
ARTICLE OPEN

Detection and localization of caries and hypomineralization on
dental photographs with a vision transformer model
Marco Felsch1, Ole Meyer2, Anne Schlickenrieder1, Paula Engels1, Jule Schönewolf1, Felicitas Zöllner 1, Roswitha Heinrich-Weltzien3,
Marc Hesenius 2, Reinhard Hickel1, Volker Gruhn2 and Jan Kühnisch 1✉

Caries and molar-incisor hypomineralization (MIH) are among the most prevalent diseases worldwide and need to be reliably
diagnosed. The use of dental photographs and artificial intelligence (AI) methods may potentially contribute to realizing accurate
and automated diagnostic visual examinations in the future. Therefore, the present study aimed to develop an AI-based algorithm
that can detect, classify and localize caries and MIH. This study included an image set of 18,179 anonymous photographs. Pixelwise
image labeling was achieved by trained and calibrated annotators using the Computer Vision Annotation Tool (CVAT). All
annotations were made according to standard methods and were independently checked by an experienced dentist. The entire
image set was divided into training (N= 16,679), validation (N= 500) and test sets (N= 1000). The AI-based algorithm was trained
and finetuned over 250 epochs by using image augmentation and adapting a vision transformer network (SegFormer-B5). Statistics
included the determination of the intersection over union (IoU), average precision (AP) and accuracy (ACC). The overall diagnostic
performance in terms of IoU, AP and ACC were 0.959, 0.977 and 0.978 for the finetuned model, respectively. The corresponding
data for the most relevant caries classes of non-cavitations (0.630, 0.813 and 0.990) and dentin cavities (0.692, 0.830, and 0.997)
were found to be high. MIH-related demarcated opacity (0.672, 0.827, and 0.993) and atypical restoration (0.829, 0.902, and 0.999)
showed similar results. Here, we report that the model achieves excellent precision for pixelwise detection and localization of caries
and MIH. Nevertheless, the model needs to be further improved and externally validated.
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INTRODUCTION
Caries is among the most prevalent non-communicable diseases
in all age groups worldwide1,2, and developmental disorders such
as molar-incisor hypomineralization (MIH)—synonymously named
“chalky teeth”—are of additional clinical relevance, especially in
younger populations3. Both entities need to be reliably diagnosed
by dental professionals. Here, a visual examination (VE) must be
recognized as the method of choice for caries and MIH detection
due to its simplicity, rapidness, and documented validity4–9.
However, when considering the documented diagnostic variability
between different dentists or work groups5,6, it can be argued that
the reliability of VE can be improved and should optimally be as
objective as possible. Following this aim, the use of teeth
photographs—a digital and machine-readable equivalent to a
clinical examination—and artificial intelligence (AI) methods may
potentially contribute to accurate diagnostic evaluations in the
future. Recently, a few study groups have used and evaluated
convolutional neural networks (CNNs) with digital photographs for
the detection of caries10–12 and MIH13,14. All studies proved the
concept of using AI-based methods for dental photographs, and
promising results were published. While a publicly accessible
model would enable an independent evaluation by other research
groups, no such model has been introduced thus far. Most
recently, vision transformer networks were introduced as an
alternative to established CNNs for various image recognition
tasks15. Considering their computational efficiency and accuracy, it
might be possible that transformers may outperform current CNN
standards in the future. AI-based solutions for detecting pathol-
ogies, including caries and MIH, should optimally be based on this

new technology, which has rarely been applied in medicine and
dentistry until now16–19.
Therefore, the present study first aims to develop a transformer-

based model to achieve precise and simultaneous pixelwise
detection and localization of relevant caries and MIH classes from
dental photographs. Second, it is hypothesized that the model
could achieve an accuracy of at least 98% and an average
precision of 0.5 for the detection and localization of caries and
MIH classes. The final study aim is to make the AI-based model
publicly accessible as a web application.

