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Spindle-locked ripples mediate memory
reactivation during human NREM sleep

Thomas Schreiner 1, Benjamin J. Griffiths 1,2, Merve Kutlu1, Christian Vollmar3,
Elisabeth Kaufmann 3, Stefanie Quach 4, Jan Remi3, Soheyl Noachtar3 &
Tobias Staudigl 1

Memory consolidation relies in part on the reactivation of previous experi-
ences during sleep. The precise interplay of sleep-related oscillations (slow
oscillations, spindles and ripples) is thought to coordinate the information
flow between relevant brain areas, with ripples mediating memory reactiva-
tion. However, in humans empirical evidence for a role of ripples in memory
reactivation is lacking. Here, we investigated the relevance of sleep oscillations
and specifically ripples for memory reactivation during human sleep using
targeted memory reactivation. Intracranial electrophysiology in epilepsy
patients and scalp EEG in healthy participants revealed that elevated levels of
slowoscillation - spindle activity coincidedwith the read-out of experimentally
induced memory reactivation. Importantly, spindle-locked ripples recorded
intracranially from themedial temporal lobe were found to be correlated with
the identification of memory reactivation during non-rapid eye movement
sleep. Our findings establish ripples as key-oscillation for sleep-related mem-
ory reactivation in humans and emphasize the importance of the coordinated
interplay of the cardinal sleep oscillations.

Contemporary models propose that memory consolidation, i.e., the
strengthening of memories during sleep, is achieved in part by reac-
tivating experiences that were encoded during prior wakefulness1,2.
Through reactivation, memories are relayed between the hippo-
campus and cortical long-term stores, transforming initially labile
memories into long-lasting ones3. The essential communication
between the hippocampus, thalamus, and cortex, as well as the
strengthening of memories in cortical networks, is thought to be
facilitated by precise temporal coordination between the cardinal non-
rapid eyemovement (NREM) sleep-related oscillations, namely cortical
slow oscillations (SOs), thalamocortical sleep spindles and hippo-
campal ripples4–6.

SOs (< 1Hz) initiate timewindowsof excitability and inhibitionnot
only in cortical but also in subcortical areas7–9. They ignite the gen-
eration of sleep spindles in the thalamus, which nest in the excitable
upstates of cortical SOs10,11. Spindles (12–16Hz), in turn, have been

shown to gate Ca2+ influx into dendrites, putatively facilitating
synaptic plasticity in cortical areas12–14. Lastly, hippocampal sharp-wave
ripples (80–120Hz in humans) are assumed to coordinate neural
population dynamics in the hippocampus to reactivate recently
formed memories15,16. Ripples tend to occur during the excitable
troughs of spindles17,18. The formation of such spindle-ripple events is
thought to facilitate the transfer of reactivated memories to the
cortex19,20. Hence, while SO-spindle coupling is assumed to ensure that
cortical target areas are optimally tuned for synaptic plasticity when
memories are reactivated, memory consolidation ultimately relies on
ripples to trigger and coordinate memory reactivation processes both
in the hippocampus and cortical long-term stores16.

Studies using intracranial recordings in epileptic patients have
established the hierarchical synchronization of SOs, spindles, and
ripples during human NREM sleep17,21–26. However, whether spindle-
locked ripples contribute to memory consolidation by mediating
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memory reactivation in humans is currently unknown. Here, we set out
to assess the relevance of sleep oscillations and specifically sharpwave
ripples for memory reactivation during human NREM sleep. We
recorded scalp EEG in healthy participants and intracranial EEG in
epilepsy patients while they retrieved real-world spatialmemories (i.e.,
prior learned head orientation – image associations). Importantly,
head orientations were linked to specific sound cues, which were
presented again during subsequent NREM sleep to trigger the reacti-
vation of head orientation-related memories (i.e., targeted memory
reactivation, TMR27). Using multivariate classification, we find that
head orientation-related electrophysiological signatures are reacti-
vated during successful awakememory retrieval as well as during TMR
while participants were asleep. During sleep, elevated levels of SO-
spindle activity promote the read-out of memory reactivation in both
scalp and intracranial EEG recordings. Leveraging direct access to
medial temporal lobe (MTL) electrophysiology in epilepsy patient, we
show that memory reactivation is tightly locked to spindle-locked
ripples during human sleep, establishing a role of sharp wave-ripples
for memory reactivation in human NREM sleep.

Results [EEG – healthy participants]
Twenty-five participants (age: 25.2 ± 0.6; 16 female) took part in the
scalp EEG study. Experimental sessions started in the evening around
7 p.m. After an initial training phase (see Methods), participants per-
formed a real-world spatial memory task, where they learned to

associate 168 items (images of objects) with specific head orientations
(see Fig. 1a). Importantly, a specific sound cue was assigned to each of
the four non-central head orientations. Memory performance was
tested in a stepwise manner. First, participants made object-
recognition judgments for all old items, randomly intermixed with
new items. Then, for recognized items only, participants indicated
which of the four head orientations was associated with the item
during the learning phase (associative retrieval, Fig. 1a). Participants
received no feedback during the retrieval test. After finishing the
memory task, participants went to sleep. During one hour of NREM
sleep, two out of the four sounds (one sound associatedwith the right-
sided and one with the left-sided head orientations, respectively) were
repeatedly presented as TMR cues, while an additional sound, unre-
lated to any learning, served as a control sound. We reasoned that
presenting TMR cues during sleep would ignite reactivation of the
related head orientations and the associated items.

Behavioral results
To test for potential differences inmemory performance between test
times and TMR conditions, we conducted an ANOVA for the cued
recall, including the factors cueing (cued vs. uncued) and test-time
(pre- vs. post- sleep). Results indicated that memory performance
declined throughout sleep (main factor test-time: F1,24 = 19.24;
p <0.001). Importantly though, the interaction between test-time and
cueing (F1,24 = 5.48; p =0.028) was also significant, indicating that TMR
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Fig. 1 | Experimental procedure, behavioral results, and retrieval locked reac-
tivationof head orientations. aDuring encoding, participants were consecutively
presented with 168 images (EEG study) / 144 images (intracranial EEG study) of
objects on four flanking screens (positioned at − 60°, − 30°, + 30° and +60° relative
to the center screen). Participants turned their heads towards the relevant screen,
cued by one of four orientation-specific sounds. Memory performance was tested
via a recognition test followed by an associative retrieval (this procedure was used
before and after sleep): First, participants made object-recognition judgments (old
or new). Then, for recognized images only, participants indicatedwhich of the four
head orientations was associated with the item during the learning phase. During
NREM sleep, two of the learning-related sounds (one related to left-sided and one
related to right-sided head orientation) and one control sound, which was not part
of the learning material, were presented for 60min. b Behavioral results for both
experimental sessions pre- (light gray) and post-sleep (dark gray), separated into
cued and uncued trials. Bar graphs show the mean ( ± SEM across participants)
percentage of recalled head orientations. Dots indicate individual memory

performance of participants (N = 25). The star denotes the significant interaction
(pre vs. post x cued vs. uncued) as derived from a repeated measures ANOVA
(F1,24 = 5.48; p =0.028). c Later cued head orientations (left vs. right) could be
reliably decoded (above chance) from the retrieval data, starting around the onset
of the associative memory prompt (the black solid line indicates decoding per-
formance ( ± SEMacross participants)). Thehorizontal dashed line indicates chance
level performance (i.e., 0.5). The vertical solid line indicates the onset of associative
retrieval trials (time =0). The lower horizontal gray line shows the temporal extent
of significant decoding results as derived from a two-sided cluster-based permu-
tation test (p =0.0009, corrected for multiple comparisons across time, N = 25).
The topographical insert illustrates the results of a “searchlight decoding proce-
dure”, indicating that bilateral centro-parietal and occipital areas exhibited
stimulus-category related effects (please note that statistical tests with regards to
the searchlight procedure were done for illustrative purposes only, N = 25). Source
data are provided as a Source Data file.
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did modulate memory performance. However, TMR did not benefit
memory performance as expected28, but had a detrimental effect on
retrieval abilities (cued pre-sleep: 57.23 ± 3.92% vs. cued post-sleep:
50.42 ± 4.56%; uncued pre-sleep: 58.76 ± 4.13% vs. uncued post-sleep:
54.90 ± 4.61%; see Fig. 1b). A follow up post-hoc t-test (relativememory
performance pre- to post-sleep) also indicated that uncued items were
better remembered as compared to cued items (t1,24 = 2.747;p =0.011).
For recognitionmemory (hit rate fromold/new judgments), weneither
found a significant main effect of test time (F1,24 = 0.29; p =0.59); nor a
significant interaction between test-time and cueing (F1,24 = 0.08;
p =0.77; see Supplementary Fig. 1 for details).

