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A B S T R A C T

Previous investigations on the causal neural mechanisms underlying intertemporal decision making focused on 
the dorsolateral prefrontal cortex as neural substrate of cognitive control. However, little is known, about the 
causal contributions of further parts of the frontoparietal control network to delaying gratification, including the 
pre-supplementary motor area (pre-SMA) and posterior parietal cortex (PPC). Conflicting previous evidence 
related pre-SMA and PPC either to evidence accumulation processes, choice biases, or response caution. To 
disentangle between these alternatives, we combined drift diffusion models of decision making with online 
transcranial magnetic stimulation (TMS) over pre-SMA and PPC during an intertemporal decision task. While we 
observed no robust effects of PPC TMS, perturbation of pre-SMA activity reduced preferences for larger over 
smaller rewards. A drift diffusion model of decision making suggests that pre-SMA increases the weight assigned 
to reward magnitudes during the evidence accumulation process without affecting choice biases or response 
caution. Taken together, the current findings reveal the computational role of the pre-SMA in value-based de
cision making, showing that pre-SMA promotes choices of larger, costly rewards by strengthening the sensitivity 
to reward magnitudes.

1. Introduction

Decisions entailing trade-offs between rewards and their associated 
costs (e.g., trade-offs between reward magnitudes and the time until 
reward delivery in intertemporal choice) are thought to rely on in
teractions between a frontoparietal control network and the dopami
nergic reward system (Frost and McNaughton, 2017; McClure et al., 
2004; van den Bos et al., 2014). Neuroscientific research on the 
contribution to the frontoparietal control network to intertemporal 
choice has mainly focused on the dorsolateral prefrontal cortex (DLPFC), 
which was linked to a larger tolerance for waiting costs (Smith et al., 
2018; Wesley and Bickel, 2014; Yang et al., 2018). Little is known, 
however, about the contributions of further parts of the frontoparietal 
control network to cost-benefit decisions. Both the pre-supplementary 
motor area (pre-SMA) and the posterior parietal cortex (PPC) show 
enhanced activation during intertemporal decisions (Rodriguez et al., 
2014; van den Bos et al., 2014; Wesley and Bickel, 2014), but it remains 
unknown as to whether – and if so, how – these regions causally influ
ence intertemporal decisions. The main goal of the current study 
therefore was to determine the causal roles of pre-SMA and PPC for 

cost-benefit decision making in intertemporal choice.
For a better understanding of these regions’ contributions to decision 

making, we employed drift diffusion models (DDMs) of intertemporal 
choice. While most neuroscientific research on intertemporal choice 
focused on preferences for delayed versus immediate rewards deferred 
from binary choices, DDMs posit that intertemporal choices emerge 
from a decision process that can be divided into several subcomponents 
(Ratcliff et al., 2016). In particular, decision makers accumulate evi
dence for the choice options by integrating the weighted benefits and 
costs (drift rate) until the evidence for one option over the other reaches 
a threshold (decision boundary) (Soutschek and Tobler, 2023; Wagner 
et al., 2020). The starting point of the evidence accumulation process 
can be shifted towards one of the decision boundaries depending on a 
decision maker’s bias towards larger-later (LL) or smaller-sooner (SS) 
rewards (starting bias). Such DDMs enable deeper insights into the 
computational roles of brain regions than the analysis of binary choice 
data, as they provide insights into the subcomponent of the decision 
process that is implemented by a brain region (Soutschek et al., 2023). 
Crucially, it is still controversially debated how pre-SMA and PPC in
fluence the decision process. Previous studies suggest the pre-SMA to 
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modulate decision boundaries (i.e., the amount of evidence that is 
accumulated before a choice is made) in perceptual decision making 
(Berkay et al., 2018), but the pre-SMA was also linked to shifts in the 
starting bias (McIntosh and Sajda, 2020). In the domain of value-based 
choice, the pre-SMA was reported to encode the accumulated evidence 
for the choice options (Arabadzhiyska et al., 2022; Pisauro et al., 2017; 
Rodriguez et al., 2014). Likewise, also the lateral PPC was linked to 
evidence accumulation (Yu et al., 2020; Zhang et al., 2022), whereas 
other studies questioned such a role (Erlich et al., 2015; Krueger et al., 
2017). Taken together, it remains unclear how PPC and pre-SMA caus
ally influence the decision process underlying value-based choice.

