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A B S T R A C T   

Simulation-based learning is being increasingly implemented across different domains of higher education to 
facilitate essential skills and competences (e.g. diagnostic skills, problem-solving, etc.). However, the lack of 
research that assesses and compares simulations used in different contexts (e.g., from design perspective) makes 
it challenging to effectively transfer good practices or establish guidelines for effective simulations across 
different domains. This study suggests some initial steps to address this issue by investigating the relations be
tween learners’ experience in simulation-based learning environments and learners’ diagnostic accuracy across 
several different domains and types of simulations, with the goal of facilitating cross-domain research and 
generalizability. The findings demonstrate that used learners’ experience ratings are correlated with objective 
performance measures, and can be used for meaningful comparisons across different domains. Measures of 
perceived extraneous cognitive load were found to be specific to the simulation and situation, while perceived 
involvement and authenticity were not. Further, the negative correlation between perceived extraneous cogni
tive load and perceived authenticity was more pronounced in interaction-based simulations. These results pro
vide supporting evidence for theoretical models that highlight the connection between learners’ experience in 
simulated learning environments and their performance. Overall, this research contributes to the understanding 
of the relationship between learners’ experience in simulation-based learning environments and their diagnostic 
accuracy, paving the way for the dissemination of best practices across different domains within higher 
education.   

1. Problem statement 

As learners in higher education need to be prepared for their future 
profession, their professional competences should include a range of 
complex skills. The most critical skills across different higher education 
subjects are analytic and diagnostic skills that enable the learner (and a 
professional) to collect, evaluate, and utilize relevant information to 
arrive at and communicate professional decisions (e.g., Gartmeier et al., 
2015). 

Simulation-based learning environments are increasingly employed 

in higher education to assess and cultivate diagnostic skills (e.g., Bygstad 
et al., 2022; Cook, 2014; Chernikova et al., 2020 ). Different types of 
simulated situations allow addressing a whole range of professional 
skills in higher education in safe (e.g., Ziv et al., 2003) and engaging 
learning environments with simulations differing in the context domain 
or the source of diagnostic information (Heitzmann et al., 2019). To 
provide realistic training possibilities, simulation-based learning envi
ronments should balance authenticity, involvement, and cognitive de
mand (e.g., Brom et al., 2017; Seidel et al., 2010). Accordingly, research 
on simulation-based learning increasingly investigates learners’ 
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experience of simulations and its importance for learning outcomes (e. 
g., Codreanu et al., 2020; Gegenfurtner et al., 2014; Lesā et al., 2021). 
However, it is unclear whether the findings related to learners’ experi
ence of a simulation can be generalized across domains in the field of 
learning and instruction (e.g., Heitzmann et al., 2021). Addressing this 
problem can only take place if the generalizability of the learners’ 
experience measures across different contexts is granted (Yarkoni, 
2020). Research programs aiming at replicability and generalization of 
findings on learners’ experience of simulations across domains (e.g., 
Fink et al., 2021) have rarely systematically investigated the extent to 
which measures with assumed cross-domain validity are actually 
invariant across domains. In other words, some cross-domain research 
papers might assume that the authenticity of, for instance, diagnosing a 
simulated patient in medical education can be rated on the same scale as 
the authenticity of another diagnostic simulation, such as a simulated 
interaction with a student in teacher education, and the values of this 
scale have the same meaning in both situations (e.g., Chernikova et al., 
2020). However, this assumption may be problematic, as it may lead to 
an underestimation of the possible differences in understanding 
different phenomena across domains. Teachers and physicians might 
have different perspectives on the factors that contribute to authenticity. 

To enable systematic development of effective simulations and 
transfer of good practices across domains, it is important to assess and 
compare simulations used in different contexts. To do so, it is essential to 
first assess the invariance of measurement tools used (e.g., Yarkoni, 
2020) to assess learners’ experience of simulations. Although 
non-invariance across groups does not necessarily limit the power of 
cross-group comparisons (e.g., Robitzsch & Lüdtke, 2020), invariance of 
measurement is a prerequisite for the generalizability and interpretation 
of results. Furthermore, from a theory perspective, understanding how 
learning with simulations works is crucial, as the fundamental mecha
nisms are likely to be consistent across contexts. 

In this study, we investigate whether established subjective scales for 
estimating learners’ experience of simulated learning environments 
(perceived extraneous cognitive load, perceived authenticity, and 
perceived involvement) show measurement invariance across different 
domains and types of simulations. Further, we explore the relations 
between learners’ experience within simulation-based learning envi
ronments and learners’diagnostic accuracy. 