Head orientation-related activity is reactivated during success-
ful retrieval
Next, we set out to test whether we could decode head orientation-
related activity from EEG signals during retrieval, which would allow us
to track corresponding reactivation processes during TMR (see below).
To extract head orientation-related patterns of neuronal activity during
retrieval, we pooled the data from the associative retrieval (i.e., when
participants had to remember image related head orientations) across
pre- and post-sleep sessions. Furthermore, we restricted the analysis to
those items whose head orientations were remembered correctly and
that were selected for TMR (i.e., one left sided and one right sided head
orientation per participant). We performed multivariate classification
(linear discriminant analysis; LDA) on these data (Fig. 1c). Using fivefold
cross-validation (see Methods), above-chance classification accuracy
emerged around the onset of the associative memory prompt (time
window: -30ms to 680ms; peak at 270ms; p<0.001, corrected for
multiple comparisons across time). The fact that decoding accuracies
ramped up slightly before the onset of the memory prompt indicates
that associative retrieval processes putatively started already towards
the end of old/new judgments (i.e., recognition testing; see Supple-
mentary Fig. 2 for classification locked to recognition onset). Taken
together, the retrieval data allowed us to isolate brain patterns

associated with the reactivation of head orientation-related activity,
whichwe thenused to guide the analysis ofmemory reactivation during
TMR (for results concerning the classification of later uncued head
orientations during retrieval see Supplementary Fig. 3).

TMR elicits reactivation of head orientation-related activity
during NREM sleep
First, we tested whether TMR-induced electrophysiological activity
would discriminate between learning-related and control sounds.
Consistent with previous findings29–31, learned TMR cues, as compared
to control cues, triggered a significant power increase in the SO-
spindle range (i.e., an initial low frequency burst followed by a fast
spindle burst; p =0.002, corrected for multiple comparisons across
time, frequency, and space; see Fig. 2a), foreshadowing that learning-
related TMR cues might have triggered relevant neuronal processing
in the sleeping brain (for spindle characteristics associated with
experimental and control sounds see Supplementary Fig. 4).

To specifically test this, we next determined whether neuronal
activity related to rememberedheadorientationswouldbe reactivated
during TMR. We first trained a classifier on the pooled associative
retrieval data from both pre- and post-sleep sessions [−0.5 to 1 s]. The
resulting training weights were then applied to the TMR data [−0.5 to
1.5 s]. Classifier testing labels reflected the stimulus categories used in
the retrieval sessions (left- or right-sided head orientation), such that
above-chance classification hallmarks TMR-related activation patterns
more strongly resembling the related stimulus category than the
alternative stimulus category. As shown in Fig. 2b, results revealed
significant above-chance classification from 930 to 1410ms relative to
TMR onset (p =0.023, corrected for multiple comparisons across
time), emerging during the presence of sleep spindles (associative
retrieval time-window: − 10 to 330ms; the fact that decodability pre-
ceded the onset of the associativememoryprompt again indicates that
associative retrieval processes were probably ignited during the pre-
ceding recognition memory test; for cross-classification based on not-
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Fig. 2 | Reactivation of head orientation-related activity during TMR in healthy
participants. a Power difference between learning-related TMR cues versus new
control cues after statistical thresholding (p =0.002, two-sided cluster-based per-
mutation test corrected for multiple comparisons; N = 25) (b) Retrieval-related
brain patterns (left vs. right head orientations) were decodable during TMR
(p =0.023, two-sided cluster-based permutation test corrected for multiple com-
parisons across time, contour lines indicate the extent of the cluster, N = 25); color

range (blue to yellow) represents t values against chance level performance. c The
source plots illustrate the results of a “searchlight decoding procedure”, indicating
that frontoparietal networks and the right medial temporal lobe exhibited head
orientation related effects (please note that statistical tests for the searchlight
procedure were done for illustrative purposes only, N = 25). d Classification per-
formance correlated positively with TMR-triggered power (Spearman correlation;
r =0.50, p =0.01; N = 25). Source data are provided as a Source Data file.
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remembered retrieval trials see Supplementary Fig. 5). Applying the
decoding procedure to source-space data revealed that these effects
might have originated from frontoparietal networks and the right
medial temporal lobe (including entorhinal cortex, parahippocampus
and hippocampus; see Fig. 2c).

Finally, we asked whether the oscillatory fingerprint of TMR in the
SO-spindle range (Fig. 2a) would be relevant for the identification of
TMR-triggered memory reactivation. To address this question, we
correlated, across participants, TMR triggered power as obtained by
time-frequency representations (TFR; averaged across the cluster
shown in Fig. 2a) and levels of mean classification performance
(averaged across the cluster shown in Fig. 2b). As shown in Fig. 2d, we
observed a significant positive relationship between the two variables
(rho = 0.50, p =0.01; for classification results based on TMR trials
exhibiting increased levels of activity in the SO-spindle range see
Supplementary Fig. 6).

Relationship between behavioral performance and memory
reactivation
In an exploratory analysis (see Supplementary Fig. 7), we investigated
the relationship of confidence ratings and memory reactivation in the

scalp EEG study. We found a positive correlation between memory
confidence in the pre-sleep memory test and the reactivation score
(rho = 0.41; p =0.038), which was also found when restricting the
analysis to remembered and cued trials (rho =0.43 p =0.028; see
Supplementary Fig. 7a). Restricting the classification of head orienta-
tions to only high confidence trials showed significant above-chance
decoding of retrieval-related brain patterns during NREM sleep
(p = 0.025, corrected for multiple comparisons across time; see Sup-
plementary Fig. 7b), a pattern highly similar to the one found when all
trials were included (see Fig. 3b). In contrast, when restricting the
classification of head orientations to low-confidence trials, retrieval-
related brain patterns (left vs. right head orientations) were not
decodable (see Supplementary Fig. 7c).

Results [intracranial EEG - patients]
Ten patients (age: 31.20 ± 3.46; 7 female) took part in the intracranial
EEG (iEEG) study. Overall, the procedures of the experiment were
highly similar to the above-described scalp EEG study but optimized
for patients in a clinical setting (e.g., reduced trial number in the
memory task,memory taskwas split into three consecutive blocks; see
“Methods” for details).
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Fig. 3 | Intracranial EEG study: retrieval. a Behavioral results for both experi-
mental sessions pre- (light gray) and post-sleep (dark gray), separated into cued
and uncued trials. Bar graphs show the mean ( ± SEM) percentage of recalled head
orientations. Dots indicate individual memory performance of participants
(N = 10). The star denotes the significant interaction (pre vs. post x cued vs.
uncued) as derived from a repeated measures ANOVA (F1,9 = 8.28; p =0.018).
b Later cued head orientation (left vs. right) could be reliably decoded (above
chance) from the retrieval data, starting around 190ms after the onset of the
associate prompt. The black solid line indicates decoding performance ( ± SEM
across participants). The horizontal dashed line indicates chance level perfor-
mance (i.e., 0.5). The vertical solid line indicates the onset of associative retrieval
trials (time = 0). The lower horizontal gray line shows the temporal extent of