Here, we aimed at elucidating the causal contributions of pre-SMA 
and PPC to value-based decision making by combining a DDM of 
intertemporal choice with timing-specific online transcranial magnetic 
stimulation (TMS). Healthy young participants made choices between 
smaller-sooner (SS; e.g., 4 euro today) and larger-later (LL; e.g., 5 euro in 
90 days) monetary rewards while receiving TMS over pre-SMA or PPC 
either at an earlier (shortly after option presentation and thus during the 
non-decision time) or a later stage (during evidence accumulation and 
time-locked to individual decision times) of the decision process. This 
timing enabled us to investigate TMS effects on different stages of the 
choice process: The starting bias towards SS or LL options should be 
affected by early, but not late, TMS, whereas only late TMS pulses should 
modulate decision boundaries (amount of evidence required for making 
a choice). Drift rates during evidence accumulation, in contrast, should 
be susceptible to both early and late TMS effects due to the after-effects 
of early TMS pulses during the non-decision time (Taylor et al., 2011; 
Taylor et al., 2007; Thut et al., 2011). We hypothesized disruption of 
both pre-SMA and PPC activation – as belonging to the frontoparietal 
control network – to lead to more impulsive decisions. We then used 
hierarchical Bayesian drift diffusion modelling to determine the sub
components of the decision process underlying the hypothesized roles of 
pre-SMA and PPC for intertemporal choices. While our findings provide 
no evidence for a causal contribution of the PPC to intertemporal deci
sion making, they suggest the pre-SMA to moderate the influence of 
reward magnitudes on the evidence accumulation process, clarifying the 
computational role of the pre-SMA for cost-benefit decision making.

2. Materials and methods

2.1. Participants

A total of 32 volunteers (mean age: 26 years, range 20–36 years, 16 
females) were recruited via internal participant pools. A power analysis 
based on the effect size of Cohen’s d = 0.71 reported by a meta-analysis 
of TMS effects on intertemporal choice (Yang et al., 2018) suggests that 
28 participants are sufficient to detect a significant effect (alpha = 5%) 
with a power of 95%. Participants were excluded from the study if they 
met any of the following criteria: a history of psychological or neuro
logical disorders (including familial predisposition to epilepsy), 
increased intracranial pressure, history of craniocerebral trauma, in
farctions, or neurosurgical interventions. Participants were ineligible if 
they were on any psychoactive medication, pregnant, had metal objects 
in the head area (with the exception of dentures or permanent retainers), 
implanted pump systems, neurostimulators, or cardiac pacemakers.

2.2. Ethics statement

The study was appoved by the ethics committee of the psychology 
department at the Ludwig-Maximilians-University Munich. Participants 
gave voluntary informed consent prior to participation and were 
compensated with 15 euro/hour plus a choice-dependent bonus.

2.3. Stimuli and task design

Participants performed an intertemporal decision task where they 

had to choose between smaller-sooner (SS; e.g., €3 today) and larger- 
later (LL; e.g., €5 in 90 days) monetary rewards (Fig. 1A). We used six 
levels for the reward magnitudes of the SS option (€1, €2, €3, €3.5, €4, 
and €4.5), while the amount of the LL option was fixed to €5 (Kapetaniou 
et al., 2021). The delays for the SS option varied from 0–40 days and 
from 10–180 days for the LL option, resulting in 10 different delay 
combinations (0 vs. 10 days, 0 vs. 20 days, 0 vs. 40 days, 0 vs. 90 days, 
0 vs. 180 days, 10 vs. 40 days, 10 vs. 90 days, 10 vs. 180 days, 40 vs. 90 
days, and 40 vs. 180 days). On each trial, participants were presented 
with pairs of monetary rewards on the left and right screen side for 3 
seconds and asked to choose the option they preferred by pressing the 
left and right arrow keys (for the left and right choice option, respec
tively) on a standard keyboard. Trials were separated by an inter-trial 
interval of 2 seconds. To increase task engagement, we informed par
ticipants that at the end of the experiment we would randomly select one 
of their choices and pay them the chosen amount after the given delay 
via mail if a LL reward was chosen (SS rewards were paid out together 
with the participant fee directly after the experiment). While we timed 
the delivery of the bonus such that participants should receive it after 
the correct delay, we note that we cannot exclude some minor variation 
in the exact delivery date and potential influences of this procedure on 
participants’ choices.

2.4. TMS protocol

TMS was administered using a MAG & More PowerMAG ppTMS 
stimulator equipped with a flat, Fig.-of-eight PowerMAG double coil 
PMD70 (2 × 70mm diameter). For accurate delivery of TMS pulses to the 
targeted brain regions, we employed neuronavigation using Brainsight 
software (v2.4.9; Rogue Research Inc). For this purpose, we collected 
T1-weighted structural MRI scans for each participant before the main 
experimental session (unless volunteers already possessed a structural 
scan from a prior MRI experiment). Anatomical brain images were ob
tained using a 64-channel head coil with the magnetisation-prepared 
rapid gradient-echo (MPRAGE) sequence, using the following parame
ters: 176 sagittal slices with a slice thickness of 0.8 mm, a repetition time 
(TR) of 1900 ms, an echo time (TE) of 2.2 ms, a flip angle of 9◦, and a 
field of view (FOV) of 200 × 200 mm. We used these structural images to 
individually determine the pre-SMA (x = 6, y = 15, z = 58 (Rochas et al., 
2013)) and PPC (x = 48, y = -52, z = 52 (Rodriguez et al., 2014)) TMS 
sites by warping the MNI coordinates for the pre-SMA and the PPC into 
the individual image space with the normalization routines imple
mented in SPM12. After the experiment, we asked participants verbally 
whether they perceived pre-SMA or PPC TMS as more aversive, and they 
reported no systematic differences.

