probit 
regression.

Distributed GLM
For distributed calculation of the GLM, we use an 
approach described by  [14] and adjust the optimization 
algorithm of GLMs – the Fisher scoring – at its base to 
estimate parameters without performance loss. This 
approach complies with A1.

The basis of the ROC-GLM is a probit regression (and 
therefore a GLM) with E(Y | X = x) = g(xTθ) and 
link function g, response variable Y, and covariates X. 
The Fisher scoring is an iterative descending technique 
θ̂m+1 = θ̂m + I−1(θ̂m)V(θ̂m) that uses second order gra-
dient information. The components are the score vector 
V(θ̂m) = [∂ℓθ (y, x)/∂θ ]θ=θ̂m

∈ Rp and the observed Fisher 

Fig. 2  The distributed ROC-GLM procedure (distrROCGLM) calculates the distributed approximation R̃OCg of ROCg . The sites (here K = 3 ) 
communicate scores with added noise. Centrally, the global negative survivor function S̃

D̄
 is determined and returned to the sites. Finally, 

the distributed probit regression operates on local intermediate data D(k)

ROC-GLM
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information I(θ̂m) = [∂V(θ)/∂θ]
θ=θ̂m

∈ Rp×p based on 
the log likelihood ℓθ (D) =

∑n
i=1 log(fY (yi, xi)) . A common 

stop criterion (as used in R function glm [22]) to determine 
whether the Fisher scoring has converged is when the rela-
tive improvement |devm − devm−1|/(|devm| + 0.1) of the 
deviance devm = −2ln(ℓ

θ̂m
(D)) is smaller than a value a. 

The default value used in the glm function of R is a = 10−8

.
Sufficiently large non-overlapping data at the K sites 

(each subject contributes information only at a unique 
site) implies the additive structure of the global score 
vector V(θm) and Fisher information I(θm) . With the 
site-specific score vector Vk(θm) and Fisher information 
Ik(θm) , it holds:

Distributed CIs for the AUC based on the Score function
The distributed calculation of the global sample 
mean ( distrAVG(v(1), . . . , v(K )) ) complies with A1 as 
well as the distributed version of the sample variance 
v̂ar(v) = (n− 1)−1

∑
n

i=1
(vi − v̄)2 . In the first step, the sam-

ple mean is calculated using v̄ = distrAVG(v(1), . . . , v(K )) 
and shared with all K sites. In the second step, each site 
calculates the aggregation avar(v(k)) =

∑n(k)

i=1(v
(k)
i − v̄)2 , 

which is further aggregated to the sample variance 
v̂ar(v) = (n− 1)−1

∑K
k=1 avar(v

(k)) : distrVAR(v(1), . . . , v(K )) . 
The operations distrAVG and distrVAR fulfill A1 if 
n(k) ≥ q , ∀k ∈ {1, . . . ,K }.

The operation distrVAR provides a non-disclosing dis-
tributed CIs for the global AUC. As described in Empiri-
cal calculation of the ROC curve and AUC​ and CI for the 
empirical AUC​  sections, the calculation of the approxi-
mated CI requires both approximated survivor functions 
S̃0 and S̃1 (see Approximating the global survivor func-
tions section). A distributed CI c̃iα to approximate ciα fol-
lows from Formula (3).

Simulation study
General considerations
The aim of the simulation study is to understand the 
effect of the noise (introduced by DP) on the AUC 
estimate of the distributed ROC-GLM and its DeLong 
confidence intervals. We take the global empirical 

(6)V(θ̂m) =

K∑

k=1

Vk(θ̂m)

(7)I(θ̂m) =

K∑

k=1

Ik(θ̂m)

AUC [11, 17] as a proxy for the true AUC of the under-
lying data generating process. Our goal is not to con-
struct better estimates for the true AUC, but to study 
the difference between our distributed approach to the 
empirical AUC on the the pooled data.

In this context, we assess the bias of the dis-
tributed approach and measure the difference 
�AUC = AUC − ÃUCROC-GLM between the empirical 
AUC​ on pooled data (Empirical calculation of the ROC 
curve and AUC​ section) and the distributed ROC-GLM 
ÃUCROC-GLM (General principles section).

