

Contents lists available at ScienceDirect

Stem Cell Research

journal homepage: www.elsevier.com/locate/scr

Lab Resource: Animal Multiple Cell lines

Generation and characterization of three fibroblast-derived Rhesus Macaque induced pluripotent stem cell lines

aphofor^a Dhilipp Japson^a Stofan Müller^b Dana C. Lonez Darra^a

Jessica Jocher^a, Fiona C. Edenhofer^a, Philipp Janssen^a, Stefan Müller^b, Dana C. Lopez-Parra^a, Johanna Geuder^a, Wolfgang Enard^{a,*}

^a Anthropology & Human Genomics, Faculty of Biology, Ludwig-Maximilians-Universität München, Großhaderner Straße 2, 82152 Martinsried, Germany
^b Institute of Human Genomics, Munich University Hospital, Ludwig-Maximilians-Universität München, 80336 Munich, Germany

ABSTRACT

Cross-species comparisons using pluripotent stem cells from primates are crucial to better understand human biology, disease, and evolution. An important primate model is the Rhesus macaque (*Macaca mulatta*), and we reprogrammed skin fibroblasts from a male individual to generate three induced pluripotent stem cell (iPSC) lines. These cells exhibit the typical ESC-like colony morphology, express common pluripotency markers, and can differentiate into cells of the three germ layers. All generated iPSC lines can be cultured under feeder-free conditions in commercially available medium and are therefore valuable resources for cross-species comparisons.

1. Resource Table

		Ethical approval The study was ethically approved by the
Unique stem cell lines identifier	MPC-MacMul-C00001 (83Ab1.1)	Animal Welfare Committee at DPZ which
	MPC-MacMul-C00002 (83D1)	is registered and authorized by the local
	MPC-MacMul-C00003 (87B1)	and regional veterinary governmental
Alternative name(s) of stem cell lines	83Ab1.1	authorities (Ref. no. 122910.3311900, PK
	83D1	36674).
	87B1	
Institution	Faculty of Biology, Ludwig-Maximilians-	
	Universität München	
Contact information of distributor	Prof. Dr. Wolfgang Enard: enard@bio. lmu.de	2. Resource utility
	Jessica Jocher: jocher@bio.lmu.de	
Type of cell lines	iPSCs	The three iPSC lines derived from one male Rhesus macaque skin
Origin	Rhesus Macaque (Macaca Mulatta)	sample can be used for cross-species comparisons investigating e.g. the
Additional origin info	Sex: Male	malacular and callular avalution of carly primate development
Cell Source	iPSCs were derived from Rhesus macaque	molecular and cellular evolution of early primate development.
	skin fibroblasts, kindly provided by the	Thereby, the three lines can help to assess clonal variation within one
	DPZ Göttingen	Rhesus macaque genetic background.
Clonality	Clonal	
Method of reprogramming	Integration-free sendai virus based OSKM vectors (CytoTune-iPSC 2.0 Sendai	3. Resource details
	Reprogramming Kit, Thermo Fisher	
	Scientific) were used for reprogramming	Comparative analyses of human and non-human primates (NHP) can
Evidence of the reprogramming	PCR analysis for transgene detection	leverage unique information to understand evolutionary and develop-
transgene loss (including genomic	(negative)	mental mechanisms and bridge the phylogenetic gap between humans
copy if applicable)	NY /4	and mice for translationally and biomedically relevant questions (Enard.
Associated disease	N/A	2012) Among NHDs, the Bhesus macaque (Macaca mulatta) is probably
Gene/locus	N/A Neuember 2020	the most important model screes higherical disciplines and comprise
Coll line repository (hepk	NOVEHIDER 2020	the most important model across biological disciplines and comprises
Cen me repository/bank	IV/A	65 % of all NHP subjects used in the United States (Cooper et al., 2022).
	(continued on next column)	However, ethical, and practical limitations make it difficult to obtain

* Corresponding author.

https://doi.org/10.1016/j.scr.2023.103277

Received 6 September 2023; Received in revised form 30 October 2023; Accepted 6 December 2023 Available online 10 December 2023 1873-5061/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC

1873-5061/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

(continued)

comparable cells especially during development. Induced pluripotent stem cells (iPSCs) can be used to overcome these challenges (Juan et al., 2023).

