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Autism spectrum disorder is characterized by impaired social communication and interaction. As a neurodevelopmental disorder
typically diagnosed during childhood, diagnosis in adulthood is preceded by a resource-heavy clinical assessment period. The
ongoing developments in digital phenotyping give rise to novel opportunities within the screening and diagnostic process. Our aim
was to quantify multiple non-verbal social interaction characteristics in autism and build diagnostic classification models
independent of clinical ratings. We analyzed videos of naturalistic social interactions in a sample including 28 autistic and 60 non-
autistic adults paired in dyads and engaging in two conversational tasks. We used existing open-source computer vision algorithms
for objective annotation to extract information based on the synchrony of movement and facial expression. These were
subsequently used as features in a support vector machine learning model to predict whether an individual was part of an autistic
or non-autistic interaction dyad. The two prediction models based on reciprocal adaptation in facial movements, as well as
individual amounts of head and body motion and facial expressiveness showed the highest precision (balanced accuracies: 79.5%
and 68.8%, respectively), followed by models based on reciprocal coordination of head (balanced accuracy: 62.1%) and body
(balanced accuracy: 56.7%) motion, as well as intrapersonal coordination processes (balanced accuracy: 44.2%). Combinations of
these models did not increase overall predictive performance. Our work highlights the distinctive nature of non-verbal behavior in
autism and its utility for digital phenotyping-based classification. Future research needs to both explore the performance of
different prediction algorithms to reveal underlying mechanisms and interactions, as well as investigate the prospective
generalizability and robustness of these algorithms in routine clinical care.
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INTRODUCTION
Background
The diagnosis of autism spectrum disorder (ASD) encompasses a
range of symptoms in reciprocal social interaction and commu-
nication as well as restricted, repetitive behaviors and interests [1].
The currently rising prevalence [2] exacerbates waiting times for
an already long and demanding diagnostic process, increasing
psychological stress on seeking diagnostic clarification [3]. Gold-
standard recommendations include assessment with semi-
structured diagnostic interviews or observational tools conducted
by multidisciplinary teams, along with neuropsychological assess-
ments and an anamnesis of developmental history by a caregiver
[3]. With the increasing number of patients seeking diagnosis in
adulthood, the lack of recommended diagnostic instruments for
this population [4] poses an additional challenge. Therefore, the
improvement of the diagnostic process of autism in adulthood has
been named one of the top priorities in autism research [5].
Digitalized methods have high potential to improve screening

and diagnostic procedures, such as assessing home videos [6] or
interactions with virtual characters [7, 8]. While promising, these
findings often rely on time-consuming manual behavioral coding

or, more importantly, may not adequately reflect real-time social
interactions, which are especially relevant for judging symptom
strength [9]. Additionally, the increased use of artificial intelli-
gence methods, such as machine learning (ML), has furthered
research on increasing the efficiency of existing diagnostic tools,
e.g., by identifying subsets of the most important items for
diagnosis [10, 11], pointing to areas of impairments most
indicative for diagnosis. These include aberrances in, e.g.,
gesturing, facial expressions and reciprocal social communication
[10], traits which seemingly influence first impressions of people
with ASD, who are judged as interacting more awkwardly by
typically developing (TD) peers [12]. This suggests that non-verbal
behavior also represents an important pillar of clinical impression
formation.
Several computer vision approaches have been investigated to

capture this different non-verbal behavior and explored its use for
autism diagnosis, underlining its usefulness for the quantification
of behavioral markers [13]. For example, using motion tracking,
the degree of imitation of isolated hand movements could identify
autistic and non-autistic adults with an accuracy of 73% [14]. A
recent deep learning approach analyzing videos that depict
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clinical interviews of autistic and non-autistic children revealed a
classification accuracy of 80.9% based on pose estimation [15].