2. Theoretical background 

2.1. Diagnostic competences and diagnostic accuracy as a measure of 
performance in higher education 

Making professional decisions is hardly possible without a thorough 
analysis, the ability to identify, understand, and predict events or situ
ations by applying domain-specific knowledge and experience as well as 
a range of complex skills (e.g., analytic, reasoning, and problem-solving 
skills). Taken together, these processes form the core of diagnostic 
competencies (Charlin et al., 2000; Helmke et al., 2012; Spinath, 2005). 
There are at least two prominent domains that share diagnostic pro
cesses and activities as well as underlying competences required to come 
to decisions. Despite teacher and medical education domains have 
different professional contexts and relevant situations; there is a range of 
similarities (e.g., Gartmeier et al., 2015). Although in medical context 
diagnosing is often directed towards identifying a disease, there are also 
comparable activities in teacher everyday practice, for example identi
fying a misconception in math, identifying the competence level the 
student is at, etc. In teacher education diagnosing is rather related to the 
concepts of professional vision and formative assessment (e.g, Seidel 
et al., 2010). 

Studies conducted in higher education often employ simulation- 
based learning to facilitate diagnostic competences, utilizing various 
indicators to measure performance and learning outcomes (e.g., (Fischer 
et al., 2022) ). One commonly used performance indicator is judgment 

or diagnostic accuracy, which assesses the alignment between teachers’ 
assessment of students’ understanding and the students’ actual under
standing, as evaluated by an independent test or expert rating, partic
ularly in the context of teacher education (e.g., Artelt & Rausch, 2014; 
Südkamp et al., 2012). In medical education, diagnostic accuracy refers 
to the level of agreement between the diagnosis provided and the actual 
presence of a disease or the correct solution for a given sample (e.g., 
Hege et al., 2018). 

2.2. Simulation-based learning environments 

There are many different operationalizations of simulations in 
different research fields. Simulations can be restricted to mathematically 
quantified modeling of relations and processes to understand particular 
phenomenon (e.g., in physics), or they can be applied in a much broader 
context. In discovery and inquiry learning, simulations are used to 
represent a certain aspect of reality. A simulation can be understood as a 
model of a real system that makes it possible to obtain knowledge about 
the relations among the variables of a system or to test and practice 
strategies for influencing and controlling a system (Frasson & Blanchard, 
2012). Within the simulation-based learning environment, a compre
hensive understanding of variables and their relationships is attained 
through the manipulation and measurement of these variables. For 
instance, in the field of chemical reactions, studies such as Reeves et al. 
(2021) emphasize the importance of this knowledge acquisition. 

In the context of training (e.g., in teacher or medical education), 
simulations are utilized as action scenarios that require the acquisition 
of complex competences. This involves applying conceptual knowledge, 
making informed decisions, and taking appropriate actions to modify 
the simulated environment (Al-Kadi & Donnon, 2013). 

In this study, we view simulations as approximations of practice 
(Grossman et al., 2009), as they enable modifying and reducing the 
complexity of authentic situations (decomposition) but also represent 
the complex nature of actual practice (approximation). Thus, a central 
aim of simulations is to create learning opportunities that accurately 
represent specific real-life problem scenarios, enabling the development 
of knowledge and skills and allowing practice in performing specific 
actions within complex situations. They are designed to emulate real-life 
conditions to the extent necessary for effective learning while also of
fering a controlled environment in which disruptive factors can be 
managed. 

To sum up, in this paper we focus on the context of simulation-based 
learning environments in which (1) aspects of reality (e.g., pupil or 
patient behavior) are emulated in a way appropriate to the intended 
purpose (e.g., providing sufficient information to make a diagnostic 
decision), and (2) learners (within simulation-based environment) can 
intervene in the situation such that the further course of events depends, 
at least to some extent, on their actions. 

Empirical research provides support for the effectiveness of learning 
with simulations in different domains of higher education (e.g., Cook, 
2014; Theelen et al., 2019). The meta-analysis by Chernikova et al. 
(2020) suggests that there are multiple factors that affect the learning 
benefits of simulation-based learning, including the type of simulation. 
This study adopts the classification of simulation types based on the 
source of information developed by Heitzmann et al. (2019). Doc
ument-based simulations incorporate scenarios in which the relevant in
formation is available as text (e.g., students’ homework or patients’ 
history), images (e.g., a drawing or x-ray), or video (e.g., recording of 
the lesson or interview). In contrast, interaction-based simulations incor
porate scenarios where the relevant information is collected through 
interaction with the patient or student (history-taking, interviewing). 