Here, skin fibroblast obtained from Rhesus macaque were reprogrammed to iPSCs using Sendai viruses to introduce the Yamanaka factors OCT3/4, SOX2, KLF4 and C-MYC. Following reprogramming, colonies were picked, accustomed to feeder-free culture conditions and further characterized (Table 1). The established colonies exhibited a typical ESC-like morphology with defined borders, tight cellular packaging, and prominent nucleoli (Fig. 1A). A primate-specific SINE based PCR demonstrated that the iPSCs show the same Macaque-specific ALU element insertions as the parental skin fibroblasts, confirming that they were derived from the same species (Herke et al., 2007) (Supplementary Fig. S1A). In addition, single nucleotide polymorphisms (SNPs) were called from single-cell RNA-sequencing (scRNA-seq) data to profile the genotype of the cell lines. Around 4000 high quality SNPs with high coverage in all three clones were retrieved (Supplementary Fig. S1B). After some passages, karyotype analysis was performed and revealed no recurrent numerical or structural aberrations (Fig. 1B). In addition, one cell line was used for a detailed high resolution validation of numerical and structural chromosome integrity by FISH using human chromosome specific painting probes (Supplementary Fig. S1C). Immunofluorescence (IF) staining was performed, confirming the expression of the pluripotency associated proteins OCT3/4, SOX2 and NANOG, as well as the presence of the cell surface markers SSEA4 and EpCAM (Fig. 1D). Quantification of the IF staining for OCT3/4, SOX2 and NANOG showed that > 95 % of cells were positive for these pluripotency markers

Table 1

Characterization and validation.

(Figure C). All three iPSCs were negative for mycoplasma DNA (Fig. 1E) and negative for the Sendai-based reprogramming vectors (Fig. 1F). Moreover, all iPSC lines had the ability to differentiate into cells of the three germ layers, confirmed by positive immunofluorescence staining of germ layer-specific markers. Endodermal cells were positively stained for alpha-fetoprotein (AFP), mesodermal cells expressed alpha-smooth muscle actin (SMA) and ectodermal cells displayed neuron-specific beta-III tubulin expression (Fig. 1G). Additionally, scRNA-seq of Embryoid bodies (EBs) confirmed their potential for trilineage differentiation and the expression of germ layer-specific marker genes (Supplementary Fig. S1D). In summary, these characteristics suggest the successful reprogramming of three lines to mycoplasma free, integration free and feeder-free iPSCs from Rhesus macaque (*Macaca mulatta*).

4. Materials and methods

4.1. Reprogramming of fibroblasts and iPSC maintenance

Fibroblasts were cultured on 0.2 % Gelatin-coated dishes in DMEM/ F12 (Fisher Scientific) supplemented with 10 % FBS and 100 U/mL Penicillin and 100 μ g/mL Streptomycin (Thermo Fisher Scientific) at 37 °C with 5 % CO₂. For reprogramming, a CytoTuneTM-iPS 2.0 Sendai Reprogramming Kit (Thermo Fisher Scientific) was used at a MOI of 5, using a modified protocol. Fibroblasts were incubated with the virus mix for 1 h at 37 °C in suspension, followed by seeding on feeder cell-coated wells. Cells were switched to mTesR1TM medium (STEMCELL Technologies) on day 5 after transduction. Emerging colonies were manually