Reciprocal interaction in ASD
A way to quantify this aberrant interaction style is through closely
examining the way two interacting partners temporally adjust
their behavior with each other, or, in other words, how well they
are “in sync”. Interpersonal synchrony or coordination can not only
be achieved through mutual, bilateral matching, but also by
establishing leader-follower relationships through unilaterally
adapting to the behavior of the interactant [16]. Interpersonal
synchrony has repeatedly been associated with rapport, affiliation,
and perception [17, 18], emphasizing its importance for social
cognition. In ASD, reduced interpersonal synchrony or coordina-
tion has in fact been described on multiple modalities and across
the lifespan [19]. For instance, reduced coordination of emotional
facial expressions has been found in autistic youth in conversation
with a partner [20]. Interpersonal synchrony in head motion has
been found to be reduced in diagnostic interviews with patients
subsequently diagnosed with autism as compared to those who
were not [21]. Another study investigating head and body motion
synchrony in autistic and non-autistic adults found both to be
reduced when an autistic person was part of the conversation [22],
once again reflecting the importance of the interactional
perspective. Further, synchrony and coordination differences in
autism have also been found within the individual (intraperson-
ally), with reduced or differing coordination of simultaneous
movements [23, 24] or across communication modalities [25].
Lastly, movement atypicalities, apart from coordination, appear to
be pronounced in autism, including reduced facial expressiveness
in autistic children [26], as well as a unique kinematic profile of
biological motion and motor control [27]. A recent meta-analysis
found a significant correlation between gross motor and social
skills in autism [28], underlining the significance of movement
differences for the core symptomatic profile of ASD.

Aims
In summary, the mere definition of ASD as a disorder of social
interaction implies an interdependency and calls for shifting to the
dyad as unit of analysis [29]. However, feasible measures are
lacking due to their reliance on extensive manual coding,
experimental paradigms appearing staged or unnaturalistic, or
investigating only isolated aspects of social interaction. Hence, the
aim of this proof-of-concept study was to build upon existing
knowledge of adaptation difficulties in autism and use the
richness of non-verbal social interaction data in an efficient way
to build an objective (i.e. independent of self- or clinician-ratings)
classification model of autistic social interaction. To this end, we
trained several Support Vector Machine (SVM) classification
models to optimally differentiate between members of autistic
vs. non-autistic interactional dyads. To increase objectivity and
feasibility for potential further development in clinical practice, we
used existing open-source algorithms that maximized automation
in the annotation and analysis process.

METHODS
Sample
We recruited 35 participants with ASD from a clinical database, as well as
local autism networks. The diagnosis (F84.0 or F84.5) had to have been
given by a qualified clinical psychologist or psychiatrist according to ICD-
10 criteria as confirmed by a full diagnostic report. Inclusion criteria were
an age between 18-60 years, normal intelligence (IQ > 70, as measured by
an IQ score based on a verbal and non-verbal IQ test [30]) and no current
neurological disorder. Additionally, 69 typically developing (TD) partici-
pants with no current or history of psychiatric or neurological disorders or
psychotropic medication were recruited. Two ASD participants had to be
excluded from the final sample because their diagnosis could not be
verified on the basis of an incomplete diagnostic report. An additional five

ASD participants were excluded during the analysis due to data loss from
imprecise facial tracking. Due to the dyadic nature of the study, their
interactional partners had to be excluded as well. Another TD-TD dyad was
excluded due to technical issues during script loading, leading to a final
sample of 88 participants. Groups were matched with respect to age and
IQ. A chi-square-test of independence revealed no significant association
between group membership and sex, χ2(1, N= 88)= 2.6, p= 0.11. A
description of the final sample can be found in Table 1. All participants
gave written informed consent before study participation and were
compensated monetarily afterwards. The authors assert that all procedures
contributing to this work comply with the ethical standards of the relevant
national and institutional committees on human experimentation and with
the Helsinki Declaration of 1975, as revised in 2008. All procedures
involving human subjects/patients were approved by the ethics commit-
tee of the medical faculty of the LMU Munich (number 19-702).

