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Numerically simulating large, spinful, fermionic systems is of great interest in condensed matter
physics. However, the exponential growth of the Hilbert space dimension with system size renders
exact quantum state parameterizations impractical. Owing to their representative power, neural
networks often allow to overcome this exponential scaling. Here, we investigate the ability of neural
quantum states (NQS) to represent the bosonic and fermionic t− Jmodel – the high interaction limit of
the Hubbardmodel – on various 1D and 2D lattices. Using autoregressive, tensorized recurrent neural
networks (RNNs), we study ground state representations upon hole doping the half-filled system.
Additionally, we propose a method to calculate quasiparticle dispersions, applicable to any network
architecture or lattice geometry, and allowing to infer the low-energy physics from NQS. By analyzing
the strengths and weaknesses of the RNN ansatz we shed light on the challenges and promises of
NQS for simulating bosonic and fermionic systems.

The simulation of quantum systems has remained a persistent challenge
until today, primarily due to the exponential growth of the Hilbert space,
making it exceedingly difficult to parameterize the wave functions of large
systems using exactmethods. Since the seminal work of Carleo andTroyer1,
the idea of using neural networks to simulate quantum systems1–5 has been
applied successfully for a large number of quantum systems, leveraging
various neural network architectures. These architectures include restricted
Boltzmann machines6, convolutional neural networks (CNNs)7, group
CNNs8, autoencoders9 as well as autoregressive neural networks such as
recurrent neural networks (RNNs)5,10–14, with neural network representa-
tions of both amplitude and phase distributions of the quantum state under
consideration. These neural quantum states (NQS) make use of the innate
ability of neural networks to efficiently represent probability distributions.
When applying them to represent quantum systems, this ability can help to
reduce the number of parameters required to encode the system.

Despite their representative power, NQS have been shown to face
challenges during the trainingprocess, for example,when they are trained to
minimize the energy, i.e. to represent ground states. This results from the
intricate nature of the loss landscape, characterized by numerous saddle
points and local minima that complicate the search for the global
minimum15. One promising avenue to overcome this problem is the use of
many uncorrelated samples during the training. This strategy is facilitated
when using autoregressive neural networks16,17, allowing to directly sample

from thewave functions’ amplitudes. Autoregressive networks have already
been applied in the physics context18,19, such as for the variational simulation
of spin systems11–14.

Many works have so far focused on NQS representations of spin sys-
tems at half-filling, revealing that NQS can be used to study a variety of
phenomena that are relevant to state-of-the-art research, as e.g. shown for
RNN representations on various lattice geometries, including frustrated
spin systems11,20, and systems with topological order21. For all of these sys-
tems, the physics becomes even richer when introducingmobile impurities,
e.g. holes, into the system, yielding a competition between the magnetic
background and the kinetic energy of the impurity. Simulating such systems
holds particular relevance for understanding high-temperature super-
conductivity, where the superconducting dome arises upon doping the
antiferromagnetic half-filled state with holes22. The search for NQS that are
capable of representing such spinful fermionic systems is still in its early
stages. In recent years, the first NQS have been developed that obey the
fermionic statistics, simulating molecules23–27, spinless fermions17 and
spinful fermions28–31. Among those architectures are FermiNet23,24, Slater-
Jastrow ansätze17,28 or variants of Jordan-Wigner transformations25,29,32.

Here, we use an autoregressive neural network architecture, supple-
mentedwith a Jordan-Wigner transformation, to simulate groundandexcited
states of the high interaction limit of the Fermi-Hubbard model, believed to
capture essential features of high-temperature cuprate superconductors.
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Specifically, we use a tensorized 2D version of an RNN wave function11 with
gated recurrentunits33–35, proven tosuccessfullymodel spin systems10,11,20,21,36,37.
In the remainder of this paper, we will discuss the system under investigation,
namely the bosonic and fermionic t− Jmodel, followedby thepresentationof
a schemefor the calculationofdispersionrelations fromanyNQSarchitecture,
tested for quasiparticle dispersions of 1D and 2D t− J systems. We find that
the RNN succeeds in accurately capturing the features of the considered low-
energy states. Lastly, we discuss the performance of the RNN ansatz and
identify the strengths and bottlenecks of this ansatz.