Prior research has shown that the type of simulation explains more of 
the variance in the effects of simulated learning environments on 
learning outcomes than differences in learning domains (e.g., Authors, 
20XX). This may be due to differences in the cognitive demand of 
particular simulation types as well as differences in learners’ experience 
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of simulated learning environments (e.g., Gegenfurtner et al., 2014). For 
example, a simulated situation can involve interaction with standard
ized patients, which requires an immediate reaction to the patients’ 
answers and little time to decide on the next question. However, it also 
can involve working with written medical records, where more time is 
available to make decisions and it is possible to review particular aspects 
and check them again or consult with a book or peer. Both situations can 
be perceived as highly authentic, depending on the task trained, but the 
cognitive demands are obviously different. 

2.3. Learners’ experience of simulation-based learning environments 

Establishing a strong connection between the content taught in 
higher education institutions and real-world professional situations can 
support future professionals in acquiring practice-oriented professional 
knowledge, skills, and competences (e.g., Blömeke et al., 2015). To 
facilitate this connection, it is essential to employ effective instructional 
design principles in the creation of learning environments. Such designs 
should consider the desired learning objectives as well as the learners’ 
experience, ensuring a meaningful and impactful educational 
experience. 

To obtain the most benefits from learning environments, learners 
should focus their attention on the learning situation (Witmer & Singer, 
1998), which is known as presence in the simulated learning environ
ment. Presence refers to the degree to which users of a virtual envi
ronment feel involved with, absorbed in, and engrossed by stimuli from 
the virtual environment (Palmer, 1995; for an overview of definitions 
see Agrewal et al., 2020). Conceptually, presence consists of two core 
dimensions: First, learners feel that they are physically (and cognitively) 
involved in the environment presented in the simulation, and second, 
the interaction with the learning environment is experienced as 
ecologically valid/authentic (Ijsselsteijn & Riva, 2003; Wirth et al., 
2007). 

Research has shown that learners benefit from simulation-based 
learning environments they perceive as authentic (e.g., Seidel et al., 
2010) and cognitively involving (e.g., Dankbaar et al., 2016; Schubert 
et al., 2001). Therefore, we hypothesize that higher levels of perceived 
authenticity and involvement would be related to better performance (e. 
g., higher diagnostic accuracy) in simulation-based learning 
environments. 

Both the availability of relevant information and the effort required 
to deal with the features of the learning environment (e.g., for naviga
tion) that are not directly related to the learning task, can be concep
tualized as extraneous cognitive load (e.g., Eysink et al., 2009), which in 
turn can also influence the experience of simulated situations and per
formance. We assume that higher levels of extraneous load might hinder 
learning and be negatively related to performance measures and 
learning gains. In case of this study it means, decreased diagnostic ac
curacy might be associated with increased levels of perceived extra
neous cognitive load. 

Importantly, learners may differ in how they evaluate their experi
ence of a simulated learning environment, based on their experience, 
expectations and individual differences. For instance, adult learners 
have encountered various medical and classroom interactions in their 
roles as patients and students, respectively, as well as through different 
media sources (e.g., books, movies, newspapers). Even novice learners 
possess a basic understanding of what constitutes an ecologically valid 
interaction, although their experiences as physicians or teachers may be 
limited. Due to their limited experience, novices may differ from experts 
not only in the quantity but also in the quality of their evaluations. They 
may prioritize different aspects of the simulated learning environment, 
such authenticity, engagement, or cognitive demand based on their 
unique perspectives. 

Similarly, teachers may have different evaluations compared to 
physicians when experiencing simulated learning environments. While 
working with medical or study record may appear similar, the contexts 

in which physician–patient and teacher–student interaction occur dif
fers significantly. For example, teachers often have less one-on-one 
communication with individual students and may perceive such in
teractions as less authentic compared to interactions with group of 
students. Additionally, teachers, in general, may have less experience 
with simulation-based learning environments compared to physicians, 
leading them to establish different reference points based on their own 
experiences (e.g., give more weight to different items of the scale). Such 
differences might lead to difficulties (and inconsistencies) comparing 
learners’ experiences in simulation-based learning environments across 
contexts and need to be addressed. 

2.4. This study 

The study aims to provide initial insights into design of effective 
simulations by examining the connection between learners’ experiences 
within complex simulated learning environments and their performance 
across different types of simulations and domains. This can only be 
performed if the generalizability of the learners’ experience measures is 
granted (Yarkoni, 2020). More specifically, we will focus on simulated 
learning environments developed to assess and foster diagnostic 
competence, a highly complex and relevant set of skills in various do
mains. Our investigation will encompass both document-based and 
interaction-based simulation in the contexts of both medical and teacher 
education. 

We assume that learners’ perceived authenticity and involvement 
are positively related to diagnostic accuracy, whereas higher perceived 
extraneous cognitive load is negatively related to diagnostic accuracy. 
We investigate these assumptions using the following research 
questions.  

