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Abstract

The validity of scientific findings may be challenged by the replicability crisis (or cases of

fraud), which may result not only in a loss of trust within society but may also lead to wrong

or even harmful policy or medical decisions. The question is: how reliable are scientific

results that are reported as statistically significant, and how does this reliability develop over

time? Based on 35,515 papers in psychology published between 1975 and 2017 containing

487,996 test values, this article empirically examines the statistical power, publication bias,

and p-hacking, as well as the false discovery rate. Assuming constant true effects, the statis-

tical power was found to be lower than the suggested 80% except for large underlying true

effects (d = 0.8) and increased only slightly over time. Also, publication bias and p-hacking

were found to be substantial. The share of false discoveries among all significant results

was estimated at 17.7%, assuming a proportion θ = 50% of all hypotheses being true and

assuming that p-hacking is the only mechanism generating a higher proportion of just signifi-

cant results compared to just nonsignificant results. As the analyses rely on multiple

assumptions that cannot be tested, alternative scenarios were laid out, again resulting in the

rather optimistic result that although research results may suffer from low statistical power

and publication selection bias, most of the results reported as statistically significant may

contain substantial results, rather than statistical artifacts.

Introduction

The validity of scientific findings may be threatened by a poor research design or misconduct

because the claimed effects may be only statistical artifacts, rather than existing effects [1].

Such statistical artifacts may have different facets, including non-transparent reporting of mea-

sures and samples [for a positive definition, see for experimental research 2, for observational

research 3], but also the inadequate specification of sample size, which may be too small to

identify an effect of interest (statistical power). Questionable research practices, such as erro-

neous rounding of results [4–6] and selective reporting of results that confirm the expectations
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[publication selection bias 6, 7], may pose a larger problem for validity because of the very low

prevalence of wholly fabricated datasets [8].

This article shows the state and evolution of statistical power and publication selection bias

in the form of publication bias or p-hacking in psychological articles published between 1975

and 2017. It also estimates the share of statistical artifacts on all statistically significant findings

(hereinafter referred to as significant), called false discovery rate (FDR). The core research aim

is to try to empirically answer the question posed by John Ioannidis: “why most published

research findings are false” [2].

Statistical power is defined as the probability of finding a significant effect given that a true

effect is present [9: 1]–displayed in the first column percentage in Fig 1. Usually, before data

collection, researchers should determine their sample size to ensure the statistical power is as

high as possible. Statistical power has hardly increased over time since the pioneering study by

Cohen [10: 150f.] that examined the state of statistical power in leading psychological journals,

and is still inadequate in the social sciences [11, 12] but also in other disciplines like medicine

[13–15].

Low statistical power produces inefficiencies, as only a few existing effects can be detected.

In this situation, the noise of the falsely detected tests (second column in Fig 1), defined by the

significance threshold (equal to the FPR: e.g., set at 5%), drowns out the overall significant

results. The FDR estimates the share of FP out of all significant tests detected by the test (first

row percentage in Fig 1).

Jager and Leek [16] report a modest FDR of 14%, with no definite time trend, for the medi-

cal literature. This analysis, however, suffers from sample selectivity because only p-values

reported in the abstract of the papers under study are used [for a critique, see 17]. An estima-

tion based on the Open Science Center’s replication project on the psychological literature pre-

dicted a much higher FDR of 38–58% [18] but is also restricted to a limited sample. Also, more

theoretically derived estimates of the FDR yield much larger estimates, of at least 30% [19] or

more [1].

Even larger FDRs are possible because p-hacking, a form of publication selection bias, may

inflate the FP results [for simmulation studies, see 20: 1361, 21] and, as a result, the FDR. Pub-

lication selection bias is defined as reporting research results depending on their outcome,

either in terms of direction (e.g., favoring positive outcomes) or significance [22: 135, 23, 24].

Publication selection bias is well-documented in various scientific disciplines [see, e.g., 7, 25]

and may occur in two forms: publication bias and p-hacking. Publication bias is defined as

publishing only studies with significant results, while studies with nonsignificant results

remain in the file drawer and are therefore not published [26]. A bias closely related to publica-

tion bias is selective reporting bias, where significant results within a given dataset are

reported, whereas nonsignificant results within the same dataset remain unpublished. Because

publication bias and selective reporting bias cannot be distinguished in this study, the more

Fig 1. Truth table. The truth table visualizes the different possible errors made by a statistical test: detecting a non-

existing effect (false-positive (FP) rate (FPR)) or missing an existing one (1-pow). The FDR makes it possible to

quantify the FP share out of all positive statistical effects (TP + FP).

https://doi.org/10.1371/journal.pone.0292717.g001
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commonly used term “publication bias” is used. P-hacking, in contrast, searches for significant

results within one dataset [20, 27], turning nonsignificant results into significant ones–in Fig

1, false-negatives (FN) to true-positives (TP) and true-negatives (TN) to FP. The practices of

p-hacking comprise excluding outliers and switching outcomes, measures, or covariates to

obtain a significant result [20]. While both forms of publication selection bias increase the

FPR, they have different implications for the FDR. Publication bias does not alter the actual

number of false-positive results, and therefore the FDR. P-hacking, in contrast, increases the

FDR by transforming TN to FP (for theoretical considerations, see 1, 12], as the resulting FP

form a flood of statistical artifacts [28], outnumbering the TP effects.