During performance of the intertemporal decision task, we used 
Brainsight neuronavigation sofware to place and hold the TMS coil 
accurately over the pre-SMA and PPC target sites. We held the coil stable 
over the target site during all trials of a block, including no TMS trials. In 
an online TMS design, 10 Hz trains of four pulses were delivered with an 
intensity of 110% of the resting motor threshold (the last pulse was thus 
delivered 300 ms after the first pulse). The resting motor threshold was 
defined as the lowest intensity where single TMS pulses delivered to the 
left primary motor cortex led to observable twitches of the contralateral 
hand in 5 out of 10 trials. TMS trains were delivered at three different 
timings: no TMS, early TMS, and late TMS. Early TMS pulses were 
administered 100, 200, 300, and 400 milliseconds after onset of the 
decision screen. Timing of late TMS pulses was calibrated to individual 
decision times such that the final pulse coincided with an individual’s 
median decision time. The rationale for administering TMS during early 
versus late periods of the decision process was that only early TMS 
pulses should affect the general bias for LL or SS rewards (starting bias 
parameter in the framework of DDMs; see below), whereas late TMS 
might show stronger effects on decision boundaries (amount of accu
mulated evidence before making a choice).
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2.5. Experimental procedure

Upon arrival at the lab, participants were first introduced to the 
experimental procedures and tasks. After the determination of the 
indivudal motor threshold (see above), participants performed a prac
tice block with 10 trials of the intertemporal decision task. Participants 
were seated in a dimly lit room, positioned approximately 60 cm away 
from the screen, with their chin on a chin rest to maintain a constant 
viewing distance.

The main experiment comprised a total of 12 blocks, with 6 blocks 
for the pre-SMA condition and 6 blocks for the PPC condition. Pre-SMA 
and PPC TMS blocks were presented in randomized order. Each block 
contained 30 trials, with equal numbers of trials per TMS timing (10 
trials no TMS, 10 trials early TMS, 10 trials late TMS). Each experimental 
block lasted 2.5 minutes and participants were allowed to take breaks 
between blocks. After the intertemporal decision task, participants were 
asked to complete a brief questionnaire gathering demographic 
information.

2.6. Statistical analysis

We analyzed choice data in the intertemporal decision task with 
model-free and model-based analyses. In all analyses, we considered late 
TMS trials where no pulse was delivered at least 100 milliseconds before 
the recorded motor response as no TMS trials to account for the delay in 
cortico-muscle transmission (Nikolova et al., 2006; Van Acker III et al., 
2016).

For the model-free analysis, we computed generalized linear mixed 
models (GLMMs) with the lme4 package (Bates et al., 2014) in R 
(version 4.0.0). GLMM-1 regressed binary choices (1 = LL option, 0 = SS 
option) on fixed-effect predictors for TMS site (pre-SMA versus no TMS 
and PPC versus no TMS), TMS timing (early versus late), the z-trans
formed differences in reward magnitudes (Rewarddiff) and delays 
(Delaydiff) between the LL and SS options, and all interaction effects. The 
fixed effects structure was thus given by the following Eq.: 

All fixed-effect predictors were also modelled as random slopes in 
addition to participant-specific random intercepts. To assess differences 
between pre-SMA and PPC TMS, we computed GLMM-2 with the same 
predictors as GLMM-1 but omitting the no TMS trials from the TMS site 
predictor (pre-SMA versus PPC TMS).

In addition, we analyzed TMS effects on intertemporal choices with 
Bayesian drift diffusion models (DDM) implemented via the JAGS soft
ware package (Plummer, 2003). JAGS uses Markov Chain Monte Carlo 
sampling to estimate drift diffusion model parameters (drift rate v, 
boundary α, bias ζ, and non-decision time τ) via the Wiener module 
(Wabersich and Vandekerckhove, 2014). Choices of SS and LL rewards 
were associated with lower (negative decision times) and upper (posi
tive decision times) boundaries, respectively. Following previous pro
cedures (Amasino et al., 2019; Soutschek and Tobler, 2023), we 
assumed that the drift rate v depends on the comparisons of reward 
magnitudes and delays between the LL and SS options, modulated by 
factors for TMS site (pre-SMA versus no TMS, PPC versus no TMS) and 
Timing (early versus late):