RESULTS
Data set
In the complete image set, 34,710 pathological findings belonging
to the caries (N= 26,360) and MIH (N= 8350) entities were
detected and classified. Non-cavitated caries lesions and dentin
cavities were found to be the most frequent caries classifications.
Hypomineralized teeth were predominantly characterized by
demarcated opacities and enamel disintegrations. Detailed
distributions among classifications in relation to the training,
validation and test sets can be observed in Table 1.

Model performance
The highest pixel numbers for caries were documented for non-
cavitated lesions and dentin cavities (Table 2). In contrast, the pixel
counts for grayish translucencies and enamel breakdowns were
lower by factors of ~30 and ~50, respectively (Table 2). In the MIH
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entity, demarcated opacities were labeled most often, followed by
atypical restorations and enamel disintegrations (Table 2). The
diagnostic performance in terms of F1-score, IoU, AP and ACC for
each class can also be observed in Table 2. Notably, even after
baseline training, most of the IoU values were above 0.4 (Table 2),
except caries-related grayish translucencies (IoU = 0.210) and
enamel breakdowns (IoU = 0.088). The IoU values increased up to

~0.8 after finetuning. However, caries-associated enamel break-
downs (IoU = 0.352) and enamel disintegrations due to MIH
(IoU = 0.507) remained lower than all others (Table 2). The model’s
overall IoU value was 0.959 after finetuning. When considering the
AP, the same pattern emerged (Table 2 and Fig. 1). After baseline
training, the AP values ranged between 0.420 and 0.751 for the
caries classes and between 0.657 and 0.704 for the MIH classes.
The model performance once again increased after finetuning for
caries (0.588–0.882) and MIH (0.669–0.902); the overall AP reached
0.977. The ACC on pixel level was found to be constantly high
throughout baseline training as well as finetuning and exceeded
—with one exception—values above 0.99. The overall ACC was
0.978 after finetuning (Table 2).
In addition to the pixelwise analysis (Table 2), Table 3

summarizes the model performance for caries and MIH detection
on an image level. The overall diagnostic ACC values were found
to be high, with numbers above 95%. SE and SP ranged between
~80% and ~100%. Only in the case of caries-related enamel
breakdowns was low SE documented (Table 3).

DISCUSSION
This study developed and evaluated an AI-based diagnostic model
for the detection, classification, and localization of caries as well as
MIH in professionally captured clinical photographs of teeth.
Furthermore, the model was made openly accessible as a web
application (http://demo.dental-ai.de). In particular, the use of
precise object labeling in a large image set and pixelwise image
analysis utilizing a transformer network with a segmentation head
resulted in a model that can simultaneously identify different

Table 1. Overview of the included pixelwise annotations for the
training set (N= 16,679 images), validation set (N= 500 images), and
the independent test set (N= 1000 images).

Diagnostic category Number of annotations

Training set Validation set Test set Total

Caries

Non-cavitation 16,185 501 1058 17,744

Grayish translucency 954 29 67 1050

Enamel breakdown 1001 33 70 1104

Dentin cavity 5046 155 316 5517

Fully destructed tooth 868 27 50 945

Molar–incisor hypomineralization (chalky teeth)

Demarcated opacity 5817 180 329 6326

Enamel disintegration 1143 35 69 1247

Atypical restoration 721 22 34 777

Total 31,735 982 1993 34,710

Table 2. Diagnostic performance of the transformer-based model on a pixel level after 250 training epochs and additional finetuning.

Diagnostic category Total pixel number (N × 106) F1 IoU Average precision Accuracy

Diagnostic performance after 250 training epochs (baseline training)

Caries

Non-cavitation 6.096 0.595 0.423 0.683 0.983

Grayish translucency 0.260 0.347 0.210 0.420 0.999

Enamel breakdown 0.139 0.161 0.088 0.468 0.999

Dentin cavity 2.713 0.763 0.617 0.751 0.995

Fully destructed tooth 0.922 0.630 0.460 0.542 0.997

Molar–incisor hypomineralization (chalky teeth)