Data and methods

Extraction of test statistics

The dataset at hand builds on all estimates reported in the text of empirical articles published

in journals edited by the American Psychological Association (APA) between 1975 and 2017.

The articles were identified and automatically exported from the bibliographical database Psy-
chArticles. The automatic extraction routine covered full-texts in HTML and PDF form, using

Optical Character Recognition (OCR) to recover the texts from the PDF files. It was possible

to cover all reported test values in the articles’ text that followed the strict publication manual

published by the APA in 1974 [29] or later editions. The publication manual strongly recom-

mends the in-text presentation of test values as a primary option if the test values are crucial to

support the study’s conclusions [30: 116f.]. A systematic extraction via regular expressions was

possible because the APA publication manual has a strict reporting style that includes the kind

of test statistic (F, χ2, r, t, z), its respective degree(s) of freedom, and its test value (e.g., F(1,4) =

3.25). An exception to this reporting style is the mandatory sample size (N) after the degrees of

freedom for the χ2-test until the 6th revision of APA style [31–34]. The export routine allowed

minor reporting inconsistencies in the articles (e.g., X2 instead of χ2). Besides reporting test

values directly in the articles’ text, the publication manual also allows the use of tables to pres-

ent results from more sophisticated research designs [31: 39]. However, 6th edition of APA

style recommends using tables and figures for articles reporting more test values [>4 and >20

respectively 30: 116]. In contrast to in-text reporting, it was impossible to extract results

reported in tables, due to the use of diverse reporting styles (e.g., standard errors or p-values

being given below or beside the reported estimates). The in-text presentation of crucial results

is, in contrast, consistent and varies only slightly over time (e.g., N reported along χ2).
Although the export routine covered relevant test values, it cannot distinguish between test

values of substantial interest specified by hypotheses (the primary research outcome) and

other reported statistical tests, especially diagnostic tests (see the section on robustness). Fur-

thermore, it was impossible to identify whether (t, r, z) were used as one-sided or two-sided

tests in articles. For the later computations, all of the aforementioned tests were assumed to be

two-sided. The obtained test values were then used to compute the statistical power and to esti-

mate publication selection bias.

Computation of statistical power

To compute the statistical power, the true effect has to be specified, although by definition it is

unknown. To this end, we used a priori plausible true effect sizes for small (d = 0.2), medium

(d = 0.5) and large (d = 0.8) effect sizes [12, 35].

To calculate the statistical power based on Cohen’s d metric, the standard error of the spe-

cific test has to be obtained. Using Cohen’s d metric has an advantage over using other effect

size metrics because the largest share of test values could be used for the analyses. The
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conversion of the test values into standard errors in Cohen’s d metric was possible for F, χ2,
both with two groups (df1 = 1) and r, t but not for z, because no information on the sample size

was available. Multi-group comparisons for F and χ2 (df1 > 1) were therefore not included.

For F, χ2, and r the standard error was defined as: si ¼ 2=
ffiffiffiffi
N
p

, whereas for t an additional

assumption on paired tests with equal group sizes and the correlation between observations (r)
has to be made. As paired tests with a relatively high r were the most optimistic (because small-

est) estimate, r = 0.5 was assumed for all t. The standard error was then defined as:

si ¼
ffiffiffiffiffiffiffiffiffi
1=N

p
. Besides Cohen’s d metric, the standard error of the Pearson correlation coeffi-

cient and the biserial correlation coefficients [36] were also calculated and transformed in

Fisher’s z for the power estimation (see the section on robustness). Using other effect size met-

rics has the advantage that the specific assumptions concerning Cohen’s d, which assumes a

continuous outcome and a dichotomous assignment variable, could be cross-checked.

powi ¼ F � th �
d
si

� �

þ 1 � F th �
d
si

� �� �

Statistical power was defined as the probability of identifying a true effect (two-tailed cumu-

lative distribution function of the standard normal distribution–first and second summand).

Because the true underlying effect is, by definition, unknown, an a priori assumed true mean

effect (d) is used. The test’s precision is measured by the standard error of the effect size (σi) at

the specified significance threshold (th, in this case, z = 1.96 for the 5% significance threshold).