significant decoding results as derived from two-sided cluster-based permutation
test (p =0.019, corrected for multiple comparisons across time, N = 10). c Ripple-
triggered grand average of all detected ripples (Ncontacts= 14; locked to maximal
negative amplitude, ( ± SEM across MTL contacts) during retrieval (−0.5 to 1.5 s).
d Time-frequency-representations of ripple-locked MTL data segments;
Ncontacts = 14). e Ripple rates (events per second) for remembered (red) and not-
remembered (blue) trials. Ripple rates differed significantly between conditions
(p =0.047; two-sided cluster-based permutation test corrected for multiple com-
parisons across time), with MTL ripples peaking during remembered trials (0.4 to
0.5 seconds in relation to the associativememory promptonset; ± SEM acrossMTL
contacts; Ncontacts = 14). Source data are provided as a Source Data file.
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Behavioral results
First, we tested whether the effects of TMR on memory performance,
as reported above, would replicate in the patient sample. Hence, we
again tested for differences in memory performance between test
times andTMRconditions by conducting anANOVA for the cued recall
(factors: cueing (cued vs. uncued) and test-time (pre- vs. post- sleep)).
Results revealed that patients’ memory performance also declined
over the course of sleep (main factor test-time: F1,9 = 32.0; p < 0.001),
comparable to the healthy participants’ decline. As in the healthy
sample, we found a significant interaction between test time and
cueing (F1,9 = 8.28; p =0.018), indicating that TMR did modulate
memory performance by exerting a detrimental effect on retrieval
abilities (cued pre-sleep: 58.47 ± 6.02% vs. cued post-sleep:
42.36 ± 4.89%; uncued pre-sleep: 58.88 ± 5.60% vs. uncued post-sleep:
49.58± 5.73%; see Fig. 3a).While the post-hoc t test (relative change for
cued vs. uncued) did not turnout to be significant (t1,9 = 1.97; p =0.08),
we would still like to emphasize that the overall pattern of behavioral
results is highly similar to those of the healthy population. For recog-
nition memory, there was neither a significant main effect of test time
(F1,9 = 0.06; p =0.08), nor a significant interaction between test-time
and cueing (F1,9 = 2.25; p =0.16; see Supplementary Fig. 8 for details).

iEEG confirms reactivation of head orientation-related activity
during successful retrieval
Next, we assessed whether the intracranial data would reveal evidence
for the reactivation of head orientation-related activity during retrie-
val, similar to the results of the scalp EEG study (see Supplementary
Fig. 9 for electrode coverage of intracranial EEG recordings). Again, the
associative retrieval data was pooled across pre- and post-sleep ses-
sions, and multivariate classification (LDA) was restricted to correctly
remembered items whose associated head orientations were cued
during sleep (i.e., one left sided and one right sided head orientation
per patient). Using fivefold cross-validation (see “Methods”), sig-
nificant above-chance classification accuracy emerged after the onset
of the associative retrieval prompt (peak at 250ms; p = 0.019, cor-
rected for multiple comparisons across time, see Fig. 3b; for classifi-
cation results based on broadband high-gamma data see
Supplementary Fig. 10; for results concerning the classification of
encoding-related brain patterns during retrieval see Supplementary
Fig. 11). Hence, similar to scalp EEG recordings, multivariate classifi-
cation during retrieval using intracranial EEG activity allowed us to
isolate brain patterns associated with the putative reactivation of head
orientation-related activity.

Given the ascribed role ofMTL ripples inmemory retrieval32–37, we
assessed whether ripple rates would differ between remembered and
not-remembered trials. First, ripples were extracted (7 patients, 14
contacts) based on established criteria18 (see “Methods” for details; see
Fig. 3c, d for ripples related EPRs and time-frequency representations;
see Supplementary Fig. 12 for exemplary raster plots of retrieval-
related ripples during remembered and not-remembered trials). Then
peri-event histograms (bin size = 50ms)of ripple events time-locked to
the onset of the associative retrieval prompt were calculated, specifi-
cally for remembered and not-remembered trials. Ripple rates (events
per second) differed significantly between conditions (p =0.047; cor-
rected for multiple comparisons across time), with higher MTL ripple
rates for remembered as compared to not-remembered trials (i.e.,
400–500ms after the onset of the associative retrieval prompt; for
classification results based on ripple-triggered broadband high-
gamma data see Supplementary Fig. 13). It should be noted that rip-
ple rates during remembered and not-remembered trials descriptively
differed already during the baseline window (−0.5 to 0 sec), with
higher ripple rates for remembered trials. This non-significant differ-
ence isprobably related to the fact that associativememorywas always
test right after old/new judgments, hence retrieval processes were not
exclusively triggered by the associative memory prompt onset.

TMR triggered reactivation of head orientation-related activity
is accompanied by elevated levels of SO-spindle and ripple
activity
In the first step, we tested whether TMR-triggered power would also
distinguish between learning related and control sounds using intra-
cranial EEG recordings (based on frontal, parietal and temporal con-
tacts). In linewith the results of the scalp EEG study, learned TMR cues,
as compared to control cues, elicited a significant power increase in
the SO-spindle range (low-frequency cluster: p <0.001; spindle cluster:
p <0.001; corrected for multiple comparisons across time and fre-
quency, Fig. 4c; for raw spectrograms of different TMR conditions see
Supplementary Fig. 14; for spindle characteristics associated with
experimental and control sounds see Supplementary Fig. 15).

SO-spindles have long been implicated in coordinating the
emergence of hippocampal ripples and hippocampal–cortical
interactions17,21,22,24,38. Hence, we next tested whether different levels of
cortical SO-spindle activity would influence the emergence of ripples
in the medial temporal lobe (MTL). Ripples were extracted in MTL
contacts (7 patients, 14 contacts; see “Methods” for details; see Fig. 4a
and b; see Supplementary Fig. 16 for a comparison of ripple rates
between NREM and REM sleep39). Then, to investigate whether activity
in the SO-spindle range would affect the emergence of ripples, we
sorted TMR trials as a function of power in the TFR-related SO-spindle
cluster (Fig. 4d) and divided the trials using a median split (see Sup-
plementary Fig. 17 for TFR differences between high and low SO-
spindle activity trials). Next, we created peri-event histograms (bin
size = 50ms) of ripple events time-locked to TMR cues for trials exhi-
biting high and low activity in the SO-spindle range, respectively. As
shown in Fig. 4d, ripple rates (events per second) differed significantly
between conditions (p =0.027; corrected for multiple comparisons
across time), with MTL ripples specifically peaking during elevated
spindle activity (i.e., 1100–1250ms after reminder cue onset; also see
Supplementary Fig. 18; see Supplementary Fig. 19 for exemplary raster
plots of TMR ripples during high and low SO-spindle power trials).
However, the overall ripple number did not differ between high and
low SO-spindle activity trials (high SO-spindle trials: 66.57 ± 10.57, low
SO-spindle trials: 70.35 ± 10.64, t(13)= − 1.1, p =0.28), indicating that SO-
spindle activity coordinates the temporal occurrence of ripples rather
than their overall number.

Given that the interaction between SO-spindles and ripples has
been tightly linked to memory reactivation and the behavioral
expressions of memory consolidation in rodents40,41, we determined
whether TMR-triggered reactivation of head orientation-related
activity would be specifically traceable in trials where the probability
for SO-spindles and concomitant ripples would be high. Hence, a
classifier was trained on the pooled associative retrieval data from
both pre- and post-sleep sessions [−0.5 to 1 s] and tested on the TMR
data [−0.5 to 1.5 s], separately for high SO-spindle activity trials and for
low SO-spindle activity trials. The resultant classification performance
outcomes were contrasted (see “Methods” for details). We found a
cluster of significant classification from960 to 1410ms relative to TMR
onset (p = 0.019, corrected for multiple comparisons across time,
retrieval time-window [− 150 to 200ms]; Fig. 4e; see Supplementary
Fig. 20 for results of testing high- and low SO-spindle activity trials
against chance-levels and classification results for all TMR segments
irrespective of SO-spindle activity). These results indicate that (i) TMR-
induced reactivation is related to remembered head orientations and
that (ii) reactivation was putatively mediated by SO-spindle and ripple
activity (for a localization of the cross-classification result see Sup-
plementary Fig. 21). We examine the relation between ripples and
memory reactivation in more depth in the next section.