Fig. 1. (A) In an intertemporal decision task, participants made choices between smaller-sooner (e.g., 3 euro today) and larger-later (e.g., 5 euro in 90 days) rewards. 
Participants performed equal numbers of no TMS, early TMS, and late TMS trials. On early TMS trials, participants received a 10 Hz train of 4 pulses starting 100 ms 
after decision screen onset. On late TMS, the onset of the pulses was adjusted to the individual median decision time, with the first pulse being administered 300 ms 
before the individual median. (B) In separate blocks, TMS was administered either to the pre-SMA or to the right PPC. (C) To examine the effects of early versus late 
TMS on different components of the decision process, we fitted hierarchical Bayesian drift diffusion models to the empirical data. These models assume that, after a 
non-decision time τ related to perceptual processing, participants accumulate evidence for the two reward options from a starting point ζ (bias parameter) with the 
velocity ν (drift rate) until the accumulated evidence reaches the decision boundary α.

(P( choice of LL option ) = β0 + β1( pre − SMA ) + β2(PPC) + β3( pre − SMA × Timing )+

β4(PPC × Timing ) + Reward diff × (β5 + β6( pre − SMA ) + β7(PPC) + β8( pre − SMA × Timing )+

β9(PPC × Timing )) + Delay diff × (β10 + β11( pre − SMA ) + β12(PPC) + β13( pre − SMA × Timing )+

β14(PPC × Timing )) + Reward diff × Delay diff × (β15 + β16( pre − SMA ) + β17(PPC) + β18( pre −

SMA × Timing ) + β19(PPC × Timing ))

(Eq. 1) 
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Rewarddiff and Delaydiff indicate the difference between the reward 
magnitudes and waiting costs of the LL and SS options, respectively. Pre- 
SMA and PPC were dummy-coded variables that were set to 1 for pre- 
SMA and PPC TMS trials, respectively, and to 0 for all other condi
tions. Timing was coded as -1 for early TMS and +1 for late TMS trials. 
We note that we modelled no main effect of Timing because in no TMS 
trials (reference category for which a main effect of Timing would be 
estimated) there were no early or late TMS pulses as no pulses were 
delivered at all. In analogy, stimulation effects on the starting bias, de
cision boundary, and non-decision time were modelled with the 
following Eq.s: 

ζ = β15 + β16( pre − SMA ) + β17(PPC) + β18( pre − SMA × Timing )

+ β19(PPC× Timing )

(Eq. 3) 

α = β20 + β21( pre − SMA ) + β22(PPC) + β23( pre − SMA × Timing )

+ β24(PPC× Timing )

(Eq. 4) 

τ = β25 + β26( pre − SMA ) + β27(PPC) + β28( pre − SMA × Timing )

+ β29(PPC× Timing )

(Eq. 5) 

In addition to this first DDM, we also considered a further DDM 
where the starting bias parameter depended on whether the choice set in 
a given trial included an immediate reward option: 

ζ = β15 + β16( pre − SMA ) + β17(PPC) + β18( pre − SMA × Timing )

+ β19(PPC × Timing ) + Proximity × (β30 + β31( pre − SMA )

+ β32(PPC) + β33( pre − SMA × Timing ) + β34(PPC × Timing ))

(Eq. 6) 

The variable Proximity represented a dummy-coded factor (0 = no 
immediate option available, 1 = immediate option available) that 
allowed us to test the hypothesis that immediate rewards have a prox
imity advantage over delayed rewards, as reflected by a shift in the 
starting bias towards the SS decision boundary (Soutschek et al., 2023; 
Westbrook and Frank, 2018).

In both DDMs, we estimated individual and group-level effects with a 
hierarchical Bayesian approach, assuming that individual parameter 
estimates are normally distributed around the group mean. We excluded 
trials with unreasonable fast decision times below 200 ms to reduce the 
impact of such trials on parameter estimation. We used normally 
distributed priors and estimated parameters by computing two chains 
with 30,000 samples (burning = 25,000). R̂ was ≤1.03 for all parame
ters and even below 1.01 for all group-level parameters, indicating 
model convergence. We computed Bayes factors (BF01) indicating the 
evidence for the null hypothesis (effects are zero) relative to the alter
native hypothesis (effects differ from zero) using the Savage-Dickey 
ratio (Wagenmakers et al., 2010). We estimated the density of prior 
and posterior distributions with the dlogspline function in R.

Lastly, we performed posterior predictive checks both on the group 
and the individual level by predicting decision times for each participant 
and trial based on the estimated DDM parameters using the rwiener 
function in R. We then visually inspected whether the estimated pa
rameters provide a reasonable account of participants’ behavior by 
plotting the estimated against the empirically observed data.