Estimation of publication selection bias

Publication selection bias was measured using the caliper test [CT, 37, 38, for similar

approaches, see: 39]. The CT builds on the assumption that in a narrow interval (caliper)

around the significance threshold, just significant results should be as likely as just nonsignifi-

cant results (50%–uniform probability in both calipers). The caliper width is defined relative

to the significance threshold on the respective z-statistic (e.g., 5% caliper around the 5% signifi-

cance threshold (1.96): ±0.05×1.96 around 1.96). The smaller the caliper is set, the more inde-

pendent it is from the underlying test value distribution, but also the fewer values that can be

utilized. A further advantage of wider calipers is the possibility of absorbing reporting inaccu-

racies (e.g., in rounding) as test values are reported only to two decimals. As simulations show

[40], the 5% caliper around the 5% significance threshold offers a trade-off between both crite-

ria. The 5% caliper contains the just significant p-values (so-called overcaliper, oc) in the range

[0.039, 0.05) and the just nonsignificant p-values (so-called undercaliper, uc) from [0.05,

0.0626). However the 10% [0.0311, 0.05), [0.05, 0.078) and 1% caliper [0.048, 0.05), [0.05,

0.052) were also estimated.

In contrast to previous studies, the CT in this article estimates the rate of publication selec-

tion bias, rather than serving as a diagnostic test. Although both forms of publication selection

bias, publication bias and p-hacking, can be tested with the CT, they have different properties

that must be considered when estimating their prevalence. Publication bias omits nonsignifi-

cant results while leaving the number of FPs unchanged. P-hacking, in contrast, converts non-

significant results into significant results, increasing the number of FPs (cf. Fig 1) directly.

Although the CT can be used to estimate the rate of pure publication bias or p-hacking, it is

not possible to identify if publication bias, p-hacking, or a combination of both strategies leads

to an overrepresentation of just significant results (overcaliper). Consequently, it is only possi-

ble to estimate the resulting FDR for both strategies separately. In the case of no publication

bias or p-hacking, the probability of just significant results (caliper ratio, CR) is expected to be

0.5 (even just significant and nonsignificant effects) because there should be no discontinuity
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in the distribution of p-values around the rather arbitrary significance threshold. Assuming

that the p-hacking rate is zero, the publication bias rate (pbr) is directly estimable from the

ratio of the difference of the probability of just significant results, CR, and just nonsignificant,

1−CR, and CR, denoting the rate of dropped nonsignificant results. Simplifying the equation

then yields:

pbr ¼
CR � ð1 � CRÞ

CR
¼ 2 �

1

CR

In contrast, estimating the p-hacking rate assuming publication bias is zero rests on more

assumptions as nonsignificant studies are actively made significant by researchers (for a

detailed description of the process of p-hacking, see Fig A in S1 Appendix). Therefore, the

probability distribution of the respective hypotheses has to be recovered to estimate the needed

p-hacking rate to fit the observed probability distribution of the just significant and nonsignifi-

cant values in the CT, given the estimated statistical power and the significance threshold. As

this procedure involves multiple equations, a unit root solver was implemented to recover the

p-hacking rate (phr, for further details on the estimation, see section 1.2., S1 Appendix).

Some assumptions have to be made for both estimators of publication bias and p-hacking.

First, publication selection bias is implemented irrespective of the nonsignificant p-value

achieved initially. This means that a strongly nonsignificant p-value is equally likely to be

treated by publication selection bias and dropped with an equal probability in the case of publi-

cation bias as it is in the case of p-hacking (e.g., borderline significant results, p = 0.051 or far

off p = 0.9). Second, p-hacking is always successful in finding a significant specification, as sev-

eral rounds of drawing are performed until a statistically significant result is obtained. This

second assumption on the actual form of p-hacking is not exhaustive because fine-tuning the

same sample would be possible, e.g., by excluding outliers or changing measures or control

variables. Such fine-tuning may produce a high share of just significant results even though the

prevalence of underlying p-hacking is moderate. Third, although the CT does not require

distributional assumptions when calculating the publication bias rate, the p-hacking rate

depends on the assumed prevalence of true effects (θ) and the estimated statistical power.

The truth table (Fig 1) works differently when considering publication bias. The cell fre-

quencies of the TP and FP results are not affected by publication bias, as only nonsignificant

results disappear in the file drawer (FN and TN results). The probability of finding statistically

significant results that are true is not affected by publication bias. The probability of TP in the

case of pure publication bias (TPpb) is just the product of the prevalence of an underlying true

effect (θ) and the statistical power (pow). The same applies for FPpb, which is defined as the

product of no underlying true effect (1−θ) and the set FPR (α), in our case α = 0.05. Both, FNpb

and TNpb, however, are reduced by the publication bias rate.

TPpb ¼ y� pow

FPpb ¼ ð1 � yÞ � a

FNpb ¼ y� ð1 � powÞ � ð1 � pbrÞ

TNpb ¼ ð1 � yÞ � ð1 � aÞ � ð1 � pbrÞ

P-hacking works slightly different as nonsignificant results (FNph and TNph) are replaced

with significant results (that add to TPph and FPph, rather than being dropped completely).

FNph and TNph are therefore identical to the pure publication bias scenario, while the dropped
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studies are added to TPph and FPph, respectively. The unconditional probabilities are therefore:

TPph ¼ y� ðpowþ ð1 � powÞ � phrÞ

FPph ¼ ð1 � yÞ � ðaþ ð1 � aÞ � phrÞ

FNph ¼ y� ð1 � powÞ � ð1 � phrÞ

TNph ¼ ð1 � yÞ � ð1 � aÞ � ð1 � phrÞ

From the estimated unconditional probabilities of TP, FP, FN, and TN for both scenarios of

pure publication bias as well as pure p-hacking, the resulting FPR, statistical power, and FDR

can be computed as laid out in Fig 1.