1. What is the relation between learners’ experience measures 
(perceived measures of authenticity, involvement, and extraneous 
cognitive load), and how do they relate to diagnostic accuracy?  

2. Do these relations differ significantly between domains and types of 
simulations (based on sources of relevant information)? 

3. Method 

3.1. Samples and procedure 

The data to investigate the proposed research questions were 
collected through seven different studies, details of which are presented 
in Table 1. Each study was approved by the ethics committee of the 
respective host university. 

To distinguish between simulation types, this study classifies diag
nostic situations as document- or interaction-based simulations (Heitz
mann et al., 2019). Simulations were coded as document-based if the 
diagnosis was based on information retrieved from a written document 
or video material and as interaction-based if the diagnosis was based on 
information obtained through interaction with the patient/pupil via an 
interview or similar procedure. Table 1 includes this classification as 
well as additional contextual information about the included studies 
(domain, sample, and diagnostic task). A more comprehensive descrip
tion of the simulations used in this study as well as the implemented 
interventions and prompts can be found in the respective chapters of the 
Learning to Diagnose with Simulations book (Fischer & Opitz, 2022). 

3.2. Measures 

Participants’ experience in simulations was measured using the three 
scales described below, which assess participants’ presence based on 
their feelings of involvement and authenticity as well as cognitive de
mand (extraneous cognitive load). Diagnostic accuracy was operation
alized as a performance measure. Most primary studies used different 
entry methods for making the final diagnosis (e.g., free-text entry; single 
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choice from short and long lists). To ensure consistency in measuring 
participants’ performance for this analysis, we focused exclusively on 
the accuracy of their diagnoses. The diagnoses were assessed as either 
correct or incorrect based on agreement with the expert solution for each 
simulated scenario, regardless of how they were entered or coded. The 
accuracy was then averaged across multiple scenarios that were diag
nosed within the simulation-based learning environment. 

Involvement. As no single scale existed that fit our needs, we con
structed a scale with four items measuring perceived involvement based 
on prior scales focusing on cognitive involvement (Seidel et al., 2010; 
Vorderer et al., 2004), which was implemented in all studies. The scale 
uses a five-point Likert scale format (strongly agree; agree; undecided; 
disagree; strongly disagree). An example item is “While I was diagnosing 
in the simulated learning environment, I dedicated myself completely to 
the situation.” The scale showed an internal consistency between α =
0.47 and α = 0.79 for the included studies. 

Authenticity. As with involvement, we adapted items from prior 
authenticity scales (Schubert et al., 2001; Seidel et al., 2010). The 
five-point Likert scale (strongly agree; agree; undecided; disagree; 
strongly disagree) consists of three items. An example item is “The 
learning environment seemed to be just like a real professional situa
tion.” The scale showed an internal consistency between α = 0.74 and α 
= 0.91. For the included studies. 

Extraneous cognitive load. We measured perceived extraneous 
cognitive load with a three-item scale (Eysink et al., 2009; Opfermann 
et al., 2010), using a five-point Likert scale format (strongly agree; 
agree; undecided; disagree; strongly disagree). An example item is “How 
easy or difficult is it for you to work in the learning environment.” The 
scale showed an internal consistency between α = 0.48 and α = 0.87 for 
the included studies. 

Full versions of all scales and scale statistics for all studies are pro
vided in the open science repository (https://osf.io/ckeby/? 
view_only=e5a22ffb2e4a41b681c9c224036751d5). 

3.3. Statistical analyses 

Measurement invariance implies that using the same questionnaire 
with different groups measures the same construct in the same way (e.g., 
Millsap, 2011) and is therefore an essential prerequisite to answering 
our research questions. As running all possible sets of comparisons 
across the seven studies (120 possible sets) would result in an increased 
alpha error due to multiple testing, we applied an algorithm to limit the 
number of invariance tests necessary. Euclidean distances between the 
vectors of loadings estimated for each study individually were used to 
determine the distance in loadings. This allowed us to begin the 
invariance testing with the closest measures and then extend the testing 
incrementally based on this information (akin to the approach used for 
hierarchical cluster analysis; Bridges Jr., 1966). To investigate the 
research questions, it would be sufficient to establish metric (weak) 
invariance. Metric invariance ensures equivalence in measurement units 
by constraining factor loadings to be equal across groups. This constraint 
enables comparisons of factor covariances or unstandardized regression 
coefficients (Millsap, 2011). Invariance was assessed by evaluating the 
model fit, through chi-squared difference tests between the uncon
strained (configural) and the metric model. Given the explorative nature 

Table 1 
Studies included in the analysis.  