3. Results

First, we assessed the impact of pre-SMA and PPC TMS on inter
temporal choices with model-free analyses that did not distinguish be
tween different (temporally separate) subcomponents of the decision 
process. We regressed binary choices between LL and SS rewards on 
predictors for TMS site (pre-SMA vs. no TMS and PPC TMS vs. no TMS), 
Timing (early vs. late TMS), Rewarddiff, Delaydiff, and all interaction 
effects (GLMM-1). On no-TMS trials, participants increasingly preferred 
the LL over the SS option the larger the magnitude of the LL relative to 
the SS reward, Rewarddiff: Odds Ratio (OR) = 35.53, beta = 3.60, z =
7.71, p < 0.001, and the smaller the difference between the delays of the 
LL and SS option, Delaydiff: OR = 0.50, beta = -0.61, z = 3.72, p < 0.001, 
suggesting that our task worked as expected. Next, we analyzed TMS 
effects on intertemporal choices: Relative to no TMS trials, pre-SMA TMS 
reduced preferences for LL over SS reward, main effect of pre-SMA TMS: 
OR = 0.60, beta = -0.56, z = 2.63, p = 0.009, and decreased the 
sensitivity to reward magnitudes, OR = 0.47, beta = -0.85, z = 5.19, p <
0.001 (Fig. 2). A separate GLMM assessing the impact of pre-SMA 
relative to PPC TMS (GLMM-2) suggests that pre-SMA TMS reduced 
the sensitivity to rewards also relative to PPC TMS, OR = 1.90, beta =
-0.77, z = 3.15, p = 0.002. The interaction between Rewarddiff and 
Delaydiff was differently affected by early versus late PPC TMS relative to 
no TMS (GLMM-1), OR = 0.75, beta = -0.34, z = 3.52, p < 0.001, and at 
trend-level relative to pre-SMA TMS (GLMM-2), OR = 0.75, beta =
-0.32, z = 1.90, p = 0.06. Separate GLMMs (GLMM-3) for early versus 
late PPC TMS pulses, however, revealed no evidence for significant ef
fects of early or late PPC TMS on the Rewarddiff × Delaydiff interaction, 
both p > 0.12. Taken together, these GLMMs suggest that pre-SMA TMS 
impairs the sensitivity to differences in reward magnitude indepen
dently of the timing of TMS pulses, whereas the PPC might affect 
intertemporal decisions differently at later compared with earlier pe
riods of the decision process. However, these model-free analyses are 
agnostic to which subcomponents of the decision process are influenced 
by the pre-SMA and the PPC.

To obtain a deeper understanding of the computational mechanisms 
underlying the pre-SMA’s contribution to intertemporal choice, we 
computed hierarchical Bayesian DDMs where the drift rate v was given 
by the weighted influences of differences in reward magnitudes and 
delays in addition to participant-specific intercepts. Consistent with 
previous research (Soutschek and Tobler, 2023), a DDM where the 
starting bias parameter was additionally modulated by a proximity bias 
(different starting biases for immediate versus delayed SS rewards) 
explained the data better (DIC = 8708) than a model without proximity 
bias (DIC = 8846). Posterior predictive checks comparing simulated 
with observed data suggest that the DDM with proximity bias provided a 
reasonable account of the data (Fig. 3 and Fig. S1). In this model, larger 
LL than SS rewards were associated with evidence accumulation to
wards the boundary for the LL option, β5: HDImean = 0.84, HDI95% =

[0.66, 1.02], BF01 = 2.3 × 10–8, whereas larger differences in delay 
resulted in faster accumulation towards the SS boundary, β10: HDImean =

-0.22, HDI95% = [-0.32, -0.12], BF01 = 0.005. Pre-SMA TMS lowered the 
sensitivity to rewards compared to both no TMS, β6: HDImean = -0.08, 
HDI95% = [-0.15, -0.01], BF01 = 2.3, and PPC TMS (direct comparison of 
posterior samples between pre-SMA and PPC TMS), HDImean = -0.11, 
HDI95% = [-0.20, -0.02], BF01 = 0.98 (Fig. 4 and Fig. S2). In addition, 
pre-SMA perturbation reduced the drift rate intercept parameter 
(biasing evidence accumulation towards the SS boundary), again 

v = β0 + β1( pre − SMA ) + β2(PPC) + β3( pre − SMA × Timing ) + β4(PPC × Timing )+

Reeward diff × (β5 + β6( pre − SMA ) + β7(PPC) + β8( pre − SMA × Timing ) + β9(PPC × Timing ))+

Delay diff × (β10 + β11( pre − SMA ) + β12(PPC) + β13( pre − SMA × Timing ) + β14(PPC × Timing ))