FPR ¼ FP=ðFP þ TNÞ

pow ¼ TP=ðTP þ FNÞ

FDR ¼ TP=ðFP þ TPÞ

As it is impossible to assess the relative occurrence of p-hacking and publication bias from

the published data, the two extreme scenarios of pure p-hacking without publication bias and

pure publication bias without p-hacking were analyzed separately. The actual FDR may lie

between these two extremes, assuming the simple mechanism of p-hacking and publication

bias modeled is not too far from reality. Another assumption is the independence of tests,

meaning that no (or not substantial) exact re-analyses are included in the data (studies using

the same data and the same, or at least largely similar, analysis procedure), and there are no

dependencies in the test statistics in one article (e.g., when reporting robustness checks). Fur-

thermore, the mechanism of both publication bias and p-hacking is assumed to happen inde-

pendently at the test level. Although publication bias may actually affect complete articles by

leaving the entirety of results unpublished.

All three measures–statistical power, publication selection bias, and the false discovery

rate–were aggregated yearly (see Tables F & G in S1 Appendix for robustness analyses of the

statistical power on the test value level). In total, 43 observations, one for each year, are avail-

able. For the results on publication selection bias, the number of observations is reduced as

each year had to contain at least estimates from 20 studies. Therefore, the dataset’s early years

before 1983 are missing, while 1981 is only present for the 5%- and 10%-CR. The results below

were presented graphically via nonparametric LOESS regressions [40]. For parametric regres-

sion models, see S1 Appendix section 2.3.2).

Results

Sample construction

From the 53,860 empirical articles exported from PsycArticles, only 42,170 articles contained

valid test values that could be transformed into 734,748 p-values (cp. Fig 2). There are two pos-

sible reasons for this: either no test value(s) were reported in an article (e.g., there were only

descriptive analyses or graphical representations), or wrongly formatted test values were

reported. In the second step, the standard error of each effect (test) was calculated in Cohen’s d
metric to estimate the statistical power at specific a priori assumed small (d = 0.2), medium

(d = 0.5), and large (d = 0.8) underlying effects. In this step, z-values and χ2 values with missing
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or implausibly small (N< 2) sample sizes were dropped, as well as χ2 and F values with df> 1.

After this step, 35,515 articles, containing 487,996 test values, remained in the analysis sample.

Description of basic sample characteristics

The descriptive analyses of basic sample characteristics (cp. Table 1) can be structured on two

levels, starting from the article level and finally moving to the level of reported test values.

Fig 2. Description of sampling and exclusion procedure. Description of sampling process of articles as well as

excluded test values.

https://doi.org/10.1371/journal.pone.0292717.g002

Table 1. Descriptive results. Descriptive results for the different underlying meta-analyses, the included articles, and the test values.

Type of observation Number of observations Mean SD Median 1st quantile 3rd quantile

Articles

Mean sample size for the tests 35,515 504.0 51,082.0 61.5 31.0 133.0

Nr. of reported test values 35,515 13.7 14.4 9.0 4.0 19.0

Article format 35,515

. . . HTML 33,780 95.1%

. . . PDF 1,735 4.9%

Test values

Test statistic 487,996

. . . χ2 df = 1 19,388 4.0%

. . . F df1 = 1 281,137 57.6%

. . . r 22,831 4.7%

. . . t 164,640 33.7%

Sample size for the test 487,996 1,245.0 513,472.0 48.0 24.0 99.0

https://doi.org/10.1371/journal.pone.0292717.t001
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At the article level, the mean sample size over all reported tests in an article was extremely

right-skewed (mean: 504.0, median: 61.5), mainly caused by studies with an extremely large

number of observations. Compared with the mean sample size found in psychology, as docu-

mented in the literature [217.96, 211.03 and 195.78 in the years 1977, 1995, 2006, see 41: 338],

the mean sample size in our study is more than twice as large (all years pooled: 504). Much

smaller than the mean sample size in our study is the median sample size (all years pooled 61.5),

which is also more comparable to the median sample sizes found in the psychological literature

[48.40, 32.00, 40,00 in the years 1977, 1995, 2006, see 41: 338]. As the export routine intended to

cover only relevant test values, an article’s number of test values is of central interest. On aver-

age, 13.7 estimates (median: 9) were reported in the text of the article, with a maximum of 207

test values in one single paper. Because of these large numbers, robustness analyses were con-

ducted for articles with up to five reported test values (see the section on robustness and section

2.3.1. in S1 Appendix). Of the included 35,515 articles, 4.9% could only be retrieved in PDF for-

mat, which could result in problems with misrecognized characters, and therefore test values.