Demarcated opacity 3.715 0.586 0.423 0.657 0.990

Enamel disintegration 0.688 0.604 0.433 0.674 0.998

Atypical restoration 1.552 0.669 0.503 0.704 0.996

None 246.057 0.984 0.969 0.980 0.970

Total 262.142 0.962 0.937 0.961 0.964

Diagnostic performance after 250 training epochs + finetuning

Caries

Non-cavitation 6.386 0.773 0.630 0.813 0.990

Grayish translucency 0.292 0.746 0.595 0.743 0.999

Enamel breakdown 0.136 0.521 0.352 0.588 0.999

Dentin cavity 2.471 0.818 0.692 0.830 0.997

Fully destructed tooth 1.674 0.881 0.787 0.882 0.999

Molar–incisor hypomineralization (chalky teeth)

Demarcated opacity 4.758 0.804 0.672 0.827 0.993

Enamel disintegration 0.322 0.673 0.507 0.669 0.999

Atypical restoration 1.566 0.906 0.829 0.902 0.999

None 244.539 0.990 0.979 0.988 0.981

Total 262.144 0.977 0.959 0.977 0.978
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pathologies, including subscores, from dental photographs (Fig.
2).
The comparison and interpretation of the shown data for

pixelwise analysis (Table 2 and Fig. 1) is limited at the moment,
simply due to the lack of technically comparable projects in

dentistry. However, the following discussion should give an
overview of the recent state of knowledge. In general, the
transformer model achieved an overall ACC value of 0.978 at the
pixel level, and in the majority of the included diagnostic
categories, an ACC value >0.99 was reached. In the case of non-

Fig. 1 Average precision (AP) in relation to the training progress for the caries and MIH categories. All lines in graphs are plotted over 250
epochs.

Table 3. Overview of the model performance per image in relation to the main diagnostic classes using the independent test set (N= 1000 images).

True positives (TP) True negatives (TN) False positives (FP) False negatives (FN) Diagnostic performance

N % N % N % N % ACC SE SP NPV PPV

Diagnostic performance after 250 training epochs (baseline training)

Caries

Non-cavitation 372 37.2 498 49.8 62 6.2 68 6.8 87.0 84.6 88.9 88.0 85.7

Grayish translucency 26 26.0 952 95.2 10 1.0 12 1.2 97.8 68.4 99.0 98.8 72.2

Enamel breakdown 13 1.3 961 96.1 1 0.1 25 2.5 97.4 34.2 99.9 97.5 92.9

Dentin cavity 155 15.5 791 79.1 23 2.3 31 3.1 94.6 83.3 97.2 96.2 87.1

Fully destructed tooth 40 4.0 949 94.1 5 0.5 6 0.6 98.9 87.0 99.5 99.4 88.9

Molar–incisor hypomineralization (chalky teeth)

Demarcated opacity 148 14.8 807 80.7 27 2.7 18 1.8 95.5 89.2 96.8 97.8 84.6

Enamel disintegration 38 38.0 954 95.4 4 0.4 4 0.4 99.2 90.5 99.6 99.6 90.5

Atypical restoration 35 3.5 954 95.4 5 0.5 6 0.6 98.9 85.4 99.5 99.4 87.5

Diagnostic performance after 250 training epochs + finetuning

Caries

Non-cavitation 389 38.9 512 51.2 5 0.5 5 0.5 90.1 88.4 91.4 90.9 89.0

Grayish translucency 31 31.0 959 95.9 3 0.3 7 0.7 99.0 81.6 99.7 99.3 91.2

Enamel breakdown 14 1.4 954 95.4 8 0.8 24 2.4 96.8 36.8 99.2 97.5 63.6

Dentin cavity 163 16.3 796 79.6 18 1.8 23 2.3 95.9 87.6 97.8 97.2 90.1

Fully destructed tooth 41 4.1 949 94.9 5 0.5 5 0.5 99.0 89.1 99.5 99.5 89.1

Molar–incisor hypomineralization (chalky teeth)