To evaluate CI related bias, we calculate the error �ciα 
based on the symmetric difference between ciα pro-
posed by DeLong et al. ([6], see Sect. 3.3) and our non-
disclosing distributed approach c̃iα (Distributed CIs for 
the AUC based on the Scor function section). We study 
�ciα = |c̃iα,l − ciα,l | + |c̃iα,r − ciα,r | , with indices l and r 
denoting the left and right side of the CI, respectively.

We explore the following research questions:

Question 1– Correctness of the AUC inferred from 
ROC-GLM and distributed ROC-GLM.(Correctness 
of the AUC inferred from ROC-GLM and distributed 
ROC-GLM  section): Which privacy parameters ε 
and δ result in |�AUC| below 0.01?
Question 2–Correctness of the AUC CIs inferred 
from ROC-GLM and distributed ROC-GLM. (Cor-
rectness of the AUC CIs inferred from ROC-GLM 
and distributed ROC-GLM  section): Which privacy 
parameters ε and δ result in �ciα below 0.01?

Data generation
In order to avoid the specification of the score distribu-
tions in both outcome groups, we simulate data as follows. 
We generate uniformly distributed AUC values between 
0.5 and 1. (1) The population size n is randomly chosen 
from {100, 200, . . . , 2500} . (2) For each i ∈ {1, . . . , n} , the 
true prediction scores are generated from the uniform 
distribution Fi ∼ U [0, 1] . Next, (3) the class member-
ship yi ∈ {0, 1} is determined by yi = �(Fi ≥ 0.5) . This 
results in a perfect discrimination by scores between 
positives and negatives (AUC=1). (4) The perfect order-
ing of the class values with respect to individual scores is 
broken by flipping labels randomly. A set of indexes I  of 
size ⌊γn⌋ is selected for which the corresponding labels are 
replaced by yi ∼ Ber(0.5) , ∀i ∈ I  . The fraction γ is sam-
pled from a U[0.5; 1] distribution. (5) For comparison, the 
empirical AUC is calculated from the vector of scores F  
and flipped labels y. (6) The non-disclosing distributed 
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process described in General principles  section is based 
on 5 centers and produces the ÃUCROC-GLM and c̃i0.05 . 
The examined values for the distributed ROC-GLM are 
described in Correctness of the AUC inferred from ROC-
GLM and distributed ROC-GLM section. The simulation 
is repeated Nsim = 10000 times.

Figure 3 shows the empirical distribution of the empiri-
cal as well as ROC-GLM-based AUC values depending 
on the sizes of n. The distribution of the empirical AUC 
values is close to the uniform distribution over the range 
of 0.5 to 1. The behaviour of AUC estimates at the bor-
ders can be explained as follows: To obtain an AUC value 
of one, it is necessary to keep all original class labels y. 
However, this happens rarely, due to the randomized 
assignment of the observations chosen in I  . The same 
applies to AUC values close to 0.5. An AUC value of 0.5 
appears if the class labels are completely randomized. 
This is also a rare event.

Results
Correctness of the AUC inferred from ROC‑GLM 
and distributed ROC‑GLM

ROC‑GLM  Figure  3 shows a nearly perfect overlap of 
the means of the simulated empirical as well as the non-
distributed ROC-GLM AUC values in the range of values 
between 0.6 and 0.8. Nevertheless, the behaviour at the 
right border results from numerical problems of the pro-
bit regression on data containing only very few values of 
zero and mostly values of 1.

Table 1 shows summary statistics of (AUC − AUCROC-GLM) 
organized by bins of the empirical AUC of width 0.025. In 
Question 1, an absolute difference below 0.01 is requested, 
which is fulfilled over the whole AUC range. Mean and 
median differences ranging from 0.5 to 0.95 fulfill this 
requirement, whereas for empirical AUC values between 
0.95 and 0.975 slightly larger differences are observed. 
Moreover, for the lower bins, the difference is always posi-
tive while it is negative for the higher bins. This is in line 
with the example from Appendix A.6 for biased ROC-GLM 
estimation.