Articles in PDF format are especially problematic as they occur much more often in the years

before 1985 and in the last two years, 2016 and 2017. However, in a robustness check comparing

the years 2015 (10.2% PDFs) and 2016 (34.2% PDFs), there were no differences in the mean p-

value, the CR used to estimate publication selection bias, and the type of test values between the

neighboring years 2015 and 2016 that should be, except for the differences in article format,

quite similar. However, the statistical power detecting a medium effect (d = 0.5) was statistically

significantly lower for PDFs, by about 1 percentage point in 2015 and 2016.

On the level of test values, the F-test was the most-used test statistic, used in 57.6% of all

tests. This descriptive result mirrors the large share of experimental studies using ANOVA

analysis. t-tests were used in 33.7% of the reported test values. χ2-tests or r were used only in

4.0% and 4.7% of the tests. The sample size for the test was, on average, 1,245 (median: 48),

and thus larger than the mean on the article level, as one test value was based on more than

270 million observations (in this case, a manual check revealed that these were data on distinct

human names from process-produced data).

73% of the test values were significant at the 5% significance level. When looking at the dis-

tribution of p-values in Fig 3 panel A, one can see that most of the test values were even signifi-

cant at the 1% (49.8%) or even 0.01% significance threshold (23.6%). Fig 3 panel B, however,

shows that around the 5% significance threshold using for descriptive purposes a caliper of

0.01 in terms of p-values (results close to the 5% caliper), there is a substantial jump, meaning

that just significant values are much more common (in Fig 3, CR = 4.3/(4.3+2.4) = 64.2%)

than expected in a uniform distribution of just significant and just nonsignificant results. This

result was also highly statistically significant in a binomial test (p< 0.00001 for the 1%, 5% and

10% caliper), providing evidence for publication selection bias in the form of publication bias

and/or p-hacking in the psychological literature. The presence of publication selection bias

could also be seen when looking at different significance thresholds and stratifying the analysis

by deciles of the underlying number of observations. Deciles with a smaller number of obser-

vations that were statistically significant at the 5% level were much more common than for

lower thresholds (e.g., 1% and 0.1%), especially when compared with deciles with a larger

number of observations (see Table B in S1 Appendix).

Publication selection bias (publication bias and p-Hacking)

The publication bias rate, assuming no p-hacking, was 36.8% using the 5% caliper (cp. Fig 4A),

meaning that more than one-third of the nonsignificant results may have disappeared in the file

drawer before publication. In the alternative situation of p-hacking, assuming no publication bias
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(cp. Fig 4B), given the statistical power to detect medium effects (d = 0.5) and a 50% prevalence

rate of a true effect (that results in half of the studies having a true effect of d = 0.5 and the other

half d = 0), 8.2% of the results have to be turned significant to meet the observed caliper test

results. The estimated publication selection bias was slightly larger based on the 10% caliper

(42.1% for pure publication bias without p-hacking, 12.9% for pure p-hacking without publication

bias) and considerably smaller in the 1% caliper (23.1% for publication bias, 3.3% for p-hacking,

again in pure strategies). The narrowest (1%) caliper, however, was very volatile over the exam-

ined years, which may be a result of the smaller sample sizes in this narrowest caliper. Under pure

p-hacking, without publication bias, the FPR would nearly triple to 13.9%, instead of the a priori
set FPR, α = 5%. The FPR in the case of publication bias without p-hacking was 7.7%.

Both measures of publication selection bias (publication bias and p-hacking) varied only in

the early years before 1985 (cp. Fig 4), resulting from the low number of estimates in those

years. In recent years, there was only a small but unstable decline for the 5% and 10% caliper

(for parametric regressions cp. Tables D & E in S1 Appendix). The 1% caliper even shows a

slight increase that is mostly an artifact of the high volatility of the estimator. The pattern was

also stable over the six subfields of psychology (social, cognitive, developmental, clinical,

experimental, others) despite social psychology showing an increase and cognitive psychology

showing a steep decrease in recent years (cp. Fig C in S1 Appendix).

Statistical power

The statistical power over the examined years between 1975 and 2017 was, under the assump-

tion of an underlying medium true effect (d = 0.5), 59.3% (Fig 5). For small underlying effects

Fig 3. Histogram of p-values from the test values. Distribution of p-values in 0.01 binwidth. The y-axis denotes the probability of falling in the respective bin.

This binwidth closely matches the 5% caliper around the 5% significance threshold. Panel A shows the distribution in the range between 0 and 0.2, higher

values are dropped because of their rare occurrence. Panel B shows the bins around the 5% significance threshold. The results of the just significant (4%) and

just nonsignificant caliper (2%) can then be used to calculate the publication bias and p-hacking rate.

https://doi.org/10.1371/journal.pone.0292717.g003
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(d = 0.2), the statistical power would be even lower, at 23.3%. Notably, only when choosing a

large underlying true effect for all tests (d = 0.8) the statistical power crosses 80.4% the thresh-

old of the recommended 80%.

The statistical power result shows that only slightly more than half of the existing medium

(d = 0.5) effects were detectable with the research designs implemented in the original studies.