Study N Simulation 
type 

Domain Sample Diagnostic task 

1 91 document- 
based 
(written 
material) 

Teacher 
Education: 
Mathematics 

pre- 
service 
teachers 
Gender: 77 
f/14 m 
Age: 22.88 
(2.97) 
Semester: 
3.86 
(1.45) 

diagnosing 
primary students’ 
mathematical 
competence 
levels and 
misconceptions 

2 28 document- 
based (video 
vignettes) 

Teacher 
Education: 
Mathematics 

pre- 
service 
teachers 
Gender: 13 
f/15 m 
Age: 24 
(2.97) 
Semester: 
3.86 
(2.08) 

diagnosing 
mathematical 
argumentation 
skills 

3 15 document- 
based (video 
vignettes) 

Teacher 
Education: 
Biology 

in-service 
teachers 
Gender: 11 
f/3 m/1na 
Age: 24 
(2.97) 
Semester: 
n/a 

diagnosing the 
instructional 
quality of biology 
lessons 

4 86 interaction- 
based 
(video/live 
interviews) 

Medical 
Education 

pre- 
service 
medical 
students 
Gender: 54 
f/32 m 
Age: 26.03 
(4.71) 
Semester: 
47 in 1st 
sem; 
39 in 1st 
practical 
year 

history-taking 
and diagnosing 

5 34 document- 
based (video 
vignettes) 

Teacher 
Education: 
Physics & 
Biology 

pre- 
service 
teachers 
Gender: 
21f/12 m/ 
1 
Age: 24.06 
(4.25) 
Semester: 
4.79 
(2.04) 

diagnosing 
secondary school 
students’ 
scientific 
reasoning skills 

6 101 document- 
based 
(written 
material) 

Medical 
Education 

pre- 
service 
medical 
students 
Gender: 
62f/39 m/ 
1na 
Age: 29.68 
(10.90) 
Semester: 
8,39 
(2.86) 

diagnosing 
collaboratively 
with simulated 
radiologist 

7 66 interaction- 
based (one- 
on-one 
interviews) 

Teacher 
Education: 
Mathematics 

pre- 
service 
teachers 
Gender: 
38f/26 m/ 
2na 
Age: 23.83 
(5.74) 

diagnosing 6th 
graders’ 
understanding of 
decimal fractions  

Table 1 (continued ) 

Study N Simulation 
type 

Domain Sample Diagnostic task 

Semester: 
4.71 
(2.49) 

Note: Age and Semester M(SD) are provided. 
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of our invariance analyses, a significance level of 1% was used for hy
pothesis testing. 

To examine our research questions, we established structural equa
tion models to analyze the correlations between the constructs. The 
latent correlations were then aggregated using the Fisher r-to-z trans
formed correlation coefficient, which served as the outcome measure. A 
random-effects model was fitted to the data, and the restricted 
maximum-likelihood estimator was used to estimate the amount of 
heterogeneity (τ2) (Borenstein et al., 2009; Viechtbauer, 2010). Addi
tionally, the Q-test for heterogeneity and the I2 statistic were calculated 
and reported. The significance level for these analyses was set to 5%. 

For correlations for which significant heterogeneity was detected, we 
tested whether the variation in study effects could be explained by the 
study domain or simulation type using categorical moderator analyses 
(Research Question 2). The significance level for these analyses was set 
to 5%. All analyses were conducted in R 4.0.3. The respective syntax can 
be found in the open science repository (https://osf.io/ckeby/? 
view_only=e5a22ffb2e4a41b681c9c224036751d5). 

4. Results 

4.1. Preliminary analysis: measurement invariance 

Fig. 1 depicts the sets of studies for which we conducted analyses of 
invariance. Studies that are most similar in terms of the factor loadings 
for the respective constructs are clustered together. The height of the 
dendrograms indicates the similarity (distance) in studies. Less similar 
studies are successively grouped into larger clusters. The p-values indi
cate the likelihood of these studies being invariant with regard to their 
operationalization of the constructs. As can be seen in Fig. 1, we found 
metric measurement invariance across all studies for perceived 
authenticity and involvement. No acceptable measurement model could 
be fitted for involvement in Study 3, and thus the distance between this 
and other studies could not be determined. Accordingly, this study was 
excluded from further analyses. 

Finally, perceived extraneous cognitive load did not show invariance 
across all studies, while metric invariance was found across all studies 
except Study 2. Accordingly, Study 2 was excluded from further 
analyses. 

4.2. Learners’ experience measures and diagnostic accuracy (RQ1) 

The Fisher r-to-z transformed correlation coefficients for the corre
lation between perceived authenticity and perceived involvement 
ranged from 0.23 to 0.77, with all estimates being positive (100%). The 
estimated average Fisher r-to-z transformed correlation coefficient 
based on the random effects model was ρ = 0.52 (95% CI:.36 to 0.67, p 
< 0.001). According to the Q-test, the true correlations appear to be 
heterogeneous (Q (5) = 11.69, p = 0.039, τ2 = 0.022, I2 = 58.38%). 