The results suggest that there are systematic devia-
tions. Thus, we use as an alternative measure the ℓ1
-norm that quantifies the discrepancy between the 
estimated empirical and the estimated GLM for-
mulation of the ROC curve: the (absolute) area 
between both curves over the whole range t, that is, 
discrs =

∫ 1
0 |ROCg (t|γ̂ )− Ŝ1(Ŝ

−1
0 (t))|dt for a data set 

s ∈ {1, . . . ,Nsim} . Figure  4 shows the empirical distribu-
tion of the defined measure over all simulations.

It can be seen that the difference are in general less 
than 5% (mean: 0.032, 25%- quantile: 0.021, 75% -quan-
tile: 0.043). The small discrepancy with respect to the 
AUC is explained by the fact that there are areas where 
the empirical AUC is above the ROC-GLM and vice versa 
which compensate each other (see for example the left 
panel of Fig. 9 and Figure S4 in the appendix where this 
regions can be seen).

Distributed ROC‑GLM  In the following, we investigate 
the accuracy of the AUC estimated by the distributed 

Fig. 3  Densities of 10 000 simulated values of the empirical and non-distributed ROC-GLM AUC. The Densities are grouped according data sizes n 
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Table 1  Minimum, 0.25-quantile/1st quantile, median, mean, 0.75-quantile/3rd quantile, maximum, standard deviation, and the 
differences AUC − AUCROC-GLM of the bins containing the respective subset of the 10000 empirical AUC values

Bold values indicate that these AUC bins show absolute differences larger 0.01 and provide a negative answer to Question 1. The count column indicates the number 
of simulated AUC values per bin