Results
We apply the RNN to simulate ground and excited states of the fermionic
(bosonic) t− J model, both in one and two dimensions. In its more gen-
eralized form, known as the fermionic (bosonic) t−XXZ model, with
anisotropic superexchange interactions denoted as Jz and J±, the Hamilto-
nian under consideration reads as follows:

HtXXZ ¼� t
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38. Furthermore,PG projects out
states with more than one particle per site. Note that for a single hole, this
single occupancy constraint leads to the same statistics for the bosonic and
fermionic models. For Jz = J±, Eq. (1) reduces to the t− J model and for
J± = 0 to the t− Jz model. Despite its relevance for the study of unconven-
tional superconductivity,whether there are actually superconductingphases
in the t− J and the Fermi Hubbard model is still under debate39–41. While
findingNQS representations of superconducting states, or –more broadly –
pairing wave functions28,30,42–44, is still a topic of current research, here, we
focus on the capacity of the RNN ansatz to represent ground and excited
states of the t− Jmodel and not on their superconducting properties.

In the absence of doping (n̂i ¼ 1), Eq. (1) reduces to theXXZmodel or,
in the case of Jz = J ± , the Heisenberg model. Prior studies have already
utilized RNNs to simulate these spin models20,45, with the possibility of
rendering the model stoquastic by making use of the Marshall sign rule46.
This is done by implementing the sign rule directly in the RNN
architecture20, yielding a simplified optimization procedure of the wave
functions’ phase. In contrast, we do not implement any bias on the phase of
the quantum state, in order to make our architecture applicable to any
number of holes in the system.

When the ground state at n̂i ¼ 1 is doped with a single hole, the
resulting mobile impurity gets dressed with a cloud of magnetic excitations.
This yields the formation of a magnetic polaron, which has already been
observed in ultracold atom experiments47. Its properties strongly depend on
the spin background, see Fig. 1a and b. Upon further doping, the strong
correlations in themodelmake the simulationof theFermi-Hubbardor t− J
models numerically challenging, despite impressive numerical advances in
the past years39,48–50: Commonly used methods all come with their specific
limitations, e.g. density matrix renormalization group51,52 is limited by the
area-lawof entanglement,making it challenging to apply thismethods to 2D
or higher dimensions. Finally, the calculation of spectral functions or the
dispersion relations E(k)53, as exemplary shown in Fig. 1, is of great interest
for many fields in physics to reveal the emergent physics of a system under
investigation. In condensed matter physics, they are typically used to infer
the dominating excitations in the ground state or higher energy states, e.g.
upondoping the system. This information is contained in specific features of
the spectra, e.g. the bandwidth of the quasiparticle dispersionE(k).However,
the calculation of spectra or dispersions E(k) is in general, computationally

costly using conventional methods, e.g. density-matrix renormalization
group (DMRG) simulations54,55: The former typically involves a, in general
expensive, time-evolution of the state, and the latter the calculation of a
global operator, the momentum k, which is typically very costly for matrix-
product-states. Our RNN ansatz uses Uð1Þ ¼ Uð1ÞN̂ ×Uð1ÞŜz symmetry,
i.e. conserved total particle and total magnetization10,11,20,25,45,56. Further
details on the RNN architecture can be found in Methods.

NQS dispersion relations
Here, we calculate the dispersion relations E(k) in t−XXZ systems with
different dimensions and different lattice geometries using NQS. The
method that we propose is applicable to any NQS architecture since the
momentum is enforced via a momentum constraint in the cost function,
forcing the system to a specific target momentum ktarget within the dis-
persion, see Fig. 2 and Methods. This is in contrast to previous works26,57,58,
where the momentum is used for the definition of the wave function
coefficients.Hence, the schemeonly requires the possibility to draw samples
from the NQS and calculate the respective probabilities, making the cal-
culation of ENQS(kx, ky) computationally efficient, and allows to use pre-
trained NQS from the ground state as a starting point for the momentum
training. Furthermore, the scheme can also be combined with spatial
symmetries. This couldhelp to improve the accuracy, e.g.whenusing aNQS
with implemented translational invariance. Moreover, additional symme-
tries could also be used to calculate e.g. m4 rotational resonances