Study setup
Participants were randomly paired resulting in 28 ASD-TD (mixed) and 16
TD-TD (non-autistic control) dyads. All were naïve to the diagnosis of their
interactional partner. They were seated approximately 190 cm across from
each other in fixed chairs. Two cameras (Logitech C922) were installed on a
tripod on a table in front of the participants, recording their respective
facial expression at 30 frames per second. A third camera was mounted at
a wide angle on a tripod at a distance of approximately 240 cm (Fig. 1). All
recordings were operated from a single computer using custom PsychoPy
[31] scripts, allowing for maximal synchronization of the three video input
streams. To control for any biases in subsequent video analyses caused by
lighting change [32], measurements were taken in stable artificial light. To
maximize hygienic safety measures during the Covid-19 pandemic, slight
changes to the setup were required after the first nine participants were
assessed (see Supplementary Information S4.3).
Participants engaged in two ten-minute conversation tasks for which

they were instructed beforehand by the study personnel. After giving a
starting cue with a clapping board, all study personnel left the room.
Participants were asked to engage in a conversation about their hobbies,
as well as to plan a fictional five course meal with dishes they both disliked.
The mealplanning task has been used in previous synchrony studies (e.g.,
[22, 33]), with the rationale that a collaborative and funny task increases
affiliation and synchrony respectively. As the overlap between dishes two
people dislike tends to be smaller than finding common food preferences,
this task requires more collaboration from both interactants. In contrast, a
conversation about their hobbies was introduced. Restricted interests are a
key diagnostic criterion of autism according to DSM-5 [1], whereby autistic
individuals tend to switch to monologue style when talking about their
interests [34]—a unique behavior, which we aimed to capture. The order of
the tasks was counterbalanced among participants.
Additionally, participants completed a series of questionnaires to assess

their level of self-reported autistic traits (Autism Quotient; AQ [35]),
empathy (Saarbrücker Persönlichkeitsfragebogen; SPF [36], the German
version of the Interpersonal Reactivity Index; IRI [37]), alexithymia (Toronto
Alexithymia Scale; TAS20 [38]), depressiveness (Beck Depression Inventory;
BDI [39]), self-monitoring (self-monitoring scale; SMS [40]), and movement
difficulties (a German translation of the Adult Dyspraxia Checklist; ADC
[41]). To obtain a best estimate of both their crystalline (Mehrfachwahl-
Wortschatz-Intelligenztest; MWT [42]) and non-verbal (Culture-Fair Test;

Table 1. Sample description.

ASD
(n= 28, 18
female)

TD
(n= 60, 26
female)

padjusted

Age 37.18 (13.14) 31.48 (10.78) 0.101

Crystalline IQ 113.68 (16.90) 113.98 (16.69) 0.879

Non-verbal IQ 119.75 (23.44) 117.03 (17.37) 0.382

Mean parameter values (SD in parentheses) for each of the IQ tests for the
ASD and TD participants, as well as the results of Wilcoxon tests (assuming
unequal variances). Verbal IQ as measured by the Mehrfach-Wortschatz-
Test. Non-verbal IQ as measured by the Culture-Fair-Test 20-Revised.
Participants with ASD either had a diagnosis of F84.0 [3] or F84.5 [25].
p values adjusted for multiple comparisons using the false discovery rate
(FDR) [69].
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CFT 20-R [43]) IQ, two IQ assessments were undertaken, and their results
averaged. Since difficulties in recognizing emotional facial expressions
could potentially cause a bias in the investigation of synchrony in facial
expressions, participants additionally completed a computer task for facial
expression recognition (Berlin Emotion Recognition Test; BERT [44]).

Data preparation and feature extraction
Videos were cut to a duration of ten minutes in DaVinci Resolve (Version
16.2.0054). Facial expression was analyzed with the open-source algorithm
Openface 2.0 [45], identifying action units (AUs) and three head pose
parameters (pitch, yaw, roll) and extracting a time series of their presence
and intensity for every frame. Motion Energy analysis (MEA [32]) was used
to analyze head and upper body movement captured with the scenic
camera. MEA extracts time series of grayscale pixel changes for every
frame in pre-specified regions of interest (ROI). Due to the constant
lighting conditions and a stable camera, pixel changes within each ROI
indicate movement.
Prior to the final analyses, the behavioral time series from both tasks