Spindle-locked MTL ripples coincide with memory reactivation
Having established that cardinal sleep oscillations and reactivation of
head orientation-related activity co-occur in time, we next assessed
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whether ripples and their coupling to spindles would be essential for
triggering reactivation processes (for time-frequency representations
and single trial examples of spindles and ripples see Fig. 5a, b). First, we
testedwhether the phase of spindles in cortical contacts would impact
ripple band activity inMTL contactswhen ripples emergedduring high
spindle activity (i.e., 700–1400ms after cue onset; for details see
“Methods”) using the Modulation Index42. In line with previous find-
ings, results revealed that the phase of sleep spindles robustly influ-
enced the amplitude in the ripple range17,21 (~ 80–120Hz; p = 0.005,
corrected for multiple comparisons across frequencies; see Fig. 5c).
The phase of cortical delta/theta activity also exhibited a significant
effect on ripple activity43 (p = 0.007, corrected for multiple compar-
isons across frequencies),while spindlephases additionallymodulated
low gamma in the MTL (~ 20–40Hz; p < 0.001, corrected for multiple
comparisons across frequencies). When assessing the preferred phase
of spindles for their grouping of ripples, we found that ripples were
nested towards the trough of cortical spindles (Fig. 5c top inset; V test
against ±π: V = 5.29, p = 0.022; mean coupling direction:
− 176.67 ± 16.61°; mean vector length =0.21 ± 0.031)17,21, while ripples
generally tended to emerge towards spindle centers (see Fig. 5c bot-
tom inset).

Finally, we asked whether spindle-locked ripples would be rele-
vant for the identification of memory reactivation. Hence, again a
classifier was trained on the pooled associative retrieval data from
both pre- and post-sleep sessions [−0.5 to 1 s], but the resulting
training weights were this time specifically applied on intracranial EEG
segments centered around spindle-locked MTL ripples (i.e., where
MTL ripples were paralleled by cortical spindles in between 700 and
1400ms). For statistical evaluation, surrogate decoding performance
was calculated by centering intracranial EEG segments around time
points where no ripple was present during the time window of pre-
ferred spindle-ripple interactions (i.e., 700–1400ms after cue onset).
This procedure was repeated 100 times and resulting surrogate per-
formance values were then averaged, providing baseline values for
each participant under the null hypothesis that spindle-locked ripples
would not be relevant for the classification of stimulus categories. We
found a ripple - locked cluster of significant above-chance classifica-
tion from – 100 to 200ms relative to ripple centers, indicating that

ripples might indeed be associated with memory reactivation during
NREM sleep in humans (p = 0.007, corrected formultiple comparisons
across time, associative retrieval time-window [− 120 to 230ms],
Fig. 4b; see Supplementary Fig. 22 for contrasting ripple triggered
classification against chance-level; see Supplementary Fig. 23 for
results indicating that uncoupled ripples (i.e., rippleswithout spindles)
did not facilitate multivariate classification).

Discussion
Our results unveil a key role of spindle-locked ripples in human sleep-
based memory reactivation. Specifically, we found that ripples in the
MTL, when coupled to cortical spindles, are tightly related to the
reprocessing ofmemories during human NREM sleep, as evidenced by
the multivariate classification of prior retrieved head orientations.
These findings elucidate the neural processes mediating memory
reactivation during human NREM sleep, by establishing MTL ripples
and their synchronization with cortical sleep rhythms as crucial
cornerstones.

In current models of memory consolidation, ripples are generally
considered to be electrophysiological markers of memory reactiva-
tion, as they have been suggested to trigger retrieval-related memory
reactivation44,45 and the reprocessing of memories during sleep1,20,46.
To date, however, even though the role of ripples in memory retrieval
has been established in humans32–37, direct evidence for a core con-
tribution of ripples to sleep’s memory function has been lacking in
humans. We here used multivariate classification to detect human
reactivation processes that are timed by ripples identified in the MTL,
providing strong support that ripples in humans initiate memory
reactivation akin to animal models6,16,47 and presumably facilitate the
hippocampo-cortical dialog. Interestingly, TMR studies in rodents
have not only shown that auditory cues inducememory reactivation in
the hippocampus48,49, but that cortical activity elicited by memory-
related cues, predicts hippocampal ripple activity, which in turn biases
post-ripple activity in cortical areas, suggesting a loop-like information
flow around ripple occurrence48,50. Our result that ripples in the human
MTL were tightly associated with TMR-elicited memory reactivation is
in line with the notion that auditory TMR might facilitate the genera-
tion of memory-related ripples by biasing hippocampal activity.
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Fig. 4 | Intracranial EEG study: TMR. a Ripple-triggered grand average of all
detected ripples (Ncontacts = 14; locked tomaximal negative amplitude) during TMR
(−0.5 to 1.5 s; 138.78 ± 21.72 ripples in 231.14 ± 19.94 trials). A zoomed version of the
ripples is illustrated in the inset. b Power spectral density (PSD) averaged across all
detected SWRs [± 300ms] indicating distinct peaks in the SO/delta, spindle, and
ripple range (i.e., 3 Hz, 14Hz, and 84Hz, ± SEM across MTL contacts; Ncontacts = 14).
c Power difference indicates that retrieval-related TMR cues triggered increased
power in intracranial EEG recordings (p =0.009, two-sided cluster-based permu-
tation test corrected for multiple comparisons, Ncontacts = 317 as compared to
control cues. d Ripple rates (events per second, ±SEM across MTL contacts) for

trials exhibiting high (red) and low power (blue) in the SO-spindle range, respec-
tively. Ripple rate differed significantly between conditions (p =0.027, two-sided
cluster-based permutation test corrected for multiple comparisons across time,
Ncontacts = 14), with MTL ripples peaking during elevated spindle activity. e Head
orientation-related brain patterns (left vs. right) were decodable during TMR when
contrasting high and low SO-spindle activity trials (p =0.019 two-sided cluster-
based permutation test corrected for multiple comparisons; contour lines indicate
the extent of the cluster, N = 10, color range (blue to yellow) represents t values
against chance level performance). Source data are provided as a Source Data file.
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However, our current data remain agnostic as to whether a cortical-
hippocampal-cortical loop of information exchange underlies sleep-
related memory consolidation.

One intriguing question is whether all ripples are related to
memory reactivation. Our data suggest that, while the ripple rate dis-
tinctly peaked during successful remembering in an early time win-
dow, only a fraction of NREM ripples, specifically those coupled to
cortical spindles, were associated with the decodability of prior
retrieved head-orientations (Fig. 4b and Supplementary Fig. 22).
Spindles are well known to group ripples in the MTL19,21–23 (Fig. 4a).
They have also been shown to induceneural plasticity in cortical target
sites13,14,51, ensuring that those areas are optimally tuned for long-term
storage when reactivated memory information arrives1. Hence, our
finding that spindle-locked ripples were key for detecting memory
reactivation confirms longstanding theoretical predictions concerning
the role of synchronized spindle-ripple activity in this context20,46,52.