59 or to
probe the competition between the s, p or d-wave ground state energies60.
Here, we focus on the peak positions of the quasiparticle spectra. In prin-
ciple, also the spectral weights could also be accessed by calculating the
overlap hψ1h

k ĵckjψ0h
0 i of themomentumeigenstateψ1h

k with the ground state
ψ0h
0 upon removing a particle from the system. To also obtain the peak

positions and spectral weights of higher energy states, usually the Green’s
function is computed. In the context of NQS, this has been done for a

Fig. 1 | Results for the t− J and t− Jz square lattice with 10 × 4 sites, t/Jz= 3 and
open boundaries in x, periodic boundaries in y direction. a) Quasiparticle dis-
persion of a single hole for the t− J system obtained with the recurrent neural
network (RNN) (blue markers), compared to the matrix product state (MPS)
spectral function from ref. 53 with the spectral weight S indicated by the colormap
and shown in the inset for k = (0.4π, 0.5π) (gray dashed lines).We average the energy
over the last 100 training iterations with the standard deviation denoted by the
respective error bars in blue. b Dispersion of the t− Jz system obtained with the
RNN, compared to the MPS spectral function and with the same error bars as in a.
c Relative errors Δϵ ¼ ERNN�EDMRG

jEDMRG j during the training, with hidden dimension
dh = 300. The training was restarted after 20000 steps (dashed lines), with an
increased number of samples per iteration from 200 to 600 (t− J) or 1000 (t− Jz) in
the last restart.
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quantum Ising model using time dependent variational Monte Carlo
(t−VMC)61, for J1− J2 and Heisenberg models using an extension of the
stochastic reconfiguration algorithm62,63 or for the Hubbard model using
dynamical variational Monte Carlo (VMC)64.

t− XXZ model in 1D. In Fig. 3a the dispersion for a single hole in an
antiferromagnetic t− XXZ chain with 20 sites and J± = 1, Jz = 4 and t = 8,
obtained with a 1D RNN and exact diagonalization (ED) is shown. Note
that in the case of a single hole, no holes can be exchanged and hence the
bosonic and fermionic models are the same. The results for the ground
state energy at kx = 0.5π, obtained during a trainingwith 20000 iterations,
and the energies away from the ground state, shown in Fig. 3, are in
relatively good agreement with the exact values from ED. However, at
some values of kx ≠ 0.5π it can be seen that the RNN is trapped in local
minima close to the ground state. Overall, the RNN succeeds in capturing
physical properties like the bandwidth very accurately, revealing the
underlying physical excitations:

For the system under consideration, the bandwidth and the shape of
the dispersion in Fig. 3a is a result of spin-charge separation in 1D systems.
Spin-charge separation denotes the fact that themotion of a hole in such an
antiferromagnetic (AFM) spin chain with coupling J±, Jz≪ t can be
approximated by an almost free hole that is only weakly coupled to the spin
chain. Hence, the dispersion in Fig. 3 can be approximated by two separate
dispersions; i.e. holon and spinon dispersions. Hereby, the holon is the
charge excitation, associated with energy scales t, and the spinon is the spin
excitation associated with energy J⊥, Jz. In ref. 59 it is shown that the com-
bined dispersion is

EðkxÞ ¼ �2t cosðkhÞ þ J ± cos 2Δkð Þ þ J ± þ Jz; ð2Þ

whereΔk = kx− kh, kh is themomentumof the holon and kx = kh+ ks is the
combined momentum of the holon and spinon. Eq. (2) is denoted by the
gray line in Fig. 3. Again, the agreement with the RNN is relatively good.

t− J model on a square lattice. Due to the layered structure of high-Tc

superconductors like cuprates22 or nickelates65,66, the physics of t− J
systems upon doping is particularly interesting in 2D. In Figs. 1 and 4, the
quasiparticle dispersion for a single hole on 10 × 4 and 4 × 4t− J and
t− Jz lattices are presented. In both cases, Figs. 1b and 4b show that the
ground state convergence is better for the t− Jzmodel with relative errors
on the order ofΔϵ ≈ 10−3 for both system sizes, yielding a good agreement
with the reference energies from DMRG (10 × 4 system) and ED
(4 × 4 system) for all considered energies E(kx, ky) away from the ground
state.With a relative error ofΔϵ ≈ 10−2, the error of the t− J ground states
is above the t− Jz systems, which is also reflected in the accuracy of the
dispersion ERNN(kx, ky) in Figs. 1 and 4.