were synchronized between, and (in case of intrapersonal coordination)
within, participants in the respective modalities. For this purpose,
windowed cross-lagged correlations were computed in R. The size of the
respective windows and lags for each modality were carefully chosen,
relying on previous research wherever applicable [20, 46], to ensure
maximum standardization. For the estimation of intrapersonal coordina-
tion, head movement, as derived from OpenFace, was cross-correlated
with the body motion energy times series derived from MEA. Finally,
summary scores (mean, median, standard deviation, minimum, maximum,
skewness, and kurtosis) of the maximum synchrony instances from both
tasks for each person were extracted. The extent as to which each person
was synchronizing within the dyadic interaction was defined as their
degree of imitating (following) their partners movements. For further
details on the cross-correlation and feature extraction procedures, refer to
Supplementary Information S2.
Facial emotion recognition capabilities were operationalized as mean

accuracy (in %) and response time (in ms) (see Supplementary Information
S3.4).
A full list of features can be found in Supplementary Table S13.

Classification models
Separate SVM classification models were trained using features grouped
according to the interaction modalities. The feature vectors for each
participant combined the values from both the mealplanning and hobbies
task. In each base model, the SVM algorithm independently modeled linear
relationships between features and classification label. To account for the
interactional nature of the underlying feature set for classification,
participants were labeled as belonging to either a mixed (ASD-TD) or
non-autistic control (TD-TD) dyad, resulting in groups of 56 and 32
individuals respectively. Consequently, both interactants within one dyad
received the same label, regardless of their individual diagnosis. This
labeling procedure was modeled closely to a diagnostic setting in clinical

reality, in which only one interactant’s diagnostic status would be at
question whereas the other interactant would represent the clinical rater.
Linear SVM optimized a linear hyperplane in a high-dimensional data
space that maximized separability between individuals belonging to either
of the two dyad types (i.e., the support vectors). Based on the trained
hyperplane, the data was subsequently projected into the linear kernel
space and their geometric distance to the decision boundary was
measured, therefore, predicting each participant’s classification. Every
participant was assigned a decision score and a predicted
classification label.
We built separate models for the synchrony of facial action units

(FACEsync; 168 features per individual), head movement (HEADsync; global
head movement, as well as pitch, yaw and roll; 56 features per individual),
and body movement (BODYsync; 14 features per individual), as well as
intrapersonal head-body movement coordination (INTRAsync; 14 features
per individual), and individual movement parameters (MovEx; total head
and body movement, and facial expressiveness; 6 features per individual).
The decision scores of all our base models, as well as the model covering
the head region (FACEsync + HEADsync), were subsequently combined in
a stacking-based data fusion framework [47] to assess whether a
combination of the modalities would result in superior prediction results
than the unimodal classifiers themselves.
We additionally conducted supplementary analyses using individual

diagnosis as classification label. Results of these analyses can be found in
the Supplementary Information S3.6.

Support vector machine learning analysis
Machine learning analyses were conducted with the toolbox NeuroMiner
(Version 1.1; https://github.com/neurominer-git/NeuroMiner_1.1) [48] in
MATLAB (Version 2022b) [49]. A repeated, nested, stratified cross-validation
(CV) structure was implemented with 11 outer CV folds and ten
permutations (CV2) and ten inner CV folds with one permutation (CV1).
At the CV2 level, we iteratively held back participants from four dyads as
test samples (approx. 9% of data), while the rest of the data (approx. 81%)
entered the CV1 cycle, where the data were again split into validation and
training sets. Both interactants from a dyad would always remain in the
same fold. This nested stratified CV allows for a strict separation between
training and testing data, with hyper-parameter tuning happening entirely
within the CV1 loop while the CV2 loop exclusively measured the model’s
generalizability to unseen data. Additionally, the stratified design ensured
that proportion of dyad type in every fold would adequately reflect the
proportion of dyad type in the full sample in order to avoid training bias.
The five base models were pre-processed and trained separately using
LIBLINEAR Support Vector L2-regularized L2-loss classification algorithms
(see Supplementary Information S3.1 and S3.2). Given that the current
dataset contains a rather high feature-to-sample ratio, this specific
algorithm was chosen because of its similarity to LIBSVM but without
implementing complex kernels which could potentially result in over-
fitting. All models were corrected for class imbalance by hyperplane
weighting. Balanced Accuracy (BAC = (sensitivity + specificity)/2) was used
as the performance criterion for parameter optimization. Statistical