The observed Fisher r-to-z transformed correlation coefficients for 
the correlation between perceived authenticity and perceived extra
neous cognitive load ranged from − 0.80 to 0.11, with the majority of 
estimates being negative (80%). The estimated average Fisher r-to-z 
transformed correlation coefficient based on the random effects model 
was ρ = − 0.22 (95% CI: − 0.54 to 0.09, p = 0.162). According to the Q- 
test, the true outcomes appear to be heterogeneous (Q (4) = 32.23, p <
0.001, τ2 = 0.112, I2 = 88.93%). 

The observed Fisher r-to-z transformed correlation coefficients for 
the correlation between perceived involvement and perceived extra
neous cognitive load ranged from − 0.72 to − 0.01, with all the estimates 
being negative (100%). The estimated average Fisher r-to-z transformed 
correlation coefficient based on the random-effects model was ρ =
− 0.40 (95% CI: − 0.63 to − 0.16, p = 0.001). According to the Q-test, the 
true outcomes appear to be heterogeneous (Q (4) = 19.54, p < 0.001, τ2 

= 0.058, I2 = 80.58%). 
The observed Fisher r-to-z transformed correlation coefficients for 

the correlation between perceived authenticity and diagnostic accuracy 
ranged from − 0.02 to 0.25, with the majority of estimates being positive 
(83%). The estimated average Fisher r-to-z transformed correlation co
efficient based on the random effects model was ρ = 0.13 (95% CI:.03 to 
0.23, p = 0.010). According to the Q-test, there was no significant 
amount of heterogeneity in the true outcomes (Q (5) = 3.66, p = 0.599, 
τ2 = 0.000, I2 = 0.00%). 

The observed Fisher r-to-z transformed correlation coefficients for 
the correlation between perceived involvement and diagnostic accuracy 
ranged from − 0.13 to 0.29, with the majority of estimates being positive 
(67%). The estimated average Fisher r-to-z transformed correlation co
efficient based on the random effects model was ρ = 0.12 (95% CI: 
− 0.01 to 0.25, p = 0.067). According to the Q-test, there was no sig
nificant amount of heterogeneity in the true outcomes (Q (5) = 7.86, p =
0.164, τ2 = 0.010, I2 = 37.82%). 

Finally, the observed Fisher r-to-z transformed correlation co
efficients for the correlation between perceived extraneous cognitive 
load and diagnostic accuracy ranged from − 0.34 to − 0.15, with all of 
the estimates being negative (100%). The estimated average Fisher r-to- 
z transformed correlation coefficient based on the random-effects model 
was ρ = − 0.22 (95% CI: − 0.32 to − 0.12, p < 0.001). According to the Q- 
test, there was no significant amount of heterogeneity in the true out
comes (Q (4) = 2.21, p = 0.697, τ2 = 0.000, I2 = 0.00%). All aggregated 
correlations are summarized in Table 2. 

4.3. Domains and simulation types as moderators (RQ2) 

After calculating mean correlations between learners’ experience 
measures and diagnostic accuracy, we tested whether the factors domain 
and/or simulation type could explain the heterogeneity in the correla
tions. Table 3 presents all aggregated correlations by domain and 
simulation type. 

Fig. 1. Dendrogram visualizing distances in loadings between all studies for authenticity, involvement, and extraneous cognitive load 
Note: Numbers represent p-values for Chi-Squared difference tests testing metric invariance across studies. p > 0.010 indicates non-significant results. Note that no 
measurement model for involvement could be fitted for Study 3. 
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Only the correlation between perceived involvement and diagnostic 
accuracy was moderated by the domain (p = 0.014), with stronger 
positive Fisher r-to-z transformed correlations for medical education (ρ 
= 0.25) than for teacher education (ρ = 0.08). Only the correlation 
between perceived authenticity and perceived extraneous cognitive load 
was moderated by the simulation type (p = 0.004), with stronger 
negative Fisher r-to-z transformed correlations for interaction-based 
simulations (ρ = − 0.31) than for document based simulations (ρ =
− 0.04). 

5. Discussion 

The findings of this cross-study comparison show that learners’ 
experience ratings are associated with objective performance measures 
(i.e. diagnostic accuracy). It is important to note that the assumption of 
measurement invariance for constructs related to learners’ experience 
cannot be assumed without empirical validation. Failure to establish 
measurement invariance can significantly reduce the generalizability of 
findings (e.g., Vandenberg & Lance, 2000) and hinder meaningful 
comparisons across different studies. This study provides supportive 
evidence to such measurement invariance of some of the learners’ 
experience scales, therefore, cross-domain comparisons were possible. 