Classification	Test	Result	Data
Morphology	Photography Bright field	Normal iPSC colony morphology	Fig. 1A Scale bar represents 500 µm
Phenotype	Qualitative analysis by immunocytochemistry	iPSCs were positively stained for OCT4, NANOG, SOX2, SSEA4 and EpCAM	Fig. 1D Scale bar represents 100 μm
	Quantitative analysis by immunocytochemistry counting	% total cells positive for pluripotency markers (mean \pm SD): 83Ab1.1 OCT4: 97.6 % \pm 1.1 % NANOG: 94.4 % \pm 2.8 % SOX2: 98.3 % \pm 0.7 % 83D1 OCT4: 97.8 % \pm 2 % NANOG: 98.4 % \pm 0.3 % SOX2: 98.7 % \pm 0.5 % 87B1 OCT4: 98.7 % \pm 0.2 % NANOG: 98.7 % \pm 0.9 % SOX2: 98.9 % \pm 0.6 %	Fig. 1C
Genotype	Karyotype (G-banding and FISH)	3x inconspicuous male karyotype, 42,XYNo recurrent numeric or structural aberrations, after G-banding analysis of 46 to 48 cells per cell line with up to approximately 400 bphs (bands per haploid set)	Fig. 1B and Supplementary Fig. S1C
Identity	SINE-based genotyping PCR SNP analysis	DNA profiling performed, matched between iPSCs and parental fibroblasts Variant calling performed resulting in 4000 high quality SNPs	Supplementary Fig. S1A Submitted in archive with journal Summary: Supplementary Fig. S1B
Mutation analysis (IF	N/A		Supplementary 118. 512
Microbiology and virology Differentiation potential	Mycoplasma Sendai virus Embryoid body formation - IF staining	Mycoplasma testing by PCR: negative PCR analysis for Sendai virus presence: negative iPSCs are capable of differentiating into the three germ layers. Mesoderm: Smooth muscle actin (SMA) Endoderm: α -feto protein (AFP)	Fig. 1E Fig. 1F Fig. 1G Scale bar represents 100 um
Donor screening (OPTIONAL) Genotype additional info (OPTIONAL)	Embryoid body formation - scRNA- seq N/A N/A	Ectoderm: β -III Tubulin Expression of multiple cell type and germ layer specific marker genes	Supplementary Fig. S1D

Fig. 1. Characterization of the three Rhesus macaque iPSC lines. (A) Phase contrast microscopy images of iPSC colonies. Scale bar represents 500 μm. (B) Karyotype analysis. (C) Immunofluorescence counting results for NANOG, OCT4 and SOX2. (D) Immunofluorescence staining for pluripotency markers. Scale bar represents 100 μm. (E) Mycoplasma test. (F) PCR for Sendai-based reprogramming vectors. (G) Immunofluorescence staining for germ layer-specific markers. Scale bar represents 100 μm.

picked on feeder cells and cultured in StemFit® Basic02 (Ajinomoto) supplemented with 100 ng/mL bFGF (Peprotech) and 100 U/mL Penicillin and 100 µg/mL Streptomycin. For generating feeder-free iPSCs, colonies were split using 0.5 mM EDTA on 1 % Geltrex[™] (Thermo Fisher Scientific) -coated wells in feeder-conditioned StemFit. The ratio of feeder-conditioned to normal StemFit was reduced by 25 % after every second passage, until iPSCs could be cultured under feeder-free conditions. iPSCs were passaged using 0.5 mM EDTA at a ratio of 1:10-1:50 every 5 days, with medium changes every other day.

4.2. Immunocytochemistry

Attached cells (passage 15-20) were fixed for 15 min with 4 % PFA, permeabilized with 0.3 % Triton X-100 (Sigma Aldrich) and blocked with 5 % FBS for 30 min. Cells were incubated with primary antibodies (Table 2) diluted in staining buffer (PBS containing 1 % BSA and 0.3 % Triton X-100) overnight at 4 °C. The next day, cells were washed with PBS and incubated with secondary antibodies (Table 2) diluted in staining buffer for 1 h at room temperature. Nuclei were counterstained with 1 µg/mL DAPI. Positively-stained cells were quantified using the ImageJ software with the Cell Counter plugin.