However, after 2010 there was an upward trend in the statistical power to 68.3% for medium,

30.9% for small, and 85.8% for large underlying true effects in 2017 (for parametric regressions

cp. Tables F—I in S1 Appendix). The large variation, especially before 1983, was caused mainly

by the small number of included studies (< 20, denominated by a small point size in Fig 3).

The upward trend of the statistical power was present in all psychological subfields. (cp. Fig D

in S1 Appendix).

False Discovery Rate (FDR)

In the following, the results of the FDR for a medium effect size (d = 0.50) and the 5% caliper

bias estimate and a proportion of true hypotheses (θ = 50%) are presented (cp. Fig 6). Assum-

ing pure p-hacking without publication bias, 16.2% of the significant effects would be false and

wrongly detected, meaning those findings would be just statistical artifacts. Choosing a smaller

proportion of true hypotheses θ, the FDR increases (θ = 10%: 57.1% and θ = 20%: 38.4%). The

inflated FDR (FDRinf) was pronouncedly driven by p-hacking (Fig 6, red line), as the FDR

without p-hacking (Fig 6, blue line) was, on average, 7.3% for θ = 50%, 41.5% for θ = 10% and

24.0% for θ = 20%. This low FDR was the same for both no publication selection bias at all and

pure publication bias. The time trend for the FDR estimates mirrored the trend of the

Fig 4. Publication selection bias over time. Estimated publication selection bias rate over time for different calipers (measures). Panel A shows the result

assuming pure publication bias and no p-hacking, and panel B shows the results for pure p-hacking with no publication bias. It was technically impossible to

model both p-hacking and publication bias at once. The dot size is determined by the number of studies (k) in the respective study year.

https://doi.org/10.1371/journal.pone.0292717.g004
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statistical power and the p-hacking rate, showing a slight downward trend over time. Over the

different subfields, the trend followed a similar pattern (cp. Fig E in S1 Appendix).

Up to this point, the FDR has only been reported based on the estimated statistical power

and the 5% caliper p-hacking bias estimator. Given the high researcher’s degrees of freedom in

the analyses, a range of plausible alternative estimators is discussed below. In Fig 7, the propor-

tion of true hypotheses (θ) that is not estimable per definition makes up most of the variation

in the FDR. The higher the share of true hypotheses θ, the lower the FDR. 1- θ defines the max-

imum of the FDR because, under complete (100%) p-hacking bias, all estimates are artificially

significant, irrespective of being true or not. The theoretical minimum of the FDR, given the

5% significance threshold, is used, and no p-hacking is present is
ð1� yÞ0:05

ypowþð1� yÞ0:05
. The FDR assum-

ing θ = 50% is the most conservative setting but probably underestimates the actual FDR.

Robustness

The robustness of the results was also tested for different effect sizes or sample specifications

(see Table C in S1 Appendix). The sample was restricted to articles containing five or fewer

test values in another robustness check. This more restricted sample may have contained test

values that are relevant for the research question and have excluded irrelevant test values (e.g.,

manipulation checks or model fit statistics). This sample contained only 12,114 articles and

33,385 test values. All statistical power estimates were quite similar. In contrast, the share of

just significant values from the caliper test for articles with fewer than five tests (5% CR: 0.646)

was greater than for the main analysis (5% CR: 0.613). This may point to the fact that more pri-

mary research outcomes are covered in this sample. Using the standard error of the Pearson

correlation coefficient (r) and the biserial correlation coefficientas as an effect metric also

Fig 5. Statistical power over time. A priori statistical power for small (d = 0.2), medium (d = 0.4), and large (d = 0.8) underlying true effect sizes over time.

The dot size is determined by the number of studies (k) in the respective study year.

https://doi.org/10.1371/journal.pone.0292717.g005

PLOS ONE Are most published research findings false?

PLOS ONE | https://doi.org/10.1371/journal.pone.0292717 October 17, 2023 11 / 18

https://doi.org/10.1371/journal.pone.0292717.g005
https://doi.org/10.1371/journal.pone.0292717


showed no marked differences in the statistical power. When comparing the results between

the different article formats in HTML and PDF, only negligible differences of a maximum of

0.8 percentage points occurred for all measures.

Although the assumptions needed for the test value calculation and computation of the statisti-

cal power could not be directly tested, it is possible to look at the results for the different test statis-

tics. For publication selection bias, χ2-tests showed a higher CR (5%-CR: 0.638) than F-tests (5%-

CR: 0.620), t (5%-CR: 0.599) and r (5%-CR: 0.586). These differences, however, seemed only to be

minor. For the statistical power with a medium underlying true effect (d = 0.5), the by assumption

paired t-tests (with between study r = 0.5) had by far the largest statistical power (81.0%), which

may indicate that the assumption may have been overly optimistic. But χ2-tests also showed quite

large statistical power (69.7%), followed by r (52.0%) and the F-test (46.4%). Although a bias due

to the assumptions of the effect size transformation cannot be ruled out, they should only lead to a

minimal bias and more optimistic statistical power estimates.