Demarcated opacity 156 15.6 813 81.3 21 2.1 10 1.0 96.9 94.0 97.6 98.8 88.1

Enamel disintegration 33 3.3 955 95.5 4 0.4 8 0.8 98.8 80.5 99.6 99.2 89.2

Atypical restoration 38 3.8 957 95.7 1 0.1 4 0.4 99.5 90.5 99.9 99.6 97.5
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cavitated caries, the ACC was 0.99. It can be concluded that the
ACC was very high, which is in line with the available literature
evaluating transformers16–18, and finally, the initially formulated
goal was reached. When comparing the documented ACC values
(>95%) from the image-related analysis (Table 3) to those from
previously published data using CNNs, ACC values of approxi-
mately 90% were achieved for caries10–12 and MIH detection13,14.
This comparison indicates that the use of exact annotations and a
powerful transformer network, as well as other improvements
such as pixelwise analysis and the inclusion of commonly used
caries and MIH categories, may surpass CNN-based algorithms in
terms of diagnostic performance. Nevertheless, it should be noted
that misclassification is possible and might predominantly be
linked to lesions of smaller size.
In terms of the AP, the anticipated value of 0.5 was even

exceeded after finetuning, with individual values of up to 0.902
(Table 2 and Fig. 1). These values match those of other current
studies in medicine17,18 and dentistry16 for radiographs. Interest-
ingly, the AP and IoU values may be influenced by the overall pixel
number and depend further on the number of annotations. In
other words, all high-frequency categories with a large pixel
quantity, e.g., non-cavitated caries, dentin cavity caries or MIH-
related opacities (Tables 1 and 2), were found to be associated
with higher AP and IoU values. In contrast, less-frequent
categories with small-sized lesions, e.g., caries-related grayish
translucencies and enamel breakdowns as well as MIH-related

enamel disintegrations (Tables 1 and 2), were generally linked to
lower AP and IoU values. This finding might be explained by the
small-sized lesions and possible edge inaccuracies that potentially
occur during labeling. Considering the latter aspect, it is inevitable
that the manually drawn labels around any pathology will also
contain pixels of sound dental hard tissue. This may confuse the
model during training and affect its accuracy in general, possibly
more severely in cases of less frequent and small-sized dental
defects. To overcome this issue and further improve diagnostic
performance, a continuous increase in the number of images,
especially those of the previously mentioned pathologies, should
be carried out. Consequently, future research is needed to address
this issue.
In medicine, transformer-based AI algorithms have predomi-

nantly been used for language or text recognition and processing
tasks19. Meanwhile, they have also been used for object
detection15–18. The use of a transformer network with a
segmentation head (following the SegFormer architecture) has
the advantage that diagnostic decisions of the model can be
made on the pixel level. Classification and localization are thus
unified in one step, and a segmentation map, which may contain
multiple diagnoses for the image at once and allows size and
location estimation, is generated. Due to the available hardware
resources, it was possible to process all images with an
appropriate resolution, which probably contributed to the
precision of the developed algorithm.

Fig. 2 Examples of clinical images and the corresponding outputs by the segmentation model. The description and the corresponding
false coloured segments indicate the diagnostic category.
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This study has several strengths and limitations. The sizeable
number of dental photographs (N= 18,719) combined with the
fact that all images were individually annotated pixelwise and
counterchecked by trained and calibrated dentists according to
widely accepted classification systems must be highlighted as
fundamental features. The utilized image augmentation proce-
dures may have contributed substantially to the fact that there
was a continuous increase in the diagnostic performance over 250
training epochs; thus, almost no overfitting was observed (Fig. 1).
The inclusion of multiple image classes from ImageNet (Fig. 3)
during the training process may have supported the robustness
and generalizability of the model. This led to the fact that only the
desired dental findings became detectable instead of mistakenly
interpreting similar pixel patterns on other image classes as dental
defects (Fig. 2 and Tables 2 and 3). When discussing the potential
limitations of this study, the image dataset has to be considered