4.3. Embryoid body formation

iPSCs at passage 15-20 were dissociated into clumps and cultured in sterile bacterial dishes containing StemFit Basic02 w/o bFGF at 37 °C with 5 % CO₂. A medium change was performed every other day during the first 8 days of floating culture. Afterwards, EBs were seeded into 6wells coated with 0.2 % Gelatin for 8 days of attached culture. On day 16, differentiated cells were analyzed with specific antibodies for mesoderm, endoderm, and ectoderm (Table 2) using immunocytochemistry. In addition, cells were also sampled for scRNA-seq on day 16. Briefly, EBs were dissociated using Accumax, and sequencing libraries were generated using the 10x Genomics Chromium Next GEM Single Cell 3'Kit V3.1 workflow. Cluster analysis was performed in R using the package Seurat v5 and clusters were assigned to germ layers based on the expression of known marker genes

4.4. Karyotyp

For Metap were incubat

Rabbit anti-OCT4

Table 2

Reagents detail Antibodies use

Pluripotency Markers

i of known market genes.	SeV and	GAPDH (Table 2).	PCR (30 cycles) with s	pecific primers
ing hase preparation, cells (passage 16–23) at 80 % confluency red with 0.1 mg/mL Colcemid (Gibco) for 13 h and	Declarat	ion of competing in	nterest e following financial	interests/persor
S.				
d for immunocytochemistry				
Antibody	Dilution	Company Cat #	RRID	

harvested using Accumax (Sigma Aldrich). Cells were treated with hypotonic Na-Citrate/NaCl for 35 min at 37 °C, followed by a subsequent fixation with methanol/acetic acid glacial (3:1) for 20 min at -20 °C. After pelleting, cells were washed twice with methanol/acetic acid as stated above. Differentially stained mitotic chromosome spreads were prepared using the G-banding technique and fluorescence in situ hybridization (FISH) was performed using human chromosome specific painting probes, following standard procedures.

4.5. Mycoplasma testing

The medium of a confluent 6-well with iPSCs at passage 15-20 was collected and pelleted, followed by resuspension in 100 µL PBS. After a 5 min incubation at 95 °C, 1 µL was used for a screening PCR with specific primers for the Mycoplasma 16S rRNA (Table 2).

4.6. Genotyping PCR

Total gDNA was isolated from cell pellets using the DirectPCR Lysis Reagent (VWR) supplemented with 20 mg/mL Proteinase K (Life Technologies), and a PCR (36 cycles) was performed with primers for the primate-specific Alu SINE (Table 2).

4.7. Variant calling

10x scRNA-seq data of day 16 EBs were used to call SNPs against the reference genome rheMac10 using GATK (Genome Analysis Tool Kit). High quality, biallelic SNPs were retained by joint genotyping of all three clones followed by quality filtering of the variants for high coverage (DP > 99) and quality by depth (QD > 2).

4.8. SeV detection

Total RNA was isolated from iPSCs at passage 10-15 using the Directzol RNA Microprep Kit (Zymo Research). After cDNA synthesis using the Maxima H Minus Reverse Transcriptase (Thermo Fisher Scientific), the rDNA was used to perform a PCR (36 cycles) with specific primers for