The results of this study suggest that the scales utilized to measure 
perceived authenticity and involvement have similar structures across 
domains and that the constructs can be measured equivalently in both 
medical and teacher education. In contrast, the measures of perceived 
extraneous cognitive load seem to be more specific to the simulation and 
situation. In other words, the availability of relevant information and 
the effort needed to deal with the features of the learning environment 
(Eysink et al., 2009) can be perceived differently in different contexts (e. 
g., different domains). Although metric invariance was reached, the 
clustering approach identified no patterns to explain variation based on 
the tested features. 

The analyses of the relation between the constructs showed that 
perceived authenticity is closely related to perceived involvement across 
domains and types of simulations. As hypothesized, both of these mea
sures are positively related to performance, as measured by diagnostic 
accuracy. In turn, perceived extraneous cognitive load is negatively 
related to other experience measures and diagnostic accuracy. Although 
these findings are correlational in nature, they are in line with previous 
research findings (e.g., Darling-Aduana, 2021; Seidel et al., 2010) which 
suggest that there might be a causal relation between perceived 
authenticity and involvement, which, in turn facilitates performance. 
This causal relationship needs to be tested in further primary studies. 
Our findings are also consistent with the discussion in Codreanu et al. 
(2020), emphasizing the essential role of authenticity and cognitive 
demand in designing simulation-based learning environments. Accord
ing to our findings, perceived extraneous cognitive load (e.g., additional 
effort needed to deal with the learning environment) seems to be related 
to lower perceived authenticity and involvement as well as lower 
diagnostic accuracy. We can assume that lower perceived authenticity 
contributes to an increase in perceived extraneous cognitive load, as 
participants might think they are not working on core practical tasks. In 
contrast, higher perceived authenticity can relate to perceiving cogni
tive demand as an intrinsic cognitive load (e.g., see Sweller et al., 2019). 
However, this assumption needs to be validated by further evidence 
from primary research. If we consider authenticity as a design feature 
that can be manipulated (Chernikova et al., 2023), this finding supports 
the idea of balancing authenticity and cognitive demand (e.g., making 
some essential aspects of simulation authentic, while keeping other as
pects simple to reduce possible distraction) in designing learning 
environments. 

Our analysis also contributes to the argument by Chernikova et al. 
(2020) that the type of simulation (i.e., document-based vs. 
interaction-based simulation) might better explain the variance in the 
effects of simulations on performance and learning outcomes than do
mains alone. In this study, the negative relationship between perceived 
authenticity and perceived extraneous cognitive load was stronger for 
interaction-based simulations than for document-based simulations. 
One of the possible explanations for this phenomenon is that 
interaction-based simulations are perceived as more cognitively 
demanding, and the additional effort required to identify relevant in
formation in interactions with simulated colleagues or non-professional 
interaction partners seems overwhelming. Moreover, the remaining 
unexplained variance indicates the presence of other possible modera
tors, such as professional knowledge, requiring further investigation. 

Table 2 
Aggregated correlations between learners’ experience measures and diagnostic 
accuracy.   

Perceived 
authenticity 

Perceived 
involvement 

Perceived 
extraneous 
cognitive load 

Perceived 
authenticity    

Perceived 
involvement 

0.52 [0.36; 
0.67]; p < 0.001   

Perceived 
extraneous 
cognitive load 

− 0.22 [-0.54; 
0.09]; p = 0.162 

− 0.40 [-0.63; 
− 0.16]; p =0 .001  

Diagnostic 
accuracy 

0.13 [0.03; 
0.23]; p = 0.010 

0.12 [-0.01; 
0.25]; p = 0.067 

− 0.22 [-0.32; 
− 0.12]; p <0 .001 

Note: numbers represent Fischer’s z transformation of correlations, 95% confi
dence intervals, and p-values. 

Table 3 
Mean correlations between learners’ experience measures and diagnostic ac
curacy for medical and teacher education and document vs. interaction-based 
simulations.   