first. At the present stage, it can be assumed that the diagnostic
performance might be equal in populations that are similar to
those in the dataset, e.g., Caucasian children, adolescents and
adults. In contrast, the evaluation of teeth from other ethnic
populations or regions might possibly be lacking due to the
known differences in the clinical appearance of teeth. Therefore, it
would be essential to conduct external validation studies aimed at
assessing the model performance independently from the used
dataset. Furthermore, not all types of dental restoration or
developmental or genetically determined disorders that affect
teeth have been included in the model thus far. Consequently, the
dataset and model need to be extended steadily to cover the
spectrum of prevalent and rare dental pathologies as well as
restorations as best as possible. Another limitation seems to be
that the dataset consists of only high-quality dental photographs.
Considering that images captured by various intraoral cameras,

Fig. 3 Examples of augmented images that were continuously generated during the training process. More than four million augmented
images were used to train the vision transformer-based model over 250 epochs.
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semiprofessional cameras or even mobile phones can also
potentially be analyzed by the developed algorithm, the
importance of proper image quality needs to be highlighted. This
includes not only technical properties, e.g., correctly exposed und
uncompressed images with an appropriate high resolution but
also the ideal photographic representation of the object of
interest. Therefore, it seems to be important, first, to safeguard
high photographic image quality and, second, to include
suboptimal images in future training sets. Such aspects require
additional research. These technical aspects are also of importance
and may influence and potentially limit the automatized feedback
by the segmentation model when uploading own images of low
quality.
In conclusion, the present diagnostic study demonstrated

excellent model performance in detecting and localizing different
caries and MIH classes from professional dental photographs. The
study aim was reached by using a large image set with precise
object annotations, image augmentation, and a transformer
network. Nevertheless, the model needs to be further improved
and evaluated under clinical conditions.

METHODS
Ethical approval and reporting
This study on caries detection by AI-based methods was approved
by the Ethics Committee of the Medical Faculty of the Ludwig-
Maximilians University of Munich (project number 020-798). This
study used anonymized intraoral photographs from earlier
conducted investigations or from clinical situations in which
images were taken for educational purposes. With respect to this,
we were unable to identify any patients, and therefore, no written
informed consent was possible. This investigation was reported
following the recommendations of the Standards for Reporting of
Diagnostic Accuracy Studies (STARD) steering committee20 and
recently published recommendations for designing and conduct-
ing studies using AI methods in dental research21.

Digital dental photographs
All clinical photographs were taken using standard procedures by
experienced dentists (JK, RHW) over a period of more than ten
years. In brief, clinical image acquisition included the use of
professional single reflex lens cameras (Nikon D200, D300, D7100
or D7200, Nikon, Tokyo, Japan) equipped with a macro lens (Nikon
AF-S Micro Nikkor 105mm 1:2.8 G, Nikon, Tokyo, Japan) and a
macro flash (EM-140DG, Sigma, Rödermark, Germany) after tooth
cleaning and drying. Posterior teeth were photographed indirectly
using intraoral mirrors10,14,22,23.
All available dental photographs from occlusal and freely

accessible surfaces were processed anonymously. Aiming at
safeguarding high image quality in the whole image set,
insufficient photographs, e.g., over/underexposed, distorted or
blurred images, were excluded. All included single tooth photo-
graphs were standardized according to the following parameters:
aspect ratio of 1:1, resolution of 1200 × 1200 pixels with no
compression, jpeg format and RGB color space. Thus, most of the
included images were cropped and/or rotated by use of
professional photo editing software (Affinity Photo, Serif, Notting-
ham, UK) until the tooth surface filled most of the frame. The
dental image set included a broad spectrum of teeth that ranged
from healthy to severely destroyed due to caries and MIH.
Photographs with dental restorations, sealants, orthodontic
appliances, or teeth with rare dental diseases, e.g., amelogenesis
imperfecta or dentinogenesis imperfecta, were not excluded from
the dataset. Finally, the image set comprised 18,179 single tooth
photographs (4483 primary and 7699 permanent posterior teeth;
2339 primary and 3658 permanent anterior teeth). This sample
represented the largest available number of single tooth

photographs, which were further completed with high-quality
annotations aiming at increasing the model performance.