Moreover, we show that elevated levels of SO-spindle activity
promoted the read-out of prior learned stimulus categories in both
scalp and intracranial EEG recordings. The precise interplay between
SOs and spindles is believed to regulate the flow of information
between the hippocampus and cortical long-term stores, with SO up-
states establishing a time window for spindles and ripples to
coincide22. In addition, earlier studies in healthy participants using
scalp EEG established SO-spindles as a necessary pre-requisite for the
identification of memory reactivation18,53,54. However, because the
poorly conducting skull low-pass filters the scalp EEG55, these data
remained agnostic to the role of high-frequency signals such as ripples
and their potential role in memory reactivation. Our results indicate
that ripples in theMTL peaked during the presence of spindles in trials
exhibiting high SO-spindle activity (Fig. 3e), with memory reactivation
accompanying those spindle-locked ripples (Fig. 4b). This might sug-
gest that also in previous studies ripples, without being detected due

Fig. 5 | Spindle-ripple interactions and ripple-locked classification. a Time-
frequency-representations of ripple-locked MTL data segments (top; Ncontacts = 14)
and spindle-locked data segments from frontal, parietal, and temporal contacts
(bottom; Ncontacts = 317). (b, top) Unfiltered iEEG trace from single contact in the
MTLwith ripple band filtered signal (80 to 120Hz) shown in blue. Blue shaded area
highlights a representative ripple. (b, bottom) Unfiltered iEEG trace from single
parietal contact with spindle band filtered signal (12 to 15Hz) shown in blue. Blue
shaded area highlights a representative spindle following a SO (green). c Assessing
phase-amplitude coupling (PAC) using the Modulation Index revealed that the
phaseof cortical spindles influenced amplitudes in the ripple range inMTLcontacts
(~ 80–120Hz; p =0.005, two-sided cluster-based permutation test corrected for
multiple comparisons, Ncontacts = 14). In addition, the cortical delta/theta phase
exhibited a significant effect on MTL ripple amplitudes (p =0.007, two-sided
cluster-based permutation test corrected for multiple comparisons, Ncontacts = 14),
while the spindle phase additionally modulated low gamma amplitudes in the MTL

( ~ 20–40Hz; p =0.0009; two-sided cluster-based permutation test corrected for
multiple comparisons, Ncontacts = 14). The top inset illustrates phases of the spindle-
ripple modulation, indicating a clustering of ripples towards spindle troughs
(corresponding to ±π; two-sided V test against ± pi: v = 5.29, p = 0.022
Ncontacts = 14; mean coupling direction: −176.67 ± 16.61°, mean vector length =
0.21 ± 0.031). The bottom inset illustrates the temporal modulation of MTL ripple
onsets by cortical spindle onsets (ripple percentage in relation to spindles ± 1 sec;
mean ± SEM across MTL contacts, Ncontacts = 14). A solid horizontal line indicates
mean spindle duration (mean spindle duration: 0.75 ± 0.008 sec; peak latency:
0.37 ± 0.042 sec in relation to spindle onsets). (d) Head orientation-related brain
patterns (left vs. right) were decodable during the presence of spindle-locked MTL
ripples (p =0.007, two-sided cluster-based permutation test corrected formultiple
comparisons, N = 7; color range (blue to yellow) represents t values). Source data
are provided as a Source Data file.
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to methodological reasons, were tightly related to the decodability of
prior learned material during SO-spindles.

In the present paradigm, real-world head orientation acted as
spatial context in an episodicmemory task. By showing that real-world
head orientation-related activity is reactivated during successful
retrieval and sleep our findings add ecological validity to priorwork on
the reactivation ofmemory contexts56–58. These findings are important
because they indicate that the neural correlates of memory functions
generalize from screen-based laboratory settings to more naturalistic
behavior incorporating bodily movements59. The standard approach
to studying the neural basis of humanmemory requires participants to
display minimal bodily movements (e.g., fMRI, MEG), preventing the
generation of many self-referential cues, which are thought to play a
crucial role in the neural mechanisms underlying memory59,60. The
present approach circumvents these shortcomings by incorporating
real-world head rotations that trigger self-referential cues such as
motor commands, efference copies, and reafferent feedback. Com-
bining this approach with rare intracranial recordings from core
memory regions (e.g., MTL) opens up exciting opportunities to
investigate human electrophysiology that would otherwise remain
concealed59,61,62.

On a neural level, little is known about how thehumanbrain tracks
and maintains information about real-world head orientation but see 62.
Animal research, on the other hand, has successfully identified neu-
rons that act as a neural compass during spatial navigation63–66. During
sleep, this neural compass seems to be preserved67,68. By simulta-
neously recording hippocampal ripples and activity from thalamic
head direction cells in rodents, Viejo & Peyrache69 showed a specific
coupling of the two signals in sleeping rodents that might guide the
replay of previously experienced trajectories (even though memory
reactivation was not explicitly assessed in their study)69. Our results
demonstrating ripple-locked memory reactivation connect to these
findings on a conceptual level, by showing that ripples are related with
the reactivation of memory contexts (i.e., head orientations) that
might guide the reactivation of previously experienced events. Going
beyond previous work in animal models, we here show that head
orientation acts as a memory context in an episodic memory task.
Note, however, that the here presented intracranial and surface EEG
operate on ameso-/macro scale, compared to themicro-scale of single
unit recordings.While recent studies have identified a population-level
code for real-world head direction62,70,71, future work is necessary to
connect the different levels, see e.g.,72. On a more general level,
implementing real-world navigation into memory paradigms is chal-
lenging, but at the same time promises to build bridges between ani-
mal research investigating real-world spatial navigation and studies
investigating memory processes in humans. Assuming that memory
and navigation share neural mechanisms, converging experimental
approaches could ultimately foster our understanding of the under-
lying neural codes in animals and humans73.

We here used TMR as an experimental tool to trigger memory
reactivation during sleep. It has been shown that TMR modulates
memory, leading most often to performance increases28,74–78. Hence, it
might seem surprising that TMR did not benefit but deteriorated
memory performance both in healthy participants as well as in
patients. However, a growing number of studies report TMR-induced
impairments, in particular when several targets were associated with a
given TMR cue30,79,80. In the present study, multiple images (42 in the
scalp EEG study; 36 in the intracranial EEG study) were associated with
each of the four head orientations. It has been suggested that if the
associations between multiple targets and one cue vary in strength,
TMR might elicit the reactivation of targets most strongly associated
with the cue79, akin to models describing retrieval competition during
wake81,82. Selectively strengthening a subset of strong cue-target
associations via TMR, however, might lead to weakly associated tar-
gets losing the competition for being reactivated during a subsequent

memory test. Depending on the relative amount of cue-target asso-
ciations in either subset, this might show as a net beneficial, detri-
mental, or no effect of TMR onmemory performance. Interestingly, in
an exploratory analysis (see Supplementary Fig. 7), we found a positive
correlation betweenmemory confidence in the pre-sleepmemory test
and the effect of TMR in the scalp EEG study (due to time constraints
no confidence rating was obtained in the iEEG study). Assuming that
confidence ratings in our study are positively related to memory
strength83,84, but see 85, this relationship indicates that TMR may have
mainly reactivated targets thatwere strongly associatedwith their cues
and further strengthened their association. In turn, these strong tar-
gets might have outcompeted weaker ones when competing for being
retrieved during post-sleep retrieval, resulting in the observed detri-
mental effect of TMR on memory performance.

In sum, several lines of argument support the assumption that our
classification procedure indeed picked up neural signatures of mem-
ory reactivation, despite the unexpected direction of the TMR effect
on memory performance. First, TMR did have a robust effect on
behavior, both across participants and independent studies (scalp and
iEEG), indicating a systematic influence on neural processes during
NREM sleep. Second, as outlined in detail above, a growing number of
studies reported similar detrimental effects on behavior when several
targets were associated with a given TMR cue30,79,80,86. Third, multi-
variate analysismethods (suchasMVPA87 or representational similarity
analysis88) have been proven valuable tools to identify memory reac-
tivation during both wakefulness and sleep5,78. Our cross-classification
results, indicating that prior learned stimulus categories were decod-
able during the presence of sleep spindles, are in line with previous
work reporting TMR-induced or endogenous memory reactivation
locked to spindles (e.g.,53,89–91). This consistency in terms of the neural
conditions (i.e., the presence of sleep spindles) favoring decodability is
also found with studies where TMR exhibited beneficial effects on
behavior90,91, which further supports the notion that our TMR proce-
dure indeed induced memory reactivation, but with opposite con-
sequences on behavior. Finally, the obtained cross-classification
results were highly specific with regards to retrieval processes.
Retrieval-related neural patterns of head orientations could only be
successfully classified during TMR in case of correctly remembered
head orientations (see Supplementary Fig. 5 for cross-classification
based on not-remembered trials), while decodable time windows with
regards to the retrieval data highly overlapped between the cross-
classification and within retrieval classification procedures.