Emp. AUC (Bin) Min. 1st Qu. Median Mean 3rd Qu. Max. Sd. Count

(0.5, 0.525] −0.0044 −0.0001 0.0005 0.0040 0.0014 0.0506 0.0100 431

(0.525, 0.55] −0.0052 0.0001 0.0006 0.0027 0.0011 0.0986 0.0123 505

(0.55, 0.575] −0.0031 0.0003 0.0009 0.0014 0.0015 0.1298 0.0080 465

(0.575, 0.6] −0.0018 0.0006 0.0012 0.0015 0.0017 0.1567 0.0072 482

(0.6, 0.625] −0.0044 0.0009 0.0015 0.0014 0.0020 0.0064 0.0010 485

(0.625, 0.65] −0.0039 0.0012 0.0017 0.0017 0.0022 0.0069 0.0010 501

(0.65, 0.675] −0.0031 0.0013 0.0018 0.0018 0.0023 0.0068 0.0011 503

(0.675, 0.7] −0.0022 0.0012 0.0018 0.0018 0.0023 0.0064 0.0010 465

(0.7, 0.725] −0.0082 0.0010 0.0016 0.0016 0.0023 0.0070 0.0012 523

(0.725, 0.75] −0.0031 0.0008 0.0015 0.0014 0.0021 0.0087 0.0012 485

(0.75, 0.775] −0.0058 0.0004 0.0011 0.0010 0.0018 0.0053 0.0013 501

(0.775, 0.8] −0.0053 −0.0003 0.0004 0.0005 0.0012 0.0088 0.0015 523

(0.8, 0.825] −0.0061 −0.0013 −0.0002 −0.0004 0.0005 0.0045 0.0016 476

(0.825, 0.85] −0.0125 −0.0023 −0.0013 −0.0014 −0.0003 0.0059 0.0019 484

(0.85, 0.875] −0.0111 −0.0037 −0.0026 −0.0025 −0.0014 0.0074 0.0020 520

(0.875, 0.9] −0.0136 −0.0056 −0.0044 −0.0043 −0.0030 0.0076 0.0023 534

(0.9, 0.925] −0.0195 −0.0080 −0.0065 −0.0065 −0.0052 0.0066 0.0026 515

(0.925, 0.95] −0.0193 −0.0105 −0.0091 −0.0089 −0.0076 0.0056 0.0030 481

(0.95, 0.975] −0.0227 −0.0138 −0.0113 −0.0113 −0.0093 0.0067 0.0037 503

(0.975, 1] −0.0180 −0.0093 −0.0062 −0.0064 −0.0034 0.0013 0.0039 529

Fig. 4  Distribution of area between the empirical ROC curve and the ROC-GLM curve. The distribution of the alternative discrepancy measure discrs 
is estimated from all simulated datasets s ∈ {1, . . . ,Nsim}
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ROC-GLM. The respective DP parameters ( ε and δ ) must 
be determined in such a way that the answer to Question 
1 is positive. The data are distributed over five sites: The 
simulated prediction scores F  and true classes y are ran-
domly split into K = 5 parts F (1), . . . ,F (5) and y(1), . . . , y(5) . 
Our simulation setting uses ε ∈ Aε = {0.1, 0.5, 1, 5, 10} and 
δ ∈ Aδ = {10−5

, 10
−4

, 10
−3

, 10
−2

, 10
−1} . Due to the Gaussian 

mechanism, we must also take the ℓ2-sensitivity into 
account as the added noise depends on it. Since we do not 
have an analytical description of the score function f̂  , we 
can not determine �2(f̂ ) explicitly in this simulation. We 
assume �2(f̂ ) ∈ A

�2(f̂ )
= {0.01, 0.1, 0.2, 0.3, 0.4} . For the 

simulation, each setting of the grid Aε × Aδ × A
�2(f̂ )

 is 
evaluated by simulating 10000 data sets (cf. Data genera-
tion  section) and hence obtaining 10000 ÃUCROC-GLM 
values that are compared to the respective empirical 
AUC.

Figure  5 shows the simulation results for differ-
ent ( ε , δ ) combinations. The absolute difference of 
(AUC − AUCdistributed ROC-GLM) is checked for hav-
ing a value below 0.01. The results are based on 10000 
simulation runs for 25 ( ε, δ ) combinations and for each 
�2(f̂ ) ∈ {0.01, 0.1, 0.2, 0.3, 0.4} . The variance of the added 
noise to the scores is determined by the analytic Gauss-
ian mechanism from [2]. The figure reveals that the bias 

between empirical and distributed ROC-GLM AUC 
depends heavily on the ℓ2-sensitivity. The smaller the 
sensitivity, less noise is required to ensure a certain level 
of privacy. Correspondingly, smaller choices of privacy 
parameters can and should be used to ensure privacy. 
Very small values of ε lead often to unreliable results 
(except for a very small �2(f ) in combination with higher 
values of δ ). For larger values of ε the results depend 
(besides the sensitivity) on δ . For instance, the evaluation 
of the AUC on an algorithm with sensitivity �2(f ) = 0.1 
and ε = 0.5 would only be reliable with a very high value 
of δ = 0.1 while a value of δ = 10−5 would be possible for 
�2(f ) = 0.01 with ε = 0.5 . For higher values of �2(f ) , 
one has to fall back to higher values of ε . For example, 
consider a hypothetical dataset with 5000 records and an 
algorithm with �2(f ) = 0.3 . In this case one has to accept 
ε = 10 to guarantee a reliable estimate of the AUC while δ 
should be set to a small value.

Correctness of the AUC CIs inferred from ROC‑GLM 
and distributed ROC‑GLM
The respective results in terms of acceptable (ε, δ) com-
binations are shown in Fig.  6. In general, acceptable 
(ε, δ) combinations under Question 1 are also accept-
able under Question 2. Therefore, we recommend using 
the more restrictive settings described in the previous 

Fig. 5  Absolute difference |�AUC| (mean absolute error, MAE): Combinations of privacy parameters ( ε , δ ): Each rectangle contains empirical AUC 
bins of size 0.025 (cf. Table 1) and visualizes the mean of the absolute difference |�AUC| (mean absolute error, MAE) of the distributed ROC-GLM 
AUC compared to the empirical AUC per bin. Each rectangle corresponds to one simulation setting (�2(f̂ ), ε, δ) . The MAE per bin is categorized 
according to the required precision, with blue visualizing an MAE ≤ 0.01 (Question 1) while red shows an unacceptable accuracy measured as MAE 
larger than 0.01
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Correctness of the AUC inferred from ROC-GLM and 
distributed ROC-GLM section for the AUC estimation of 
the distributed ROC-GLM.