Dental pathology annotation (reference standard)
The anonymized image set was stored and processed on a
university-based computer cloud to enable pixelwise labeling with
the open source, web-based Computer Vision Annotation Tool
(CVAT, server version 2.0, core version 4.2.1, Intel, Santa Clara, CA,
USA). Initially, all images were split into five equal subsamples and
were annotated by five trained and calibrated dental graduates
(M.F., A.S., P.E., J.S., F.Z.). In case of questionable findings regarding
detection, classification and size, these images or pathologies
were re-examined and discussed with the experienced dentist
(J.K., >20 years of clinical practice and scientific experience) until
consensus on each diagnostic decision was reached. In another
cycle, all annotations in terms of classifications and marked areas
were independently checked and—if necessary—corrected by an
experienced dentist (J.K.) with the aim of ruling out potential
errors or misclassifications. The detection and classification of
caries and MIH was made in agreement with widely accepted
diagnostic scoring systems24–29. In detail, when a caries lesion was
visually detectable in a clinical image, its location was annotated
and classified according to the following scores: 1—non-cavitated
caries lesion (first sign and established lesion), 2—grayish
translucency, 3—localized enamel breakdown, 4—caries-related
cavitation (dentin exposure and large cavity) and 5—largely/
severely destroyed tooth with almost complete loss of the
crown24–28. The following criteria were applied for chalky teeth
detection: 1—demarcated opacity (hypomineralization/chalky
tooth area with intact tooth surface), 2—enamel disintegration
(hypomineralized hard tissue with enamel breakdown or dentin
exposure) and 3—MIH-related restoration29. Each single tooth
photograph could have multiple diagnostic findings (Table 1),
which were annotated separately from each other. All dental
annotations served as reference standards and were later used for
cyclic training and evaluation of the transformer-based model.
Prior to the study, over the course of a 2-day workshop, all

participating dentists were explicitly instructed in the field of
dental diagnostics by the principal investigator (J.K.). The scoring
reliability of all annotators regarding the detection and classifica-
tion of caries and MIH was determined by diagnosing 140 single
tooth photographs. The corresponding Kappa values for the intra-
and inter-examiner reproducibility of the dental annotators (M.F.,
A.S., P.E., J.S., F.Z.) were found to be good to excellent for caries
(intra: 0.858–1.000; inter: 0.656–0.837) and MIH (intra: 0.836–1.000;
inter: 0.693–0.886). Permanent mutual exchange of knowledge
between all annotators and the principal investigator was possible
at any time during the study project. Furthermore, the dental work
group had frequent and regular meetings to enable constant and
proper decision making.

Vision transformer-based model development (test method)
The AI-based algorithm for the detection, classification and
localization of caries and MIH was trained using a pipeline of
methods, mainly including image augmentation and the adapta-
tion of a transformer network. Before training, the entire image set
of single tooth photographs (N= 18,179 images) was randomly
divided into a training set (N= 16,679), validation set (N= 500)
and test set (N= 1000). With respect to the large image set, a test
sample size of 1000 photographs with 1993 annotations (Table 1)
was justified as appropriate to enable extensive model training
and rigorous evaluation. The test set was not made available to
the machine learning model as training material; it only served as
an independent test set. The detailed composition of the image
set in relation to registered pathologies is shown in Table 1.
Machine learning models require a large and variable number