To conclude, using invasive and non-invasive human electro-
physiology we found an intimate relationship between NREM sleep-
related oscillations and memory reactivation. Our findings provide
evidence in favor of current models of systems-level consolidation in
humans, where spindle-locked ripples synchronize neural population
dynamics to reactivate previously formed memories. They establish
MTL ripples and their synchronization with cortical sleep rhythms as
crucial cornerstones of memory consolidation in humans.

Methods
Participants
25 healthy, right-handed participants (mean age: 25.2 ± 0.6; 16 female)
with normal or corrected-to-normal vision took part in the EEG
experiment. An additional 14 participants had to be excluded due to
insufficient sleep or technical problems. The sample size was deter-
mined in accordance with previous human sleep and memory studies
(e.g.,90–92). Pre-study screening questionnaires (including the Pitts-
burgh Sleep Quality Index (PSQI93), the morningness–eveningness
questionnaire94, and a self-developed questionnaire querying general
health status and the use of stimulants) indicated that participants did
not take any medication at the time of the experimental session and
did not suffer from any neurological or psychiatric disorders. All par-
ticipants reported good overall sleep quality. Furthermore, they had
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not been on a night shift for at least 8 weeks before the experiment. All
participantswere instructed towake upby 7 a.m. and avoid alcohol the
evening before and caffeine on the day of the experimental sessions.
They received course credit or financial reimbursement in return for
their participation. All participants gave written informed consent
after being informed about the details of the study. The study was
approved by the ethics committee of the Department of Psychology
(Ludwig–Maximilians-Universität München).

For the intracranial EEG study, 10 inpatients from the Epilepsy
Center, Department of Neurology, Ludwig–Maximilian Universität
(Munich, Germany), all suffering from medically intractable epilepsy,
volunteered (7 female; age: 31.20 ± 3.46). An additional four patients
had to be excluded due to technical difficulties. The study was
approved by the ethics committee of the Medical Faculty of the
Ludwig–Maximilians-Universität München.

Stimuli and procedures
Overview. On experimental days participants arrived at the sleep
laboratory at 7 p.m. The experimental session started with the set-up
for polysomnographic recordings during which electrodes for elec-
troencephalographic (EEG) and electrooculography (EOG) were
applied. Several days before the experimental session, participants
were habituated to the environmentby having anadaptationnap in the
sleep laboratory. At around 8 p.m. the experiment started with a
training task, followedby thememory task (for details see Training and
Memory Task below). The sleep period began at ~ 11 p.m. and all par-
ticipants slept for ~ 7 hours (for sleep characteristics see Supplemen-
tary Tables 1). During NREM sleep (sleep stages N2 and SWS), some of
the animal sounds, which were presented before during the training
and the memory task were presented again for 60min (see Targeted
memory reactivation for details). Participants were awoken after
~7 hours of sleep from light sleep (sleep stage N1 or N2) and after
15min of recovery, memory performance was tested again (see Sup-
plementary Table 1 for sleep characteristics).

For the intracranial EEG study, the general approach was largely
similar. Experimental procedures were arranged around the clinical
routines. Specifically, the training sessions were executed during the
daytime, while the memory task was employed after dinner (i.e.,
starting between ~ 6-7 pm). Patients went to sleep between 10 and
12 p.m. and slept for ~ 7 hours (for sleep characteristics see Supple-
mentary Tables 2). As with the EEG study, animal sounds were pre-
sented for 60min during NREM sleep. Post-sleep memory
performance was tested the next morning (see Supplementary Table 2
for sleep characteristics).

Stimuli. A set of in total 336 images of objects and five animal sounds
(i.e., a cow’s moo, a parrot’s squawk, a cat’s meow, a sheep’s baa, a
cuckoo’s sound) served as experimental stimuli. Objects were images
of animals, food, clothing, tools, or household items presented on a
plain white background. All images were taken from95.

Experimental tasks. For the recordingof behavioral responses and the
presentation of all experimental tasks, Psychophysics Toolbox Version
396 and MATLAB 2018b (MathWorks, Natick, USA) were used.
Responses were made via keyboard presses on a dedicated PC. Across
all experimental phases, the presentation order of stimuli was rando-
mized across participants/patients.

Training. Participants/patients began by fixating on the center screen
(screen size: 28 inch), where a fixation cross was presented for
1.5 ± 0.1 s. The screen to eye distance was ~ 1 meter for the scalp EEG
study and ~ 1.20 meter for the iEEG study. The cross disappeared and
one of four animal sounds was played (600ms). Subsequently, the
cross appeared on one of four flanking screens (positioned at − 60°,
− 30°, + 30° and +60° relative to the center screen, duration: 2.5 s, see

Fig. 1a; the size offlanker screens: 22 inch). Four of the total five sounds
were randomly chosen at the start of the experiment and randomly
assigned to a singleflanking screen. The assignment of sound to screen
remained fixed across the whole experiment. Participants/patients
were instructed to turn their heads to face the screen which the fixa-
tion cross appeared on andmaintain fixation upon the cross (duration:
2.5 s). Afterward, the fixation cross re-appeared on the center screen
for 1.5 ( ± 0.1) seconds andparticipants/patients had tobring their head
back to the starting (i.e., central) position. The training session con-
sisted of 160 trials, split across 4 blocks (i.e., 40 trials per block). The
aim of the session was enabling participants/patients to form strong
and stable associations between the sound cues and the correspond-
ing head orientations (i.e., flanking screens).

Memory task [EEG study]. Participants in the EEG study learned to
associate 168 images of objects with specific head orientations. Each
trial started with a fixation cross, presented for 1.5 ± 0.1 s. Afterward,
one of the four animal sounds from the training phase was played
(duration 600ms). Subsequently, an image of an objectwas presented
on the corresponding flanking screen for 4 s (the assignment of sound
to screen was known to the participants from the training). Partici-
pants were instructed to turn their heads to face the screen which the
image appeared on and to remember the images and their position.
Afterwards, the participants had to indicate via button press whether
the previously seen objectwas animate or inanimate, with the question
being presented on the center screen. The pre-sleep memory test
included the 168 images from encoding (old items) intermixed with 84
new images, which were not seen by the participants before (“foils”).
Each trial started with a fixation cross, presented for 1.5 ± 0.1 s. After
the fixation cross, an image was presented on the center screen. After
1 second, recognition memory was assessed. Participants were asked
to indicate whether the image was “old” (i.e., part of the learning
material) or “new”’ (i.e., it was not seen during learning) within the next
10 s. In case of “new” responses, participants immediatelymoved on to
the next trial. In the case of “old” responses, participants were required
to indicate by button press the related head orientation (i.e., the
flanking screen on which the image was presented; for head-
movement related data during retrieval see Supplementary Fig. 24).
Each trial ended with participants indicating how confident they were
with their head orientation decision (scale from 0 corresponding to
very uncertain to 4, very certain). The post-sleep retrieval followed the
same procedures as the pre-sleepmemory test with the exception that
new foil images were used.

Memory task [intracranial EEG study]. The procedures of the mem-
ory task were similar to the EEG study, with some modifications. The
stimulus pool comprised 288 objects (drawn from the same selection
as used in the EEG study). In order not to overtax patients, the pre-
sleepmemory taskwas split into three consecutive encoding - retrieval
blocks. During each encoding block patients were presented with 48
images on the flanking screens (please note that the trial level was
identical to the one described above). Each encoding block was fol-
lowed by a retrieval block, where the 48 images from encoding inter-
mixedwith 24 new imageswere presented.Hence, across all blocks,we
used 144 images as old items and 72 images as new items. As above,
patients had to first indicate whether a given imagewas old or new and
in the case of old items specify the remembered head orientation. Due
to time constraints, no confidence rating was obtained. The post-sleep
retrieval was executed in one run, meaning that patients were con-
fronted with the 144 images which were part of the learning material
and 72 foils.