Data analysis
We develop a prognostic model on a pooled data and val-
idate its predictive performance on a distributed test data 
set. We also compare the distributed validation results to 
results derived from the pooled analysis (see Comparison 
with pooled data section). As a privacy level, we choose a 
value of q = 5 (see General principles section, A1).

About the data  The public data set from the German 
Breast Cancer Study Group [24] can be found in the TH.
data package [12]. The dataset consists of records from 
686 breast cancer patients to assess the effect of hormo-
nal therapy on survival. Besides the binary variable hor-
monal treatment (horTH), the data contains information 
on age (age), menopausal status (menostat), tumor 
size (in mm, tsize), tumor grade (tgrade), number 
of positive nodes (pnodes), progesterone receptor (in 
fmol, progrec), estrogen receptor (in fmol, estrec), 
recurrence-free survival time (in days, time), and cen-
soring indicator (0- censored, 1- event, cens).

We split the data into a training data ( 60 % , 412 
observations) and split the remaining (40 %, 250 obser-
vations) into 5 parts D(1), . . . ,D(5) with n(1) = 51 , 

n(2) = 45 , n(3) = 55 , n(4) = 46 , and n(5) = 53 that are 
used for the distributed validation. The f of interest is 
p(t|x) = P(T > t|X = x) : Probability of surviving time 
point t without recurrence based on covariates x . We 
choose t = 730 (two years). Since we evaluate the binary 
predictor patient survives at least t days without recur‑
rence, we omit 24 patients censored before 730 days 
from the validation sets. As censoring is assumed to be 
independent  and does not introduce selection bias. For 
both sets, train and test, roughly 25% of the observations 
encountered an event before 730 days. We provide the 
Kaplan-Meier curves of the used training and test data 
in Appendix  A.4. The predicted scores are the survival 
probabilities ŷi = f̂ (xi) = p̂(730|xi) with xi ∈ ∪K

k=1D
(k) . 

The corresponding binary variable yi equals 0 if the 
patient dies in [0,  730] or a recurrence was observed, 
and yi equals 1 if otherwise. Therefore, a high value for 
the survival probability ŷi ideally corresponds to a binary 
outcome of 1.

About the model  We choose a random survival for-
est  [4, 13] using the R package ranger  [29] as a prog-
nostic model f̂  for the survival probability p(t|x) . With 
the exception of the number of trees (which is set to 20), 
the random forest was trained with the default hyper-
parameter settings of the ranger implementation. The 
model formula is given by

Fig. 6  Mean relative error �ci0.05 : Combinations of the privacy parameters ε and δ and their applicability depending on �2(f̂ ) . Each rectangle 
contains empirical AUC bins of size 0.025 (cf. Table 1) and visualizes the mean of the relative error �ci0.05 of the distributed CI c̃i0.05 compared 
to ci0.05 . Blue shows accuracy values with �ci0.05 ≤ 0.01 (Question 2 applies), while red visualizes inaccuracies of �ci > 0.01
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About the implementation  The implementation is based 
on the DataSHIELD  [10] framework and is provided by 
an R package called dsBinVal (github.​com/​difut​ure-​
lmu/​dsBin​Val). Further details about these methods and 
privacy considerations can be found in the respective 
GitHub README.

Aim of the analysis  The main goal of the analysis is 
to test the hypothesis that the true AUC is significantly 
larger than 0.6 as the minimal prognostic performance of 
the model f̂  . The significance level is set to α = 0.05:

To test the hypothesis, we estimate the AUC with 
ÃUCROC-GLM using the distributed ROC-GLM as 
well as the approximated CI c̃i0.05 . We reject H0 if 
AUC > 0.6, ∀AUC ∈ c̃i0.05.

Analysis plan  In the following, (1) we start with the 
calculation of the ℓ2-sensitivity (Choice of the privacy 
parameters  section). Depending on the result and the 
size of the data, we set the privacy parameters ε and δ 

Surv (time, cens) ∼ horTh + age + tsize

+ tgrade + pnodes + progrec + estrec.