Central limitation

Besides the robustness of the results, which show no severe differences when using different

subsamples, all presented results were inconsistent with the observed rate of significant results

(73.0%). For example, the expected share of significant results with 59.3% statistical power

finding a medium effect (d = 0.5), 8.2% pure p-hacking or 36.8% pure publication bias, and an

assumed probability of 50% that the research hypothesis is true (θ), would be 37.7% or 42.8%.

Even in the most extreme case, assuming all research hypotheses are true (θ = 100%, expected

Fig 6. FDR over time with and without publication selection bias. Estimated false discovery rate (FDR) over time, either assuming pure p-hacking and no

publication bias or pure publication bias and no p-hacking. For pure p-hacking or pure publication bias, the FDR is calculated from the caliper ratio (CR) based

on a 5% caliper. The statistical power calculation was based on an a priori assumed medium effect size (d = 0.5). The proportion of tested hypotheses that are

true (non-zero effects) was arbitrarily assumed to be θ = 50%. The FDR is mathematically identical if there is some pure publication bias or if there is no

publication selection bias at all. For robustness for different measures, see Fig 7. The number of studies (k) in the respective study year determines the dot size.

https://doi.org/10.1371/journal.pone.0292717.g006
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significant results 62.6% for pure p-hacking, 69.7% for pure publication bias), the observed

share of significant results of 73.0% is still larger. Therefore, irrespective of the assumed share

of true hypotheses, either the statistical power or the estimates on publication selection bias are

biased.

In the case of an overestimated p-hacking rate, both statistical power and the prevalence of

true effects must be relatively large (> 74%, cp. Table 2 Scenarios S1 & S2 –for a more flexible

Fig 7. FDR robustness plot over different proportions of true hypotheses, effect sizes, and p-hacking rates. False discovery rate (FDR) over all possible p-

hacking rates (0–100%), including empirical estimators of the p-hacking rate based on different calipers (1%, 5%, 10%) and different effect sizes (d = 0.2, d = 0.5

and d = 0.8) and for various theoretical proportions of tested hypotheses that are true (θ = 10, 20, 50%). The publication bias rate is assumed to be zero for

calculating the p-hacking rate.

https://doi.org/10.1371/journal.pone.0292717.g007

Table 2. Example of scenarios to fit the empirically observed share of statistically significant results P(p< 0.05) ~ 73.0%. All hypothetical scenarios (S in columns)

match the observed share of statistically significant results at the 5% significance threshold quite closely. The empirical estimates of the statistical power are highlighted in

gray (d = 0.8 in S5 and d = 0.5 in S6 & S7).

Scenarios with share of statistically significant results ~ 73.0%

Parameter S1 S2 S3 S4 S5 S6 S7

Pure p-hacking rate 0% 0% 10% 22% 30% 60% 70%

Pure publication bias rate 0% 0% 13% 32% 40% 72% 96%

Power 80% 100% 80% 80% 80.4% 59.3% 59.3%

θ 91% 73% 87% 80% 75% 50% 10%

Resulting FDR

FDR p-hacking 0.6% 1.9% 2.6% 7.1% 11.5% 42.6% 88.0%

FDR publication bias 0.6% 1.9% 0.9% 1.5% 2.0% 5.9% 43.2%

https://doi.org/10.1371/journal.pone.0292717.t002
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graphical presentation, see Fig F in S1 Appendix). Because no publication selection bias is in

place, the FDR is relatively low, at 0.6 or 1.7%. A slightly larger FDR from 0.9 to 7.1% was

observed in scenarios with all adequately powered studies (Table 2 S3 & S4). When plugging in

the empirically derived power estimates with, on average, 80.4% for large effects (d = 0.8) and

59.3% for medium effects (d = 0.5), considerable pure p-hacking (30–40%) or pure publication

bias (40–72%) has to be in place to achieve the empirically observed significant results. In these

scenarios, the FDR after pure p-hacking was 11.5% or 42.6%, and more than six times larger

than in the scenario with publication bias or no publication selection bias. Finally, in an extreme

scenario (S7), assuming a 10% proportion of true hypotheses and a 59.3% statistical power for

medium underlying effects, the FDR was 88.0% with a high rate of pure p-hacking (70%), or

43.2% with pure publication bias (96%). Although these seven scenarios show a considerable

range of possible FDR scenarios that produce the observed share of significant results, the

author considers scenarios S5 and S6 the most plausible as psychological research is known to

suffer from a quite low statistical power [12], and theoretical considerations regarding primary

research indicate that the share of true hypotheses (θ) should be rather low [1].

Discussion and conclusion

This article has presented the state and evolution of statistical power and publication selection

bias, in the form of publication bias and p-hacking, and the FDR over time in a sample of

35,515 papers in psychology published between 1975 and 2017. Despite a positive development

in recent years, the statistical power to detect medium effects (d = 0.5), and therefore sample

size, is still below the recommended 80%. Furthermore, in the data, patterns of publication

selection bias (in the form of publication bias, p-hacking, or both) were detected but showed

no substantial decline over time. The resulting FDRinf illustrates the consequences of low sta-

tistical power and p-hacking, as a considerable share of all significant results may be just statis-

tical artifacts, and therefore false.