Medical 
education 

Teacher 
education 

p 

Perceived authenticity & 
Perceived involvement 

0.58 [0.46; 0.77]; 
p < 0.001 

0.55 [0.45; 0.63]; 
p <. 001 

0.554 

Perceived authenticity & 
Perceived extraneous 
cognitive load 

− 0.17 [-0.46; 
0.11]; p = 0.201 

− 0.13 [-0.35; 
0.08]; p = 0.187 

0.909 

Perceived involvement & 
Perceived extraneous 
cognitive load 

− 0.31 [-0.46; 
− 0.13]; p < 0.001 

− 0.09 [-0.23; 
0.05]; p = 0.171 

0.828 

Perceived authenticity & 
Diagnostic accuracy 

0.11 [-0.16; 
0.38]; p = 0.292 

0.17 [-0.07; 
0.41]; p = 0.149 

0.907 

Perceived involvement & 
Diagnostic accuracy 

0.25 [0.11; 0.40]; 
p < 0.001 

0.08 [-0.09; 
0.24]; p = 0.261 

0.014 

Perceived extraneous cognitive 
load & Diagnostic accuracy 

− 0.20 [-0.38; 
− 0.03]; p = 0.028 

− 0.17 [-0.33; 
− 0.01]; p = 0.046 

0.661   

Document-based Interaction-based p 

Perceived authenticity & 
Perceived involvement 

0.51 [0.46; 0.67]; 
p < 0.001 

0.57 [0.41; 0.81]; 
p < 0.001 

0.418 

Perceived authenticity & 
Perceived extraneous 
cognitive load 

− 0.04 [-0.20; 
0.12]; p = 0.348 

− 0.31 [-0.47; 
− 0.15]; p < 0.001 

0.004 

Perceived involvement & 
Perceived extraneous 
cognitive load 

− 0.14 [-0.29; 
0.02]; p = 0.086 

− 0.28 [-0.53; 
− 0.02]; p = 0.021 

0.562 

Perceived authenticity & 
Diagnostic accuracy 

0.19 [0.04; 0.35]; 
p = 0.021 

0.05 [-0.09; 0.20]; 
p = 0.602 

0.190 

Perceived involvement & 
Diagnostic accuracy 

0.15 [-0.01; 0.31]; 
p = 0.072 

0.18 [0.07; 0.28]; 
p = 0.090 

0.479 

Perceived extraneous 
cognitive load & Diagnostic 
accuracy 

− 0.15 [-0.28; 
− 0.03]; p = 0.024 

− 0.21 [− 0.32; 
− 0.01] p = 0.004 

0.154 

Note: numbers represent Fischer’s z transformation of correlations, 95% confi
dence intervals, and p-values; p represents the p-values for the moderation 
effect. 
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There are a few limitations to mention. First, this study is exemplary, 
as it focuses only on one complex skill relevant to higher education (i.e., 
diagnostic skill) and three specific scales measuring perceived authen
ticity, perceived involvement, and perceived extraneous cognitive load. 
Accordingly, the findings cannot necessarily be generalized to other 
skills or scales measuring the same or similar constructs. Furthermore, 
the results can not be generalized to all possible types of simulations, for 
example, highly immersive simulations, simulations using embodied 
learning etc., as those learning environments might offer different levels 
of learners’ experience. Based on our results, the scales we used 
demonstrated the ability to assess the intended constructs consistently 
across most contexts and domains. Building on this observation, we 
emphasize the importance of conducting invariance testing for the other 
scales used in this research. Second, rather methodological limitation, 
our results are based on relatively small sample sizes and a limited 
number of studies, which may be considered insufficient for a compre
hensive meta-analytical approach. However, for the specific objective of 
this study, it was necessary to include a set of studies that investigated a 
similar phenomenon across different domains and contexts while uti
lizing identical measures. Given these extravagant constraints, our study 
achieved an acceptable sample size. Still, further evidence is needed 
based on primary research to better understand the impact of learners’ 
experience on their development of complex skills. Third, this study did 
not examine possible changes in learners’ experience (e.g., due to 
instructional support). Thus, further research and aggregation of inter
vention data are needed to better understand how learners experience 
changes within simulation-based learning environments and whether it 
has effects on their performance and learning outcomes. The use of 
process-related measures could lead to further insights, improving our 
understanding of the variation in experience measures and the effec
tiveness of simulations in developing diagnostic skills. 

6. Conclusion 

In conclusion, this study supports the importance of learners’ expe
rience ratings for assessing the effectiveness of simulations across 
different domains. Further, the study underscores the importance of 
conducting the measurement invariance analysis in cross-domain 
studies, ensuring the generalizability of the positive effects of instruc
tional design that promote learners’ involvement and authentic expe
riences. In addition, our findings offer supportive evidence for the 
theoretical models that highlight the relationship between learners’ 
experience of simulated learning environments and learning or perfor
mance outcomes in simulation-based learning (Codreanu et al., 2020; 
Gegenfurtner et al., 2014; Seidel et al., 2010). Simulated learning en
vironments hold significant potential for training complex skills in sit
uations that are otherwise rare or dangerous (e.g., Morélot et al., 2021, 
Ziv et al., 2003). However, to fully harness this potential, it is crucial to 
appropriately combine authentic and immersive situations with 
adequately challenging learning tasks. 
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