(8)H0 : AUC ≤ 0.6 vs. H1 : AUC > 0.6

using the algorithm from [2]. Next, (2) we continue with 
fitting the distributed ROC-GLM and calculating the 
approximation of the AUC’s confidence interval (Cal-
culation of the distributed ROC-GLM  section). At this 
point, we are able to make a decision about the hypoth-
esis in Eq.  (8). In a final step, (3) we demonstrate how 
to check the calibration of the model using the distrib-
uted Brier score and calibration curve (Checking the 
calibration section).

Choice of the privacy parameters
Given the model and the data set, the ℓ2-sensitiv-
ity is �2(f̂ ) = 0.178 . The results of Correctness of the 
AUC inferred from ROC-GLM and distributed ROC-
GLM section, imply ε = 5 and δ = 0.01 to obtain a reli-
able estimation.

Calculation of the distributed ROC‑GLM
The fit of the ROC-GLM results in parameter esti-
mates of γ1 = 0.79 and γ2 = 1.16 . The AUC obtained 
from the ROC curve using these parameters is 
AUCROC-GLM = 0.697 with c̃i0.05 = [0.615, 0.769] . The 
results are visualized in Fig. 7.

Based on the given CI, we significantly reject H0 for H1 
and hence assume the true AUC to be greater than 0.6.

Fig. 7  ROC curve estimated by the distributed ROC-GLM

https://github.com/difuture-lmu/dsBinVal
https://github.com/difuture-lmu/dsBinVal
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Checking the calibration
The Brier score of f̂  calculates to BS = 0.184 and indi-
cates a good but not perfect calibration. We further 
assume our model to be not calibrated perfectly. Fig-
ure 8 shows the distributed calibration curve as well as 
the individual calibration curves per site. Furthermore, 
we observe that the range of the calibration curve does 

not cover the whole range of the scores f̂ (x) ∈ [0, 1] . 
This indicates that our model does not predict scores 
close to 1. We want to highlight that, due to privacy 
reasons, not all score values were included in the calcu-
lation; aggregated values are only shared if they consist 
of at least 5 elements. The table in Appendix A.5 shows 
the number of elements per bin and site.

Fig. 8  Distributed calibration curve (bold line) and calibration curves of the individual sites using 10 bins. Note that aggregated values from the site 
are only shared if one bin contains more than 5 values. See Appendix A.5 for tables containing the numbers of values per bin

Fig. 9  Comparison of the empirical ROC curve with ROC curve obtained by the distributed ROC-GLM (left). Comparison of the calibration curve 
when calculated on the pooled scores compared with the distributed calibration curve (right). The thin (red) curves are the lines on the pooled data
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Comparison with pooled data
Comparison of both ROC curves (empirical ROC on the pooled 
sample and the distributed ROC-GLM) (Fig.  9, left) shows 
an acceptable fit of the ROC-GLM. However, by scrutinizing 
the plot more closely, one can see that there is a discrepancy 
between the empirical ROC curve and the estimated ROC-
GLM: For a small FPR, the curve from the ROC-GLM is below 
the empirical one. On the other hand, a similar trend is observed 
for high values of the FPR in the opposite direction. This refers 
to differences also observed in the example in Appendix 
A.6. The resulting AUC values are ÃUCROC-GLM = 0.697 
and AUC = 0.679 with |�AUC| = 0.018 . The CIs of the 
approximated CI c̃i0.05 = [0.615, 0.769] and the CI on 
the pooled scores ci0.05 = [0.598, 0.751] reveals a slightly 
more optimistic CI estimation in the distributed setup. 
The error of the CI calculates to �ci0.05 = 0.034.

The distributed calibration curve shows an overlap with 
the calibration curve in areas where all data are allowed to 
be shared. For bins where this is not the case, the distrib-
uted calibration curve differ. Still, the tendency of over- or 
underestimation of the distributed calibration curve cor-
responds to one of the pooled curves. The bins for which 
the full information was received are [0, 0.1], (0.1, 0.2], and 
(0.2, 0.3] (cf. Appendix A.5 Table S1). For all other bins, at 
least one site was not allowed to share the aggregated val-
ues. The pooled calibration curve shows potential overpre-
diction which is not is reflected by the distributed curve.

The Brier score of the pooled and distributed approach 
is equal.