Fig. 1 Experimental setup. Participants were seated across from each other and asked to conduct two conversational tasks. For additional
setup info see Supplementary Material.
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significance of the base classifiers was assessed through permutation
testing [50]. The permutation testing procedure determines how
statistically significant is the model’s performances (i.e., BAC) using the
current data compare to models trained on the dataset but with the labels
randomly permuted. The permutation test was repeated 1000 times. The
significance level was set to α= 0.05. In current discussions, an alpha level
of .005 has been proposed [51], though the appropriateness of this
approach has been called into question [52]. Hence, to reassure statistically
rigorous results, we additionally annotated when a significant model’s
permutation test result would fail significance using the stricter alpha level.
To control for potential bias of the dyadic nature of the data on each
model’s significance, each permutation analysis was conducted with both
participants of each dyad permuted in pairs according to their dyadic
structure. For further details on the permutation testing procedure, see
Supplementary Information S3.3. The two stacking models [53] were
trained on the resulting decision scores (all base models, facial expression
+ head motion synchrony) by wrapping them in the identical cross-
validation framework as the base models. A L1-loss LIBSVM algorithm with
Gaussian kernel was employed to find a parsimonious combination of
decision scores which maximized BAC across the C parameter range. For
details, see Supplementary Information S3.

RESULTS
Base model performances
Using facial action unit (AU) synchrony data, the repeated nested
stratified cross-validation FACEsync model yielded a balanced
accuracy (BAC) of 79.5%, and an area under the receiver operating
curve (AUC) of .82 (p < 0.001, also see Supplementary Fig. S9). The
contribution of the different features to classification group (Fig. 2)
was calculated by feature weights (see Supplementary

Information S3.4) and cross-validation ratio. Additionally, the
sign-based consistency was explored as an indicator of the
feature classification reliability. Assignment to the ASD-TD dyads
was mainly driven by features describing an elevated and highly
varied extent of adaptation in AU17 (chin raiser) and AU26 (jaw
drop). Minimized adaptation in AU01 (inner brow raiser), AU20 (lip
stretcher) and AU45 (blink) were indicative of belonging to the TD-
TD interaction type. In order to investigate any associations of
facial emotion recognition abilities and adaptation behaviors of
the different facial AUs, correlation analyses were performed
between the decision scores derived from the FACEsync model
and accuracy and response time (rt) from the Berlin Emotion
Recognition Test (BERT [44]). No significant associations were
found (raccuracy(86)=−0.16, rrt(86)= 0.13; both p= 0.23 after FDR
correction).
The model using only head motion coordination data (HEAD-

sync) achieved a BAC of 62.1% and an AUC of 0.64 (p= 0.002).
Assignment to the TD-TD group was driven by higher values in
minimum adaptation of global head movement whereas higher
maximum and more variant values for head movement adapta-
tion predicted the ASD-TD group.
The classification model based on upper body movement

coordination (BODYsync) predicted dyad origin with a BAC of
56.7% and an AUC of 0.55 (p= 0.009). Using a stricter alpha level
of 0.005, this model would not be judged as performing
significantly better than chance.
Our classification model based on intrapersonal head-body

coordination (INTRAsync) performed around chance level with a
BAC of 44.2% and an AUC of 0.44 (p= 0.994).

Fig. 2 Contribution of features in FACEsync model. Cross-validation ratio of feature weights (A) and sign-based consistency (B) for the
FACEsync model. The features depicted correspond to the person-specific adaptation of intensity of a participant to their dyadic counterpart
in the respective facial action units (AU) for either hobbies or mealplanning task (min minimum, sd standard deviation, max maximum).
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The SVM classification model based on features of total head
and body movement and general facial expressiveness (MovEx)
predicted dyad origin with a BAC of 68.8% and an AUC of 0.75
(p < 0.001).
Additional classification metrics for all models can be found in

Supplementary Table S6.

Stacking model
All base model decision scores were extracted and combined into
a hierarchical stacking-based fusion framework to assess potential
prediction improvements. Combinations of only the head region
(FACEsync + HEADsync; BAC= 78.8%, AUC = 0.83), as well as of
all modalities (BAC= 77.9%, AUC = 0.85) did not outperform the
most predictive base model (FACEsync) with 79.5%.
Additional classification metrics of all models are depicted in

Fig. 3.