Targeted memory reactivation. For targeted memory reactivation 2
out of the 4 sounds presented during training and encoding were
selected. Specifically, we randomly picked one out of the two sounds
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associated with the left-sided head orientations (i.e., flanking screens
positioned at− 60° and − 30°) andone sound associatedwith the right-
sided head orientations (i.e., flanking screens positioned at +30° and
+60°). In addition, the fifth animal sound which was not used during
training and encoding served as a control stimulus. The three cues
were repeatedly presented during NREM sleep via loudspeaker with an
intertrial interval of 5.5 ± 0.2 seconds (~ 50 dB sound pressure level) for
a maximum of 60minutes (EEG study: 182.6 ± 31.41 repetitions per
stimulus; intracranial EEG study: 187.1 ± 23.7 repetitions per stimulus).
Sound presentation was stopped whenever signs of arousals, awa-
kenings, or REM sleep became visible.

Scalp EEG acquisition
An EEGo 65 channel EEG system (ANT Neuro Enschede, Netherlands)
was used to record electro- encephalography (EEG) throughout the
experiment. Impedances were kept below 20 kΩ. EEG signals were
referenced online to electrode CPz and sampled at a rate of 1000Hz.
Furthermore, horizontal and vertical EOG was recorded for poly-
somnography. Sleep architecture was determined offline according to
standard criteria by two independent raters97.

Intracranial EEG acquisition
Intracranial EEG was recorded from Spencer depth electrodes (Ad-
Tech Medical Instrument, Racine, Wisconsin, United States) with 4–12
contacts each, 5mm apart. Data were recorded using XLTEK Neuro-
works software (Natus Medical, San Carlos, California, US) and an
XLTEK EMU128FS amplifier, with voltages referenced to a parietal
electrode site. The sampling rate was set at 1000Hz.

EEG data analysis
EEG data were preprocessed using the FieldTrip toolbox for EEG/MEG
analysis98. All data were down-sampled to 200Hz. Subsequently, the
pre- and post-sleep retrieval as well as the TMR data were segmented
into epochs. For the retrieval data, we segmented data from the onset
of the associative retrieval. We reasoned that memory reactivation of
associated head orientations should be particularly strong due to the
potential hippocampal dependency (as compared to recognition
tests99). The temporal range of the epochs was [– 1 to 3 s] around sti-
mulus onset for retrieval and TMR trials. Noisy EEG channels were
identified by visual inspection, discarded, and interpolated, using a
weighted average of the neighboring channels. The data were visually
inspected and artefactual trials were removed. The retrieval data were
additionally subjected to an independent component analysis (ICA)
and ICA components associated with eye blinks and eye movements
were identified and rejected (for ERPs related to left and right stimulus
categories for retrieval and TMR see Supplementary Fig. 25).

intracranial EEG data analysis
The preprocessing steps for the intracranial EEG data were identical to
the ones described above, just that the original sampling of 1000 Hz
was preserved. Intracranial EEG data were additionally inspected for
epileptic activity, with data segments comprising epileptic events at
any given contact being discarded (26.71 ± 5.24 % of all TMR trials
(NallTrials= 561.30 ± 22.49); 29.03 ± 4.68 % of all retrieval trials
(NallTrials= 256.8 ± 7.24)); for interictal epileptiformdischarge triggered
classification see Supplementary Fig. 26). In addition, contacts which
were contaminated with epileptiform background activity were dis-
carded. Only seizure-free nights were included in the analysis.

Source level
To estimate the sources of the obtained effects in the scalp EEG study,
we applied a DICS beamforming method100, as implemented in
FieldTrip98. A spatial filter for each specified location (each grid point;
10mm3 grid) was computed based on the cross - spectral density,
calculated separately for all retrieval and TMR trials. Electrode

locations for the 65 - channel EEGo EEG system were co-registered to
the surface of a standard MRI template in MNI (Montreal Neurological
Institute) space using the nasion and the left and right preauricular as
fiducial landmarks. A standard leadfield was computed using the
standard boundary element model51. The forward model was created
using a common dipole grid (10 mm3 grid) of the gray matter volume
(derived from the anatomical automatic labeling atlas101 in MNI space,
warped onto a standard MRI template, leading to 1457 virtual sensors.
Data analysis was accomplished in the sameway as on the sensor level.

Time–frequency analysis
Time–frequency analysis of the TMR segments (memory-related and
control cues) was performed using FieldTrip. Frequency decom-
position of the data, using Fourier analysis based on sliding time
windows (moving forward in 50ms increments). The window length
was set to five cycles of a given frequency (frequency range: 1–25 Hz
in 1 Hz steps). The windowed data segments were multiplied with a
Hanning taper before Fourier analysis. Afterward, power values were
z-scored across time [− 1 to 3 s]. The longer time segments were
chosen to allow for resolving low-frequency activity within the time
windows of interest [−0.5 to 1.5 s] and avoid edge artifacts. For
intracranial EEG data frontal, parietal, and temporal contacts were
taken into account.

Multivariate analysis
Multivariate classification of single-trial EEG data was performed using
MVPA-Light, a MATLAB-based toolbox for multivariate pattern
analysis102. For all multivariate analyses, a LDA was used as a classifier.
Before classification, data in both studies were re-referenced using a
common average reference (CAR).

For classification within the retrieval task, the retrieval data were
z-scored across all trials for each timepoint separately. Next, data from
the pre- and the post-sleep retrieval were collapsed and subjected to a
principal component analysis (PCA), which transforms the data into
linearly uncorrelated components, ordered by the amount of variance
explained by each component103. PCA was applied to reduce dimen-
sionality and limit over-fitting (PCA) and the first 30 principal com-
ponents were retained for further analysis (explaining 96.83 ±0.2 % of
the variance in the scalp EEG study and 97.60 ±0.17 % in the iEEG
study). To quantify whether remembered head orientations can be
differentiated during retrieval, the classifier was trained and tested to
discriminate between the later cued head orientations (i.e., one left
sided and one right sided head orientation; see Targeted Memory
reactivation for details). Only trials belonging to remembered head
orientations entered the analysis. Data were smoothed using a running
average window of 150ms. The EEG channels / intracranial EEG con-
tacts served as features and a different classifier was trained and tested
on every time point. As metric, we used Area Under the ROC Curve
(AUC), which indexes the mean accuracy with which a randomly cho-
sen pair of Class A and Class B trials could be assigned to their correct
classes (0.5 = random performance; 1.0 = perfect performance). To
avoid overfitting, data were split into training and test sets using
fivefold cross-validation104. Since cross-validation results are stochastic
due to the random assignment of trials into folds, the analysis was
repeated five times and results were averaged. For statistical evalua-
tion, the classification output was tested against chance levels (i.e.,
0.5). To resolve the topography of diagnostic features in the scalp EEG
data, we conducted a “searchlight decoding procedure” (Fig. 2c). In
brief, PCA components were projected back to sensor space and the
classification procedure was repeated across moving kernels of small
electrode clusters, with neighboring electrodes being selected as fea-
tures [feature number range: 5–9]. Finally, classification values were
collapsed across our time windows of interest [retrieval time: − 30 to
680ms;] and tested against chance level (corrected for multiple
comparisons across space).
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To investigate whether TMR would elicit head orientation-related
activity, we used the temporal generalization method105. Before decod-
ing, a baseline correction was applied based on the whole trial for
retrieval and TMR segments [−0.5 to 3 s]. Next, retrieval and TMR data
were z-scored across trials and collapsed. PCAwas applied to the pooled
retrieval-TMR data and the first 30 principal components were retained.
Retrieval and TMRdatawere smoothed using a running averagewindow
of 150ms. A classifier was then trained for every time point in the
retrieval data and applied on every time point during TMR. No cross-
validation was required since retrieval and TMR datasets were indepen-
dent. Asmetric,weagainusedAUC(seeabove). For statistical evaluation,
the classification output was tested against chance levels (i.e., 0.5).