RRID: AB 823583

Cell Signaling Technology, Cat# 2750S

	Maura anti COVO	1.400	Call Complian Technology Cat# 40000	DDID. AD 10560516
	Mouse and-SOAZ	1:400	Cen Signaling Technology, Cat# 4900S	KKID: AD_10000516
	Rabbit anti-Nanog	1:400	Cell Signaling Technology, Cat# 4903S	RRID: AB_10559205
	Mouse anti-SSEA4	1:500	NEB, Cat# 4755S	RRID: AB_1264259
	Rabbit anti-EpCAM	1:500	Thermo Fisher Scientific, Cat# 710524	RRID: AB_2532731
Differentiation Markers	Mouse anti- a-Smooth Muscle Actin	1:100	R&D Systems, Cat# MAB1420	RRID: AB_262054
	Mouse anti- Neuron-specific beta-III Tubulin	1:100	R&D Systems, Cat# MAB1195	RRID: AB_357520
	Mouse anti-alpha Fetoprotein	1:100	R&D Systems, Cat# MAB1368	RRID: AB_357658
Secondary Antibodies	Alexa Fluor 488 donkey anti-mouse IgG (H + L)	1:500	Thermo Fisher Scientific, Cat# A-21202	RRID: AB_141607
	Alexa Fluor 594 donkey anti-rabbit IgG (H + L)	1:500	Thermo Fisher Scientific, Cat# A-21207	RRID: AB_141637
Duinnan				
Primers				
Primers	Target	Size of band	Forward/Reverse primer (5'-3')	
Primers Reprogramming factor clearance	Target Sendai Virus	Size of band	Forward/Reverse primer (5'-3')	
Primers Reprogramming factor clearance	Target Sendai Virus	Size of band	Forward/Reverse primer (5'-3') GGATCACTAGGTGATATCGAGC/ ACCAGACAAGAGTTTAAGAGATATGTATC	
Primers Reprogramming factor clearance	Target Sendai Virus GAPDH (housekeeping gene)	Size of band 180 bp 450 bp	Forward/Reverse primer (5'-3') GGATCACTAGGTGATATCGAGC/ ACCAGACAAGAGTTTAAGAGATATGTATG ACCACAGTCCATGCCATCAC/TCCACCAC	CCTGTTGCTGTA
Primers Reprogramming factor clearance Mycoplasma testing	Target Sendai Virus GAPDH (housekeeping gene) Myconlasma 16S	Size of band 180 bp 450 bp 270 bp	Forward/Reverse primer (5'-3') GGATCACTAGGTGATATCGAGC/ ACCAGACAAGAGTTTAAGAGATATGTATC ACCACAGTCCATGCCATCAC/TCGACCACC	C CCTGTTGCTGTA
Primers Reprogramming factor clearance Mycoplasma testing	Target Sendai Virus GAPDH (housekeeping gene) Mycoplasma 16S	Size of band 180 bp 450 bp 270 bp	Forward/Reverse primer (5'-3') GGATCACTAGGTGATATCGAGC/ ACCAGACAAGAGTTTAAGAGATATGTATC ACCACAGTCCATGCCATCAC/TCCACCAC TGCACCATCTGTCACTCTGTTAACCTC/ GGGACCAAACAGCATTAGATACCCT/	C CCTGTTGCTGTA
Primers Reprogramming factor clearance Mycoplasma testing Construint PCP	Target Sendai Virus GAPDH (housekeeping gene) Mycoplasma 16S	Size of band 180 bp 450 bp 270 bp	Forward/Reverse primer (5'-3') GGATCACTAGGTGATATCGAGC/ ACCAGACAAGAGTTTAAGAGATATGTATC ACCACAGTCCATGCCATCAC/TCCACCACC TGCACCATCTGTCACTCTGTTAACCTC/ GGGAGCAAACAGGATTAGATACCCT	C CCTGTTGCTGTA

1:400

relationships which may be considered as potential competing interests: Wolfgang Enard reports financial support, article publishing charges, and travel were provided by German Research Foundation.

Acknowledgements

This work was supported by DFG EN 1093/5-1 (project number 458247426). We are grateful to Kerstin Mätz-Rensing and the staff at the DPZ for kindly providing the primary material. We thank Dr. Mari Ohnuki and Rudolf Hamburg, for picking up the material and for isolating the primary cells. Furthermore, we thank Vanessa Baltruschat for her substantial technical support in the lab.

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.

org/10.1016/j.scr.2023.103277.

References

- Cooper, E., Brent, L., Snyder-Mackler, N., Singh, M., Sengupta, A., Khatiwada, S., Malaivijitnond, S., Hai, Z., Higham, J., 2022. The Rhesus macaque as a success story of the anthropocene. eLive. https://doi.org/10.7554/elife.78169.
- Enard, W., 2012. Functional primate genomics leveraging the medical potential. J. Mol. Med. https://doi.org/10.1007/s00109-012-0901-4.
- Herke, S., Xing, J., Ray, D., Zommerman, J., Cordaux, R., Batzer, M., 2007. A SINE-based dichotomous key for primate identification. Gene. https://doi.org/10.1016/j. gene.2006.08.015.
- Juan, D., Santpere, G., Kelley, J., Cornejo, O.E., Marques-Bonet, T., 2023. Current advances in primate genomics: novel approaches for understanding evolution and disease. Nat. Rev. Genet. https://doi.org/10.1038/s41576-022-00554-w.