(Eq. 2) 
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relative to both no TMS, β1: HDImean = -0.16, HDI95% = [-0.29, -0.04], 
BF01 = 0.6, and (comparison of posterior samples between pre-SMA and 
PPC TMS) PPC TMS trials, HDImean = -0.15, HDI95% = [-0.30, -0.02], 
BF01 =1.3. Note that these effects should be interpreted with caution 
given that (although the HDIs95% do not include zero) the Bayes factors 
provide no clear evidence in favor of the alternative hypothesis. We 
observed no evidence for an influence of PPC TMS on drift rate pa
rameters, and there were also no significant interactions of pre-SMA or 
PPC TMS with the timing of TMS pulses (Table 2). PPC TMS lowered 
decision boundaries relative to no TMS, β22: HDImean = -0.10, HDI95% =

[-0.19, -0.01], BF01 = 1.8, but not relative to pre-SMA TMS (comparison 
of posterior samples between pre-SMA and PPC TMS), HDImean = -0.06, 
HDI95% = [-0.17, 0.05], BF01 = 11.0. Moreover, compared with no TMS 
trials both pre-SMA and PPC TMS prolonged decision times, particularly 
for late versus early pulses, pre-SMA × Timing (β28:): HDImean = 0.04, 
HDI95% = [0.02, 0.07], BF01 = 0.2, PPC × Timing (β29:): HDImean = 0.06, 
HDI95% = [0.04, 0.09], BF01 = 0.005. However, as these effects did not 
differ between pre-SMA and PPC TMS (comparison of posterior samples 
between pre-SMA and PPC TMS), HDImean = -0.02, HDI95% = [-0.05, 
0.01], BF01 = 31.3, they may represent site-unspecific effect of late TMS 
pulses due to interference with motor execution processes.

Fig. 2. Model-free results. (A) Inhibitory pre-SMA TMS (independently of pulse timing) reduced the sensitivity to differences in reward magnitudes compared to no 
TMS and PPC TMS trials. (B) PPC TMS, in contrast, did not alter reward sensitivity relative to pre-SMA TMS. Shaded areas show 95% confidence interval for the 
predicted probabilities of choosing the larger-later (LL) over smaller-sooner (SS) reward.

Fig. 3. Posterior predictive checks revealed strong overlap between empirical 
data (blue histogram) and data simulated based on the best-fitting drift diffu
sion model (black line).

Fig. 4. Results of Bayesian drift diffusion model. (A) Participants generally tended to accumulate evidence faster towards the boundary for LL than for SS choices, 
indicated by a positive intercept of the drift rate on no TMS trials (parameter β0 in proximity DDM). (B) Pre-SMA TMS, relative to no TMS, reduced the intercept 
parameter of the drift rate (parameter β1), whereas (C) PPC TMS showed no significant effects relative to no TMS (parameter β2). (D) Larger differences in reward 
magnitude were associated with stronger evidence accumulation towards the LL boundary in no TMS trials (parameter β5). (E) Compared to no TMS trials, pre-SMA 
TMS lowered the sensitivity to differences in reward magnitude (parameter β6), whereas (F) PPC TMS showed no significant effect (parameter β7).
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As robustness check, we controlled whether this result pattern holds 
for the (worse fitting) DDM without proximity parameter. This analysis 
replicated the effects of pre-SMA TMS on the drift rate intercept, HDI
mean = -0.80, HDI95% = [-0.16, -0.01], BF01 = 0.5, and on the sensitivity 
to rewards, HDImean = -0.16, HDI95% = [-0.29, -0.04], BF01 = 3.0. Taken 
together, the DDM results inform the model-free findings by showing 

that the pre-SMA influences the sensitivity to reward magnitude in 
intertemporal decision making.

4. Discussion

While neural accounts of cost-benefit decision-making predomi
nantly focus on the DLPFC as neural substrate of cognitive control, the 
contributions of other parts of the frontoparietal control network have 
been neglected so far. Here, we provide evidence for a causal role of the 
pre-SMA for evidence accumulation in intertemporal decisions: ac
cording to our model-free analyses, pre-SMA perturbation during deci
sion making reduced the sensitivity to larger compared with smaller 
rewards, suggesting a role of the pre-SMA for promoting patient de
cisions, in analogy to the DLPFC’s role in intertemporal choice (Smith 
et al., 2018; Wesley and Bickel, 2014; Yang et al., 2018). However, from 
these model-free analyses alone it remains unclear which component of 
the decision process was affected by pre-SMA TMS. From a process 
perspective, TMS-induced changes in patience could be explained either 
by a shift in the starting bias towards the SS reward boundary, by 
changes in the amount of evidence required to make a choice (decision 
boundary), or by slower evidence accumulation towards LL rewards. 
Our hierarchical Bayesian DDMs support the third hypothesis: Disrupt
ing pre-SMA activation lowered the general speed of the evidence 
accumulation process towards the decision boundary for LL rewards 
(intercept of drift rate) and reduced the sensitivity to rewards, while 
leaving the starting point of the accumulation process or the height of 
the decision boundary unchanged. Thus, the pre-SMA influences inter
temporal decision making by strengthening the preference for costly 
larger rewards. This reveals the computational role of the pre-SMA for 
cost-benefit weighing in intertemporal choice, a brain region that so far 
has been neglected in neural accounts of intertemporal choice. The 
pre-SMA appears to promote patience in a similar way as the DLPFC 
whose causal contribution to intertemporal choice is evidenced by a 
large body of evidence (Yang et al., 2018). However, while the DLPFC is 
thought to promote patience by representing abstract information in 
working memory like the value of long-term rewards or goals (Jimura 
et al., 2018), pre-SMA was linked to control over response selection 
processes and may itself receive input from DLPFC (Badre and Nee, 
2018). We therefore speculate that DLPFC and pre-SMA may play 
dissociable functional roles in intertemporal choice.