Reproducibility considerations
All experiments were conducted using R version 4.1.2 on a 
Linux machine with an Intel(R) Core(TM) i7-8665U CPU @ 
1.90GHz processor. The package used to run the simulation 
was batchtools [15]. The code to reproduce all results as 
well as all simulation results is available in a GitHub reposi-
tory4. The repository contains a README file with further 
details and a script to install all packages with the respective 
version used when the benchmark was conducted.

The code to conduct the data analysis is given in a sepa-
rate GitHub repository5. The repository contains the data, 
an installation of all necessary packages, as well as code to 
set up the publicly available DataSHIELD server6 to run 
the analysis7.

Discussion
Distributed non-disclosing (i.e., privacy-preserving) 
strategies for data analysis are highly relevant for data-
driven biomedical research. Since the analyses can be 
considered anonymous, current legal data protection 
frameworks allow their use without requesting specific 
consent. Protecting privacy by appropriate means is fun-
damental when using personal data for research. Dis-
tributed approaches also enable taking part in broader 
network structures without additional administrative  
work concerning data protection issues. Privacy-preserving  
distributed computation allows researchers to digitally 
cooperate and leverage the value of their data while  
respecting data sovereignty and without compromising 
privacy. Besides the privacy preservation in algorithms 
that are backed up with security mechanisms, it is worth 
noting that software is also a key player in privacy-pre-
serving analysis. For example, most models fitted with 
the statistical software R attach data directly to the model 
object. Sharing these objects without caution gives ana-
lysts direct access to the training data (cf., e.g., [23]).

International activity has been dedicated to setting up 
distributed non-disclosing analysis frameworks, which 
implement machine learning approaches into a distrib-
uted analysis scheme. However, our impression is that 
algorithms for distributed validation of these learning 
algorithms are lacking.

In this paper, we specifically focused on the assessment 
of discrimination and calibration of learning algorithms 
with a binary outcome. The discrimination is estimated 
by a ROC curve and its AUC. We also provide CIs to the 
distributed AUC estimate. The distributed estimation 
process is based on placement values and survivor func‑
tions. They represent qualities of the global distribution 
of score values (aggregated over all centers). To do this 
in a non-disclosing way, we applied differential privacy 
techniques. With the creation of the placement values 
and the transmission of this information to the local 
server, we applied a distributed version of the ROC-GLM 
approach to estimate the ROC curve and its AUC in a 
distributed way. We used a straightforward approach for 
the distributed GLM estimation. However, we acknowl-
edge that there may be more efficient approaches.

The proposed method implements a combination of 
aggregation and differential privacy (DP) with privacy 
parameters ( ε, δ ). DP offers a solution to exchange criti-
cal information privately to other sites, but a part of the 
information is lost through the induced noise of the pri-
vacy mechanism. The balance between utility (i.e. accu-
rate estimates) and privacy must be carefully weighted. 
The results suggest, that for algorithms with a small sen-
sitivity, the estimates stay reliable. However, for a higher 
sensitivity this is not the case. In general, a higher value 

4  github.​com/​difut​ure-​lmu/​simul​ations-​distr-​auc
5  github.​com/​difut​ure-​lmu/​datas​hield-​roc-​glm-​demo
6  Available at opal-​demo.​obiba.​org. The reference, username, and password 
are available at the OPAL documentation opald​oc.​obiba.​org/​en/​latest/​resou​
rces.​html in the “Types” section.
7  We cannot guarantee the functionality of the DataSHIELD server or if it will be 
publicly available forever. However, we keep the repository up-to-date by using 
continuous integration, which is triggered automatically every week. This system 
also reports errors that occur if the analysis cannot be conducted on the test server 
anymore. Further information can be found in the README file of the repository.

https://github.com/difuture-lmu/simulations-distr-auc
https://github.com/difuture-lmu/datashield-roc-glm-demo
https://opal-demo.obiba.org
https://opaldoc.obiba.org/en/latest/resources.html
https://opaldoc.obiba.org/en/latest/resources.html
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of δ may lead to more flexibility (and therefore to a higher 
privacy level) with respect to ε , e.g. setting δ = 0.1 . This 
suggests, that ε-DP is broken in 10% of the cases. It is 
questionable, whether this is an acceptable value.