In contrast to the previous section, there is no spin-charge separation
in the strict sense in two-dimensional systems. In the case t≫ J± = Jz = : J
that we consider here (t/J = 3), the mobile dopant can be described by
fractionalized spinons and chargons that are confined by a string-like
potential that arises due to the spin background distortion when the
dopantmoves through the system67,68. Based on this idea, Laughlin69 drew
the analogy with the 1D Fermi-Hubbard or t− J systems and suggested
that the dispersion in the respective 2D systems can be interpreted in

Fig. 2 | Calculating dispersion relations from NQS. Adding the momentum
constraint Cktarget of Eq. (12), on top of the energy minimization C of Eq. (15) in
a, changes the loss landscape as schematically shown in b and forces the neural
quantum state into a higher energy state E(k) with the desired momentum ktarget.

Fig. 3 | Results for the 1D t−XXZ system with 20 sites and J±= 1, Jz= 4 and
t= 8. aQuasiparticle dispersion for a single hole obtained with the recurrent neural
network (RNN, red markers), compared to exact energies from exact diagonaliza-
tion(ED, light red lines) and the combined spinon and holon dispersions from Eq.
(2) (gray).We average the RNNenergy over the last 100 training iterations, eachwith
200 samples, with the standard deviation denoted by the error bars. We show the
exact low-energy excited states as well. b Relative error Δϵ ¼ ERNN�EED

jEED j during the
ground state training. a and b are obtained using a 1D RNN architecture with a
hidden dimension dh = 100.

Fig. 4 | Results for the t− J (blue) and t− Jz (red) square lattice with 4 × 4 sites,
t/J= 3 and periodic boundaries. a Quasiparticle dispersion for a single hole
obtainedwith the recurrent neural network (RNN, blue and redmarkers), compared
to the exact energies from exact diagonalization (ED, blue and red lines).We average
the energy over the last 100 training iterations, each with 200 samples, with the
standard deviation denoted by the respective error bars shown in blue and red. We
show the exact low-energy excited states as well. b Relative error Δϵ during the
ground state training for t− J (light blue) and t− Jz (light red) square lattice ground
states, with a hidden dimension dh = 100 and minimum-step stochastic reconfi-
guration (t− J) and dh = 70 and Adam (t− Jz). Thick lines are averages over 100
training iterations to guide the eye.
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terms of pointlike partons, spinons and chargons, that interact with each
other. This parton picture explains that the quasiparticle dispersion for a
single hole is dominated the spinon with a bandwidth on the order of J±,
with corrections by the chargon on energy scales of t53. This mechanism
also provides the explanation for the flat dispersion for the t− Jzmodel in
contrast to the t− J model, as captued by the RNN, see Figs. 1 and 4.
Despite the small deviations from the dispersions calculated with ED or
DMRG, our RNN architecture, succeeds in capturing the respective
bandwidths of t− Jz and t− J models very accurately, allowing to gain
valuable insights on the spinon and chargon physics from the RNN
dispersions. Furthermore, the fact that node (π/2, π/2) and antinode
(π, 0) are degenerate in the 4 × 4 system is correctly reproduced.

Lastly, we would like to mention that there is a small region of sup-
pressed spectralweight near (π, π) in theDMRGresults of the t− J system59.
This suppression yields difficulties for our RNN scheme that are further
discussed in Supplementary Note 3.

t− J model on a triangular lattice. On triangular lattices, the physical
phenomena that are observed are distinctly different from the physics of
bipartite lattices, due to the notion of frustration and the absence of
particle-hole symmetry in non-bipartite lattices, among them e.g. kinetic
frustration70,71. In particular, the underlying constituents upon doping
the triangular ladder are not known71, making the triangular lattice an
intriguing system to study. Recent advancements have shown that these
lattices can also be studied experimentally using optical triangular
lattices72–74 and solid-state platforms based on Moiré
heterostructures75–77.