Past DDMs of pre-SMA’s function in value-based decisions assigned it 
a role for tracking the evidence accumulated for reward options (Pisauro 
et al., 2017; Rodriguez et al., 2014). However, due to the correlative 
nature of neuroimaging findings, these results left open whether 
pre-SMA passively reflects the evidence accumulated so far, or whether 
pre-SMA influences the evidence accumulation process itself. Moreover, 
other studies related the pre-SMA to the height of the decision bound
aries (Berkay et al., 2018) or to the starting bias parameter (McIntosh 
and Sajda, 2020). By combining brain stimulation with computational 
modelling, we clarify the pre-SMA’s computational role for value-based 
choice and provide evidence that the pre-SMA does not only track the 
evidence for the choice options but enhances the velocity of the accu
mulation process for larger relative to smaller rewards. We note that in a 
previous study on effort-based decision making we found that excitatory 
transcranial electrical stimulation over pre-SMA shifted the starting bias 
towards large effortful rewards (Soutschek et al., 2022), but the stimu
lation setup in this study was less spatially precise and affected also 
deeper regions like anterior cingulate cortex (via placing a reference 
electrode under the chin that induced a current flow through the brain). 
Given the higher spatial resolution of TMS, the current findings suggest 
that pre-SMA strengthens the preference for larger rewards in the 
domain of intertemporal choices.

Note that the pre-SMA is likely to promote patient decisions not in 
isolation but as part of a network comprising several regions involved in 
decision making. As pre-SMA shows fiber connections with the striatum 
(Bozkurt et al., 2016), pre-SMA activation might moderate the 

Table 1 
Results of model-free generalized linear mixed model (GLMM-1) on binary de
cisions (1 = larger-later reward, 0 = smaller-sooner reward) in the intertemporal 
choice task. Standard errors of the mean are in brackets.

Effect Beta z p

Intercept 3.14 (0.84) 3.74 <0.001
pre-SMA TMS -0.56 (0.22) 2.63 0.009
PPC TMS -0.16 (0.12) 1.36 0.17
pre-SMA TMS × Timing 0.02 (0.08) 0.22 0.83
PPC TMS × Timing -0.07 (0.09) 0.83 0.41
Rewarddiff 3.60 (0.47) 7.71 <0.001
Delaydiff -0.61 (0.16) 3.72 <0.001
pre-SMA TMS × Rewarddiff -0.85 (0.16) 5.19 <0.001
PPC TMS × Rewarddiff -0.09 (0.16) 0.60 0.55
pre-SMA TMS × Delaydiff -0.14 (0.14) 0.97 0.33
PPC TMS × Delaydiff -0.05 (0.10) 0.44 0.66
pre-SMA TMS × Timing × Rewarddiff 0.07 (0.10) 0.80 0.42
PPC TMS × Timing × Rewarddiff -0.08 (0.09) 0.87 0.39
pre-SMA TMS × Timing × Delaydiff 0.08 (0.08) 0.98 0.33
PPC TMS × Timing × Delaydiff -0.26 (0.11) 2.31 0.02
Rewarddiff × Delaydiff -0.00 (0.12) 0.00 1.00
pre-SMA TMS × Rewarddiff × Delaydiff -0.23 (0.13) 1.77 0.08
PPC TMS × Rewarddiff × Delaydiff 0.10 (0.14) 0.72 0.47
pre-SMA TMS × Timing × Rewarddiff × Delaydiff 0.07 (0.09) 0.77 0.44
PPC TMS × Timing × Rewarddiff × Delaydiff -0.34 (0.10) 3.52 <0.001

Table 2 
Results of hierarchical Bayesian drift diffusion model. We report the mean 
highest density interval (HDI) as well as the upper and lower limits of the 95% 
HDI.