We discuss broadly the potential bias in the approxima-
tion of the ROC curve by the distributed GLM approach 
and show results in Table  1 and Fig.  9. We focus on a 
binary measure of bias ( |�AUC| < 0.01 ) and did not 
address bias issues in detail. We did not explore how bias 
may be assessed by choosing different metrics (like rela-
tive measures). We did not explore aspects of unbalanced 
datasets and there effect on metrics like negative/positive 
predictive value. Hence, a more comprehensive analysis 
of the proposed method is necessary: even though the 
presented simulation studies provides valuable insights 
into the proposed method, it lacks of a in-depth detailed 
analysis. It is missing a comparison of the empirical ROC 
curve and its distributed ROC-GLM counterpart in 
terms of a ℓ1-metric.

Besides the potential bias of the ROC-GLM, the sim-
ulation study of the DP parameters considers only a 
selected range of configurations and does not further 
investigate their impact beyond the binary threshold. 
Additionally, the application limits itself only to one 
exemplary scenario with one dataset and one defined 
algorithm. Therefore, it can rather be seen as a didactic 
example. An in-depth examination of various classifica-
tion tasks with different characteristics of data and clas-
sifiers under real-world conditions are necessary. Hence, 
future work is required to address the mentioned points 
in a comprising simulation study and a range of applica-
tion settings.

Furthermore, a reviewer pointed to the potential anti-
conservative effect of the proposed procedure. Figure  9 
(left panel) suggests to reject the Null-hypothesis that the 
AUC is below 0.6 on a 5%-level while the result given in 
Comparison with pooled data section for the 95%-CI on 
the pooled data contains 0.6.

In view of these critical points, we therefore recom-
mend applying the proposed method with caution at 
the moment. It is a straight-forward and pragmatic way 
to validate data in a federated manner while preserving 
privacy. Moreover we provide R code that directly imple-
ments the proposed method in the DataSHIELD frame-
work. However, the previously mentioned problems 
imply, that the software should not be used as a black-box 
tool. It can serve as a low-level entry to investigate these 
issues for a specific setting.

We also want to highlight, that the proposed strat-
egy cannot be used to develop a full machine learning 
model on distributed data. We focus exclusively on 

validating an already trained model, using data from 
other sites only once for this specific context. In gen-
eral, applying a DP algorithm many times on the same 
data implies a higher privacy loss. See for example Sec-
tion 3.5 in [9] about composition theorems in DP.

The procedure proposed can be summarized as fol-
lows: (1) The validation of an algorithm requires that it 
is known and can be shared. (2) The calculation of �2(f ) 
provides essential input to determine the DP setting. It 
can be derived from the data at hand and the algorithm 
under validation. The selection of the DP parameters 
(ε, δ) depends on the setting and use-case specific fea-
tures. (3) The user has also to specify the level of pri-
vacy for the aggregation (i.e. the minimal number of 
unique values q to be shared aggregated) under project 
specific requirements. It is recommended to apply the 
proposed procedure on settings with large datasets at 
the different sites.

We mainly concentrate on the validation of a pre-
diction model while the property of the ROC-GLM 
is not fully explored. We do not address specific fea-
tures of the ROC-GLM estimates and ignore aspects 
of unbiasdness and consistency. We demonstrate 
that the approximation of the AUC by the distributed 
ROC-GLM estimates introduces bias which needs 
to be controlled and assessed. The approach creates a 
bias and needs a pragmatic assessment of whether it 
is acceptable or not. If the proposed approach is used 
in an analysis, this aspect must be clearly described in 
the corresponding analysis plan and its impact on the 
analysis must be discussed. Our example shows that the 
proposed approach produces an overly liberal result.

But, it can be seen as an advantage of the proposed 
strategy that the privacy protecting aspects are also 
helpful for subgroup analyses. Moreover, the proposed 
approach makes it straightforward to develop dis-
tributed privacy protected GLM based classification 
models since the log-likelihoods consist of site specific 
independent additive parts. The procedure described in 
Distributed GLM section can also be applied to feder-
ated privacy protecting model building activities in the 
family of generalized linear models.
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