Classification based on diagnostic group
We repeated all SVM analyses using different labels based on
diagnostic groups while ignoring interaction type. These addi-
tional analyses were conducted in order to investigate if our
collected social interaction data was specific enough to identify an
autistic individual, regardless of interaction dyad origin. All models
generated inferior prediction accuracies compared to the dyad
labeling approach (3.1). Detailed results can be found in
Supplementary Information S3.6.

DISCUSSION
The aim of the current study was to quantify social interaction in
ASD for the purpose of automatized diagnostic classification. In
this proof-of-concept study, we set out to utilize a dyadic setting
for classification of autistic vs. non-autistic interaction based on
reciprocity. Participants were filmed conducting two brief
conversations about pre-set topics. Using repeated nested cross-
validation techniques, we could show that SVM classification
models based on different modalities of behavioral reciprocity
were sufficient to predict dyad membership to a high degree.
Contrary to our hypothesis, combining different non-verbal
modalities did not improve overall predictive accuracy. Classifica-
tion into individual diagnostic groups (ASD vs. TD) based on social
interaction data performed worse on all modalities, as well as the

model classifying on individual measures of full body movement
and general facial expressiveness. This highlights the importance
of the social context to capture the manifestation of autistic
symptoms.
A model based on reciprocity of facial action units within the

interactions showed the best classification accuracy (79.5%) within
our sample. When looking more closely at individual feature
importance in the facial region, we found heightened and more
varied scores for reciprocal adaptation in the AUs chin raiser, jaw
drop and lip corner depressor in both tasks to be indicative for
classification into the autistic interaction type. This was especially
pronounced for the mealplanning task, suggesting higher and
more varied synchrony in this task in the ASD-TD interactions.
While elevated synchrony in ASD might seem counterintuitive at
first glance, especially in light of findings on reduced mimicry in
autism [54, 55], taking a closer look at feature importance for the
TD-TD group provides a differentiated picture. Participants with
higher values for minimum adaptation across all features had an
increased likelihood to be classified into the TD-TD group,
suggesting a potential floor effect for facial synchrony in this
group. Thus, their synchrony did not subceed a certain lower
threshold. This was especially pronounced in the action units for
inner brow raiser (AU1), lip stretcher (AU20) and blinking (AU45).
Additionally, motor synchrony in autistic interactions has pre-
viously been found to vary along with the level of autistic traits,
social-communicative functioning, and context [19]. The same
mechanisms may hold true for mimicry. For example, in a study
investigating mimicry in the BERT emotion recognition task,
Drimalla and colleagues [56] found significantly more variance in
the intensity of facial expressions in autistic participants.
Importantly, since machine learning analyses factor in countless
interdependencies between features, interpretations based on
feature weights should be considered with caution. Nevertheless,
the rather high classification accuracy based solely on facial
synchrony features found in our study provides valuable implica-
tions for future research on classification based on social
interactions in an even more ecological setting (e.g., diagnostic
assessments via video conferencing).
Interestingly, our model based on measures of individual

amount of full body movement and general facial expressiveness
(MovEx) was the second-best of the base learners, supporting
findings of a characteristic motor signature in autism. For example,

Fig. 3 Classification metrics for all base and stacking models. BAC balanced accuracy, AUC area under the curve, PPV positive predictive
value, NPV negative predictive value. Models are depicted in the order of lowest to highest performing BAC.
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Zhao and colleagues [57] investigated head movements in autistic
children during live interactions and found aberrances on all three
axes. Notably though, our classification model factoring in dyad
type, thus, data that included the TD interaction partners, showed
superior performance compared to classification based on
diagnosis. Hence, interactional aspects also seem to have an
association with individual movement features, supporting the
hypothesis that intra- and interpersonal adjustment processes are
not entirely independent of each other [58].
Contrary to previous findings of high classification accuracy for