Parameter Effect HDImean HDI2.5% HDI97.5%

Drift: intercept no TMS 0.78 0.24 1.31
pre-SMA TMS -0.16 -0.29 -0.04
PPC TMS -0.01 -0.11 0.10
pre-SMA TMS × Timing -0.00 -0.07 0.07
PPC TMS × Timing -0.04 -0.12 0.03

Drift: Rewarddiff no TMS 0.84 0.66 1.02
pre-SMA TMS -0.08 -0.15 -0.01
PPC TMS 0.03 -0.05 0.11
pre-SMA TMS × Timing 0.04 -0.04 0.12
PPC TMS × Timing -0.01 -0.07 0.05

Drift: Delaydiff no TMS -0.22 -0.32 -0.12
pre-SMA TMS -0.04 -0.10 0.03
PPC TMS -0.03 -0.10 0.04
pre-SMA TMS × Timing -0.02 -0.07 0.03
PPC TMS × Timing 0.00 -0.05 0.06

Bias: intercept no TMS 0.52 0.50 0.55
pre-SMA TMS 0.01 -0.01 0.02
PPC TMS -0.01 -0.04 0.01
pre-SMA TMS × Timing -0.00 -0.02 0.02
PPC TMS × Timing -0.00 -0.03 0.01

Bias: proximity no TMS -0.02 -0.04 0.01
pre-SMA TMS 0.01 -0.01 0.04
PPC TMS 0.01 -0.02 0.03
pre-SMA TMS × Timing 0.01 -0.01 0.03
PPC TMS × Timing 0.01 -0.01 0.03

Decision boundary no TMS 2.00 1.87 1.12
pre-SMA TMS -0.05 -0.12 0.03
PPC TMS -0.10 -0.19 -0.01
pre-SMA TMS × Timing -0.01 -0.05 0.04
PPC TMS × Timing -0.02 -0.07 0.04

Non-decision time no TMS 0.44 0.39 0.49
pre-SMA TMS 0.06 0.03 0.09
PPC TMS 0.09 0.05 0.13
pre-SMA TMS × Timing 0.04 0.02 0.07
PPC TMS × Timing 0.06 0.04 0.09
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sensitivity to rewards via influencing striatal reward representations, in 
analogy to the hypothesized role of DLPFC for intertemporal choice (van 
den Bos et al., 2014). It is therefore important to keep in mind that 
neural manipulations affect not only local processing in the targeted 
area but also influence activation in functionally interconnected regions 
(Bergmann et al., 2021; Riddle et al., 2022).

Contrary to our hypotheses, we found no significant effects of PPC 
perturbation on evidence accumulation. If anything, late PPC TMS may 
have lowered the height of the decision boundary (in addition to site- 
unspecific effects on the non-decision time, presumably due to effects 
on TMS-induced arousal on motor execution). The lack of significant 
effects of PPC stimulation on decision making may appear surprising 
given that previous imaging studies reported PPC activation during 
intertemporal decisions (Rodriguez et al., 2014; van den Bos et al., 2014; 
Wesley and Bickel, 2014). We emphasize that our null finding does not 
necessarily imply that PPC does not causally contribute to intertemporal 
decisions, and it remains possible that other subregions of parietal cortex 
influence decision making. In fact, more ventral regions, in particular 
the temporo-parietal junction, were related to patient intertemporal 
decision making (Lempert et al., 2017; Soutschek et al., 2020; Soutschek 
et al., 2016). In any case, while the PPC was shown to be causally 
involved in other domains of decision making like decisions under am
biguity (Studer et al., 2014; Valdebenito-Oyarzo et al., 2024), the cur
rent data provide no evidence for a causal contribution of PPC to 
intertemporal choice.

While the current investigation has several strengths like the com
bination of time-locked neuronavigated TMS with Bayesian computa
tional modelling, a potential limitation is that online TMS can be 
perceived as aversive by participants, which can lead to site-unspecific 
influences on behavior. It is important to note that the pre-SMA and 
the PPC are thought to show similar TMS-induced discomfort (Meteyard 
and Holmes, 2018) and that we interpret only pre-SMA TMS effects that 
were significant compared to both no TMS and PPC TMS as active 
control condition. It is thus unlikely that TMS-induced discomfort can 
explain the impact of pre-SMA stimulation on evidence accumulation.

Taken together, the current results provide insights into the 
computational role of the pre-SMA for intertemporal decision making, a 
region that has received little attention in previous research on cost- 
benefit decision making. This finding may also improve our under
standing of the neural origins of increased impulsiveness in clinical 
disorders: While neural interventions for the treatment of impulsiveness 
deficits in clinical disorders like addiction mainly targeted the DLPFC 
(Azevedo and Mammis, 2018; Dunlop et al., 2017), impulsiveness in 
substance addiction was also related to pre-SMA dysfunctioning 
(Quoilin et al., 2021). The current findings suggest that the pre-SMA 
might represent an alternative promising target for neural in
terventions against the impulsiveness deficits in disorders like substance 
dependence.
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