Triangular spin systemshave alreadybeen studiedusingRNNs20.Here,
we consider a triangular t− J ladder with length Lx = 9, with the quasi-
particle dispersion for a single hole and the learning curveswith andwithout
doping shown in Fig. 5.

As suggested in ref. 20, we use variational annealing for the training for
the triangular lattice that was shown to improve the performance for

frustrated systems like the triangular Heisenberg model20, see Methods. In
Fig. 5 it can be seen that this procedure yields relatively good results for the
ground states, with errors of Δϵ ≈ 0.001 for bothNh = 0 andNh = 1. For the
dispersion shown in Fig. 5a,we consider themomentum k defined along the
ladder, as shown in the inset figure. When enforcing k ≠ 0.444π away from
the ground state, the exact energy gaps from ED to the first excited states
stronglydecrease, and the theRNNgets trapped in these states inmost cases,
in particular for k > 0.444π. Furthermore, the error bars of the enforced
momenta are much higher compared to the other lattice geometries that
were studied in Figs. 1, 3 and 4, suggesting that the RNN states partly break
the translation invariance, and hence challenge the momentum optimiza-
tion scheme. This is further supported by the relative difference between the
wave function amplitudes log jψλðσ iÞj2 ¼ log pλðσ iÞ and the respective
translated samples log jψλðT̂eμ

σ iÞj2 ¼ log pλðT̂eμ
σ iÞ,

Δμ
Transl: ¼

1
Ns

X
i

log pλðσ iÞ � log pλ T̂eμ
σ i

� �� �2

log pλðσ iÞ þ log pλ T̂eμ
σ i

� �� �2 ; ð3Þ

whichwe take as ameasure for the violationof the translational invarianceat
the respectivemomenta. Figure 5 shows that themomenta with large errors
coincident with a large Δy

Transl:.

Performance of the RNN ansatz
The analysis of the quasiparticle dispersions indicate that our bosonic and
fermionic RNN ansätze successfully learns the dominating physics in the
considered regimes. In the following, we provide a more detailed discussion
on the performance of the RNN ansatz for fermionic and bosonic spin
systemsuponhole doping, focusing onground states on a 4 × 4 square lattice.

Figure 6 shows the relative error for the ground state energies of the
t− J(z) model obtained with our RNN ansatz upon doping the half-filled

Fig. 5 | Results for the t− Jmodel on a triangular lattice with 9 × 2 sites, t/J= 3
and periodic boundaries along x direction. a Quasiparticle dispersion for a single
hole obtained with the recurrent neural network (RNN, blue markers), compared to
the energies from exact diagonalization (ED, light blue lines). The large error for
k = 0.998π appears together with a large violation of translational invariance ΔTransl.,
measured by the relative difference between log-amplitudes log jψðσÞj2 and
log jψðT̂yσÞj2 as defined in Eq. (3) shown in green. All values are averages over the
last 100 training iterations, each with 200 samples, with the standard deviation
denoted by the blue error bars. We show the exact low-energy excited states as well.
b Relative error Δϵ during the ground state training without doping (orange) and
with one hole (blue).

Fig. 6 | Recurrent neural network (RNN) representation for ground states of the
bosonic and fermionic t− J(z) model with t/J= 3, 0≤Nh≤12 for a 4 × 4 square
latticewith openboundaries. aRelative energy error for bosons (blue) and fermions
(orange) as well as the Hilbert space dimension for a fixed number of holes Nh and
magnetization Ŝz (gray). b Logarithmic amplitude logðjψj2Þ and phase logðImψÞ
distributions from exact diagonalization (ED) for exemplary bosonic (blue) and
fermionic (orange) hole numbers. c Relative error and Hilbert space dimension for
the t− Jzmodel. We use a hidden dimension hd = 100. All values obtained from the
RNN are averages over the last 100 training steps (each with 200 samples), and error
bars denote the respective standard deviation.
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system with Nh holes. Starting from Nh = 0, where the t− J reduces to the
Heisenberg model, our RNN reaches a relative ground state energy error
Δϵ ≈ 10−4 after 20,000 training steps compared to ED. Fig. 6b shows that the
respective phase and amplitude distributions are relatively simple in this
case, with a low variance for the logarithmic amplitude and only two values
for the phase, 0 and π. Note that when comparing to the literature of ground
state representations using RNNs for the Heisenberg model11,45, the opti-
mization problem in our setup is more challenging due to the following
reasons: (i) The RNN that we use has a local Hilbert space dimension of
three states instead of two, allowing for all values ofNh in principle. (ii) Our
RNNlearns the sign structurewithout any bias, i.e. we donot implement the
Marshall sign rule already in the RNN, which would only work for Nh = 0.
(iii) We do not include the knowledge of spatial symmetries yet, which can
improve the performance as shown in Methods.