of training images to achieve excellent diagnostic performance. In
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this project, the dental image set was augmented with images
from the open source ImageNet collection (https://image-net.org)
containing 1,281,167 images in 1000 object classes by using
Python (version 3.8.5, https://www.python.org), Pillow (PIL fork
version 9.2.0, https://pillow.readthedocs.io) and AutoMould (git
commit ca2bc76, https://github.com/UjjwalSaxena/Automold--
Road-Augmentation-Library). In detail, a randomly selected
ImageNet image was placed in the background of a newly
generated image and combined with one to four randomly
selected single tooth photographs in the foreground. Both the
number of dental images and their placement over the back-
ground were random. The dental images were laid over the
background, but no overlap of dental photographs was allowed.
Each single tooth photograph was then randomly resized (from
512 × 512 to 1024 × 1024 pixels), rotated (0–360°), changed in
terms of perspective (scaled up to 10% of the image size),
randomly distorted and sharpened. This procedure resulted in a
compiled image (RGBA format) that was further processed by
random use of different image adjustments and filters: color
(randomizing brightness, contrast, saturation, and/or color value),
random motion blur (simulating camera shake during image
acquisition), ISO noise (mimicking image noise), fog filter (faking
fog and/or streaks in the image), sun flare (imitating over-
exposure) and image compression (simulating quality loss). This
process of image augmentation resulted in a unique, randomly
generated, virtual image (from 400 × 400 to 1200 × 1200 pixels in
RGB format) that included all dental annotations (Fig. 3).
For the development of the machine learning model, a pretrained

vision transformer encoder network with a multilayer perceptron
decoder (SegFormer-B5, Nvidia, Santa Clara, CA, USA)15 was applied
by utilizing an open source machine learning framework (PyTorch,
version 1.12.0; https://pytorch.org/). Aiming for efficient neural
network training, we used ZeRO-Offloading in the DeepSpeed
library (Microsoft, Richmond, USA; https://www.deepspeed.ai/) and a
decayed learning rate scheduler in our approach. The latter helped
the model adjust pretrained knowledge over an initial warm-up
phase of 1000 steps and assisted in monitoring and controlling for
overfitting later. Furthermore, all virtual images were converted to
brain floating point 16 (BF16) format. Thus, the amount of data to be
processed per device was increased, whereby a technical batch size
of N= 16 virtual images was achieved. ZeRO-powered data
parallelism (ZeRO-DP) allowed the inclusion of eight servers, each
equipped with a professional graphics card (RTX A6000 with 48 GB,
Nvidia, Santa Clara, CA, USA), to work synchronously, increasing the
actual batch size to N= 128. The machine learning model was
trained over 250 epochs, which required an overall computing time
of 7 days and 53min. For this study, ~4.3 million different
augmented images were virtually generated and made available
to the machine learning model. In the final step, the model was
finetuned by inputting all original and non-augmented dental
images from the training set over five epochs.

Statistical analysis
All images, including their annotations, were taken from the
above described sample, and the model metrics were analyzed
blindly (O.M.) by the dental work group using Python (version
3.8.5, http://www.python.org). Aiming at determining the AI
model’s performance in localizing caries and MIH at the pixel
level, the intersection over union (IoU), average precision (AP), F1-
score, and accuracy (ACC) were calculated separately after 250
epochs of baseline training and finetuning. The IoU describes the
overlap of the AI-predicted annotation with the control annota-
tion—in our case, on a pixel level. IoU values above 0.5 can be
considered good30. The AP indicates how precise a segmentation
model is, i.e., how often the AI algorithm is correct in its
prediction. To calculate the F1-score, the recall must first be
determined. The recall describes how good the segmentation

model is at making positive predictions. The F1-score is the mean
value of AP and recall. The ACC is the fraction of all predictions
that the AI model predicted correctly. All values were determined
separately for all caries and MIH classes. The overall diagnostic
accuracy (ACC= (TN+ TP)/(TN+ TP+ FN+ FP)) was determined
by calculating the number of true positives (TP), true negatives
(TN), false positives (FP) and false negatives (FN) when at least
one pixel was identified in the corresponding category per image.
Consequently, the sensitivity (SE), specificity (SP), positive and
negative predictive values (PPV and NPV, respectively) were
computed.

Reporting summary
Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

DATA AVAILABILITY
Access to the model data or the annotated dataset can be made on reasonable
request. The developed transformer model is openly accessible as a web application.
Please visit http://demo.dental-ai.de.
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