head and body coordination [24], our model based on this
modality performed at a below-chance level, showing low
specificity of head-body coordination for autistic vs. non-autistic
interaction. However, interpretation should be considered cau-
tiously given the specifications of our experimental setup. Due to
our data being collected as part of a larger setup, participants
wore wristbands on their non-dominant hand measuring physio-
logical data (see Supplementary Information S1). In order to
reduce artefacts in physiological data acquisition, participants
were instructed to relax their non-dominant hand in their lap.
Arguably, this instruction and setup difference with regards to the
previous study could well account for the lack of classification
power by intrapersonal coordination in the current study. This is
supported by the absence of a significant difference between
body synchrony found between our participants’ motion time
series and randomly matched time series (see Supplementary
Information S2.3).
While our results support previous findings on head motion

synchrony as a distinguishing feature of autistic communication
[21], combining it with facial expression synchrony did not yield a
higher prediction accuracy in a stacking model. This was also the
case for our overall stacking model. However, stacking may be
able to improve predictive performance of any problem primarily
in cases where the underlying data is not well represented by a
single model [59], which is not the case in the current study.
Furthermore, combining several models with significantly differ-
ent predictive accuracies might in fact harm overall performance
of the stacker. Additionally, if the underlying base models are
highly correlated, combining them does not necessarily lead to
improved performance [59]. In fact, we did find significant
associations of our MovEx model (total head and body movement
and general facial expressiveness) with HEADsync for the ASD-TD
group (r= 0.55, p < 0.001), as well with INTRAsync for the TD-TD
group (r= 0.52, p > 0.05; for further details see Supplementary
Information S4.5). In our study, we aimed to combine different
modalities in a hypothesis-driven way to retain a certain amount
of interpretability. We found no added benefit for increasing
model complexity. However, it is possible that in order to improve
predictive performance of social interactions features, non-verbal
aspects of social interaction could be complemented by different
modalities in the future, such as speech, eye-movements,
physiological or neurological measures. For example, in a recent
study conducted by Liao et al. [60], simultaneous measures of EEG,
eye tracking and facial expression were assessed of autistic
children viewing social and non-social stimuli. The authors found
superior prediction accuracies for the combination of behavioral
and physiological classifiers.
Notably, there are several limitations within the scope of the

present study.
First, the sample size in the current study is limited. To counter

this, we implemented a repeated nested cross-validation structure
as well as careful feature reduction methods. Nevertheless, our
findings should be considered as proof-of-concept and will have
to be validated in a larger and external sample, possibly including
adults with different psychiatric diagnoses, including comorbid-
ities, to examine specificity within a clinical context more closely
and, hence, strengthen the translational aspect [61]. Additionally,
regarding the differing incidence rates and possibly phenotypical

presentation in males and females with autism, larger samples will
allow for thorough analyses of sex and gender effects on social
interaction in autism. In any case, we believe that automatic
extraction and classification algorithms of social behaviors can
support human observation, as they have the possibility to extract
behavioral subtleties reliably (e.g., subtle facial expressions [62]),
and, thus, could augment diagnostic decision making [63] over
and above potential biases. We are convinced that the high
scalability of our largely automatized setup can facilitate a
simplified data collection process within clinical settings, ideally
allowing for cross-site validation approaches which are crucial to
the development of reliable clinical prediction models [64].
Second, though interpersonal synchrony has been found to be
reduced in interactional dyadic settings independent of partner
diagnosis [22], a preference for interactions within purely autistic
dyads as compared to mixed interactions has been suggested
[12]. This is reflected in theoretical frameworks, such as the
“double empathy problem” [65] as well as “dialectic misattune-
ment” [66], specifying autistic impairments to be especially
pronounced between people with fundamentally different ways
of information processing and interacting. While this underlines
the notion of ASD as a social interaction disorder, in a real-world
and especially clinical setting this homogenous combination is
rarely to be found, which is why this dyad composition was not
assessed in this study.
Third, though highly scalable, we relied on different existing