Two strengths of the analysis can be pointed out: first, the article draws from a full sample

of empirical articles in journals published by the APA and the therein reported statistical test

values, therefore it is equipped with high statistical precision due to the inclusion of many

studies and test values. Second, the full sample provides good external validity, which makes it

possible to generalize the results at least over the field of psychology.

Although the article gives a plausible range of possible measures of statistical power and

publication selection bias, it also suffers, in addition to the central limitation pointed out ear-

lier (i.e. the missing fit between the observed and expected share of statistically significant

results), from five limitations. First, the parameter with the largest leverage on the FDR, the

share of true hypotheses, is not estimable and remains open for speculation. Second, all APA

style-compliant test values were exported irrespective of their relevance. According to the APA

publication manual, although those results should be of central importance, they are not neces-

sarily the primary research outcomes. A robustness check, comparing manual to automatic

data extraction, shows that primary research outcomes were only poorly covered (for details,

see section 2.1. in S1 Appendix). Third, estimating the statistical power assumes a constant

underlying effect size across psychology, with no dependency on sample size and underlying

true effect size. The unobserved heterogeneity may lead to the problem that hypotheses (e.g.,

with a large underlying true effect) were deliberately conducted with small, adequately pow-

ered samples but may have been classified as underpowered. Fourth, although publication bias

and p-hacking were estimated separately, it is not possible to uncover their relative prevalence

from the data. Fifth, the assumptions on the underlying process of publication bias and p-

hacking have to be valid to give unbiased estimates of the FDR; this may be especially
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problematic for p-hacking because a large number of assumptions have to be made (for details,

see section 1.2. in S1 Appendix).

Keeping these five limitations–and especially the central limitation–in mind, a wide range

of possible FDRs may be compatible with the observed share of significant results. In the most

extreme cases, the FDR can range, as described in Table 2, from less than 1% to nearly 90%.

However, besides the unsolvable modeling limitations of the central parameters of interest,

publication selection bias, statistical power and the FDR, the article aimed to investigate the up

to now completely theoretical considerations on the aforementioned parameters at least to

some degree empirically.

A plausible range of the FDR therefore lies between the FDR with no bias (publication bias) and

its version inflated by p-hacking. Although the article gives a plausible range of statistical power

and publication selection bias estimators, the exact results should be interpreted with caution.

When comparing the estimated statistical power with previous studies in psychology, it was

found to be slightly larger [11, 12], which could be caused by the more optimistic estimation

strategy. Although publication selection bias has already been investigated in the literature, to

my knowledge, no estimates of publication selection bias rates exist. The present study has also

disentangled the impact of the estimated statistical power and publication selection bias on the

FDR. The only study calculating a discipline-wide FDR [16] was replicated for conditions

without the influence of p-hacking but provided a slightly larger FDR under p-hacking.

To sum up, findings reported in the psychological literature tend to be underpowered and

shows signs of p-hacking or publication bias, which may lead to a high number of false discov-

eries; however, the estimations rely on several assumptions and unknown parameters that may

influence the estimates. Nonetheless, three interventions can be laid out that may be of help to

decrease the FDR and increase the credibility of scientific findings: first, conducting manda-

tory power analyses before a study; second, pre-registering the research design, along with a

complete model specification; and third, developing clear-cut reporting guidelines on how to

present statistical tests. While the first intervention focuses on maximizing statistical power,

this will only be effective if real pre-study power analyses are conducted, instead of post-hoc
power analyses that justify the chosen setting. These pre-study power analyses must justify, in

particular, their assumed underlying true effect. Otherwise, pre-study power analyses may

only justify a sample size already set before the power analysis. Besides promoting pre-study

power analyses, pre-registration would make it harder to engage in publication selection bias

[42]. To allow researchers to fix errors or improve their research design, deviations from the

pre-registration should be possible, but should be laid out in the article. In contrast to manda-

tory power analyses and pre-registration, which would help increase statistical power or

decrease publication selection bias, reporting guidelines can help in monitoring those mea-

sures. Building on this monitoring, interventions such as data-sharing policies of journals can

be evaluated. In the case at hand, the results at hand were only possible because existing report-

ing guidelines for psychology allow for structured analyses. Other disciplines, like economics,

medicine, or sociology, have no such guidelines. Therefore, there is no reason to believe that

the diagnosed problems are limited to psychology–and especially to APA journals–alone.

Beyond such descriptive monitoring, future research could focus on the mechanisms behind

potential risk factors for a low statistical power or publication selection bias, such as author

composition or third-party funding.
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their comments on earlier versions of the article. I also want to thank the participants of the

Metrics International Forum and the Seminar Analytical Sociology: Theory and Empirical

Applications for their helpful remarks. Finally, I want to thank the two reviewers, Esther Maas-
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