Given that the interaction between SO-spindles and ripples has
been tightly linked to memory reactivation40,41, we determined whe-
ther TMR-triggered reactivation of head orientation activity would be
traceable in intracranial EEG recordings, specifically in trials where the
probability for SO-spindles and concomitant rippleswould behigh: for
eachparticipant, we sorted the TMR trials as a function of power in the
clusters obtained in the time-frequency analysis (Fig. 4c) and divided
the trials using a median split. Then, a classifier was trained on the
concatenated retrieval data from both pre- and post-sleep sessions
[−0.5 to 1 s], and the resulting training weights were applied to the
TMR data [−0.5 to 1.5 s], either comprising high SO-spindle power
trials (i.e., where ripples peaked during spindle activity) or low SO-
spindle power trials and contrasted the resultant performance out-
comes. For statistical evaluation, the classification performance of
both categories was directly compared.

For ripple triggered classification, a classifier was trained on the
concatenated retrieval data from both pre- and post-sleep sessions
[−0.5 to 1 s], but the resulting training weights were applied on intra-
cranial EEG segments centered around spindle-locked MTL ripples
(i.e., ripples occurring during spindles between 700 to 1400ms after
cue onset). For statistical evaluation, surrogate decoding performance
was calculated by centering intracranial EEG segments around time
points where no ripple was present during the time window of pre-
ferred spindle-ripple interactions (i.e., 700 to 1400ms after cue onset).
This procedure was repeated 100 times and resulting surrogate per-
formance values were then averaged, providing baseline values for
each participant under the null hypothesis that spindle-locked ripples
would not be relevant for the classification of stimulus categories.

For the scalp EEG data, head orientations were decoded in source
space using searchlight analysis106. A sphere of radius 2 cm was cen-
tered on each of the 1467 voxels in the brain. All voxels within the
sphere that were inside the brain volume (10-26 voxels) were selected
as features. Identical to the sensor level analysis a classifier was trained
for every time point in the retrieval data and applied on every time
point during TMR. Finally, classification values were collapsed across
our time windows of interest [retrieval time: − 110 to 330ms] and
tested against chance level (corrected for multiple comparisons
across space).

Ripple detection
Ripple events in the medial temporal lobe (MTL) depth recordings (7
patients, 14 contacts in total: 4 hippocampal, 7 parahippocampal, and3
entorhinal contacts) were detected during artifact-free retrieval and
TMRsegments using offline algorithms18,107. The intracranial EEG signal
(sampling rate 1000Hz) was band-pass filtered from 80 to 120Hz and
the root mean square signal (RMS) was calculated based on a 20ms
windows followed by an additional smoothing with the same window
length. A ripple event was identified whenever the smoothed RMS-
signal exceed a threshold, defined by the mean plus 2 times the stan-
dard deviation of the RMS-signal across all TMR data points. Potential
ripple events shorter than 25ms or longer than 300ms were rejected.
All ripple events were required to exhibit a minimum of three cycles in
the raw signal (for cross-classification based on raw, non artifact-

rejected data, where ripples were detected using a threshold of 3 SD,
see Supplementary Fig. 27).

Peri-event histograms of ripple occurrence
For retrieval trials, peri-event histograms (bin size = 50ms) of ripple
events (per second) time-locked to the associative memory prompt
onset were computed for remembered and not-remembered trials. To
investigate the timing of MTL ripples (centered at the maximal negative
amplitude)with regards toTMRcues, wefirst sorted for eachparticipant
the TMR trials as a function of power in the clusters obtained in the time-
frequency analysis (Fig. 4c) and divided the trials using a median split.
We then created for each condition peri-event histograms (bin size =
50ms) of ripple events (per second) time-locked to TMR cues.

Modulation Index
Phase amplitude coupling was assessed with the Modulation Index
(MI)42. We first isolated in each patient the cortical contact exhibiting
the strongest power in the spindleband (12–15Hz; 0 – 1.5 seconds after
cuesonset; see SupplementaryTable 3 for anoverview). All intracranial
EEG data segments were centered in relation to MTL-detected ripple
maxima, focusing on ripples during high spindle activity (i.e., ripples
emerging in a timewindow from 700 to 1400ms after cue onset). Low
frequencies in cortical contacts (4 – 20Hz)were filteredwith awindow
of 0.3 times the frequency of interest, centered on each frequency
step. High frequencies inMTL contacts (20 – 130Hz) were filteredwith
a window of 0.7 times the frequency of interest. To compute the MI
(for a given frequency pair), we divided the phase signal into 18 bins
(20° each), and then, computed for each bin themean amplitude. This
yielded a distribution of amplitude as a function of phase. The MI is
defined as the Kullback-Leibler distance between that distribution and
the uniformdistribution (over the same number of bins). To assess the
statistical significance of theMI values, we randomly shuffled the trials
of the amplitude providing contacts and computed the MI using the
shuffled data.We repeated this procedure 100 times, resulting in aMI-
level reference distribution.

Spindle-ripple coupling
For the analysis of the coupling between cortical spindles and MTL
ripples, we first isolated in each patient the cortical contact exhibiting
the strongest power in the spindleband (12–15Hz; 0 – 1.5 seconds after
cues onset). We then filtered the data (12–15Hz, two-pass Butterworth
bandpass filter) and applied a Hilbert transform. The instantaneous
phase angle of cortical recordings at the time of MTL detected ripple
maxima was extracted. We specifically focused on ripples which
occurred during high spindle activity (i.e., ripples emerging in a time
window from 700 to 1400ms after cue onset). The preferred phase of
spindle-ripple coupling for each cortical contact was then obtained by
taking the circular mean of all individual events’ preferred phases.

Statistics
Behavioral retrieval data were subjected to a 2 (TMR: cued/uncued) × 2
(Test-Time: Pre-sleep/Post-sleep) repeated measures ANOVA. The sta-
tistical significance thresholds for all behavioral analyses were set at
p< .05. FieldTrip’s cluster-based permutation test98 was used to deal
with the multiple comparisons problem for all classification analyses. A
dependent-samples t-test was used at the sample level to identify clus-
ters of contiguous time points across participants and values were
thresholded at p=0.05. Monte Carlo simulations were used to calculate
the cluster p value (alpha =0.05, two-tailed) under the permutation
distribution. Analyses were performed at the group level. The input data
were either classification values across time (Figs. 1c–3b) or time x time
classification values (Figs. 2b–3c). In all cases a two-sided cluster-based
permutation test with 1000 randomizations was used to contrast
classification accuracy against chance performance (except for Supple-
mentary Fig. 2, where a one-sided cluster permutation test was used).
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The same statistical rationale was implemented for the statistical
assessment of time-frequency data with time × frequency values as
input, as well as for phase-amplitude data (frequency x frequency as
input) and peri-event histograms (time as input). Statistical analysis of
TFR data in the intracranial EEG study was performed at the individual
electrode/contact level (fixed-effects analysis), considering all intracra-
nial EEG contacts (N=390; see Supplementary Fig. 8 for coverage), while
statistical analysis of phase-amplitude and peri-event histogram data
considered all possible cortical-MTL contact pairs (N= 14, fixed effects;
with chosen cortical contacts showing the strongest spindle power).
Pearson correlation was used to assess the relationship between (i)
classification performance and time-frequency power (Fig. 2d). For cir-
cular statistics (Fig. 5c), the phase distributions across all cortical-MTL
contact pairs (N= 14) were tested against uniformity with a specified
mean direction (i.e., ±π corresponding to the spindle through) using the
V test (CircStat toolbox108).

Reporting summary
Further information on research design is available in the Nature
Portfolio Reporting Summary linked to this article.

Data availability
Data acquired from the healthy participants are available at Ludwig-
Maximilians-Universität via https://data.ub.uni-muenchen.de/487/109.
Due to privacy laws, data acquired from the patients are not openly
available, though (subject to privacy laws) can be provided by con-
tacting the corresponding author. Source data are provided with
this paper.

Code availability
Openly available at Ludwig- Maximilians-Universität via https://data.
ub.uni-muenchen.de/487/109.
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