computer vision algorithms for our study. On the one hand, this
means that the direct comparison of the base models’ accuracies
has to be interpreted with caution, as both computer vision
algorithms used employ different methods of movement extrac-
tion. On the other hand, these algorithms are associated with
certain limitations themselves. For example, Motion Energy
Analysis (MEA) as a video analysis method has constraints
regarding the dimensionality of movement. Because MEA only
outputs changes in motion, no specifications regarding direction
or magnitude of movement can be made. However, while more
distinct investigations of these factors in ASD are certainly
desirable, they nevertheless add another layer of complexity to
already highly dimensional prediction models. With an increasing
feature-to-sample ratio, the ability of ML classifiers to learn more
complex relationships may be restricted. Therefore, this was not a
focus in our study. Regarding facial expression, a range of AUs and
participants had to be excluded due to their extent of missing
values within their resulting time series. This was partially due to
the participants moving out of the camera frame. Though
OpenFace employs person-specific normalization by subtracting
a “neutral” face from all other frames of a person, the algorithm is
nevertheless reported as potentially less accurate if a face does
not show a lot of movement dynamics [67]. Further, within this
study the AUs were extracted in a completely automated fashion,
without external validation by human coders. While performance
accuracy measures for OpenFace are generally favorable com-
pared to other automatic facial expression detection algorithms
[45] and this fully automatic approach furthers scalability, never-
theless, it cannot be ruled out that the AUs were not measured
accurately, limiting direct interpretations in terms of specific AUs.
However, even considering those technical drawbacks, our
FACEsync model achieved high classification accuracy. We believe
that with the continuing technological developments within
computer vision methodology this limitation will likely be
overcome in the future.
Lastly, the application of machine learning in clinical psychology

and psychiatry is providing novel possibilities for increased
precision in individualized diagnosis, prognosis and treatment
[68]. However, with increasing model complexity, interpretation of
findings and their implications become more challenging. While
our findings point to the predictive accuracy of reciprocity in
social interactions for autism, future research should aim to gain a
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greater understanding about the underlying mechanisms of those
features. For instance, while we have found high predictive
accuracy for an overall estimate of autistic reciprocal interaction
within a conversation, a more fine-grained analysis of behavioral
synchrony at different time points could shed light on possibly
fluctuating interaction dynamics. In addition, while this study
mainly explored the use and performance of one of the most
widely used machine learning algorithms in psychiatric research
[68], there exist a range of other supervised and unsupervised
machine learning algorithms that, given a careful cross-validation
procedure, tend to perform well with small sample sizes. An
additional exploratory analysis using Random Forest Classification
is included in the Supplementary Material (Section S4.7). However,
to gain deeper understanding of underlying interactions and
mechanisms in autistic social interaction, future research should
compare the performance indices and feature spaces selected by
different algorithms across different samples. Furthermore, inter-
pretable machine learning models could be used in future studies
to take feature analysis to the individual level and, thus, study the
heterogeneity of ASD in more detail as well as develop more
personalized psychosocial interventions.
In this study, we tested adults with autism with a diverse range

of cognitive functioning levels, autistic traits and ages. Never-
theless, our SVM models managed to identify participants of an
autistic social interaction with high accuracy. While this approach
prevents disclosure of the diagnostic status of each individual
within a dyad, thus, preserves anonymity, the continuing
developments in computer vision prediction models may raise
concerns of those affected over the risk of unwilling identification.
Hence, it should be emphasized that a professional clinician’s
rating is essential for diagnostic decision making in psychiatric
care. Consequently, diagnostic prediction models should be
viewed as augmenting, rather than replacing diagnostic assess-
ments made by trained clinicians [63]. However, a shift of data
collection from traditional questionnaire-based or behavior
observation diagnostic tools to objective digital markers will
produce sensitive data that needs to be continuously treated with
greatest care and data protection standards need to be abided by.
Here, automated coding of behaviors is especially beneficial as
opposed to manual approaches, allowing for instant anonymiza-
tion of extracted time series.
Conclusively, using carefully cross-validated ML algorithms, we

were able to classify members of autistic and non-autistic dyads
based on multiple objective non-verbal measures of reciprocity in
naturalistic social interactions. Facial synchrony within the dyad as
unit of analysis [29] proved to be the most valuable marker for
diagnostic classification of ASD. We are confident that with the
growing interconnectedness in psychiatric and computational
research, the complexity of social interaction difficulties in autism
can be optimally captured.
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