Upon doping, the exact log-amplitude and phase distributions from
ED can become more complicated than for the t− Jz model. For example,
for Nh = 4, the variance of the exact amplitudes becomes very large,
σbNh¼6ðlog jψj2Þ ¼ 15:91, see Fig. 6b. This yields larger ground state energy
errors than for the t− Jzmodel, and is further complicated when including
the antisymmetry in the fermionic case.Again,wemake theobservation that
for larger hole dopings, Nh ≥ 6 for bosons and Nh ≥ 10 for fermions, the
distributions for phase and amplitude become less complicated than in the
low to intermediate doping regime, yielding a higher accuracy of the RNN
wave function with errors Δϵ ≤ 10−4 for bosons and Δϵ ≤ 10−2 for fermions
in the respective doping regimes.

Our results show that in the lowdoping regime of the t− Jmodel, both
fermionic systems and bosonic systems are difficult to learn, see Fig. 6. This
suggests that not only the fermionic sign structure poses difficulties: Firstly,
the Hilbert space dimension in the finite doping regime indicated in gray in
Fig. 6a and c becomes much larger than for spin systems, challenging both
the RNN ansatz and its training. Second, the frustrated motion of holes in
the AFM Heisenberg background can potentially cause problems. When
these holesmove through the system, the spin background is affected, giving
rise to an effective J1− J2 spin model with nearest and next-nearest spin
exchange interactions and is hence more difficult to learn78. For the t− Jz
model, we observe that, probably due to the lack of spin dynamics resulting
from the absence of spin-flip terms, the relative errors are comparably low in
the bosonic case. Furthermore, for all states with high log jψj2 variance,
there is a significant amount of configurations σ with a large negative log
amplitude, i.e. ∣ψ(σ)∣2 ≈ 0. This makes an accurate determination of expec-
tation values extremely costly and can affect the training process. For
example, in ref. 79 it was shown that this yields higher variances for the
gradients determined by stochastic reconfiguration. Lastly, Fig. 6 shows that
the performance decreases for fermions, which is in agreement with the fact
that already on a mean-field level, fermionic Slater determinants are much
more complicated than the bosonic states.

In the Methods section, we provide a detailed discussion on these
challenges are encountered during training our t− J RNN architecture,
yielding the relatively large errors encountered e.g. in Fig. 6. Besides the
increased Hilbert space dimension and the small amplitudes for certain
configurations discussed above, we discuss the learning plateau asso-
ciated with a local minimum that is encountered for all considered
optimization routines—including annealing20, minimum-step stochastic
reconfiguration (minSR)80 and the recently proposed stochastic recon-
figuration (SR) variant based on a linear algebra trick81—and the fact that
SR algorithms have problems with autoregressive architectures82; the
complicated interplay between phase and amplitude optimization15; and
the difficulty to implement constraints on the symmetry sector under
consideration, e.g. the particle number, magnetization and spatial sym-
metries directly into the RNN architecture11,45. Many of these challenges
are inherent to the simulation of both bosonic and fermionic systems.
Our results indicate that the bottleneck for simulating fermionic spinful
systems is the training and not only the expressivity of the ansatz, and
point the way to possible improvements concerning the ansatz and the
training procedure.

Conclusions
To conclude,we present a neural network architecture, based onRNNs11, to
simulate ground states of the fermionic and bosonic t− Jmodel upon finite
hole doping. We show that, despite many challenges due to the increased
complexity of the learning problem compared to spin systems, the RNN
succeeds in capturing physical properties like the shape of the dispersion,
indicating the dominating emergent excitations of the systems. In order to
calculate the dispersion,wepresent amethod that canbeusedwith anyNQS
ansatz and for any lattice geometry and map out quasiparticle dispersion
using the RNN ansatz for several different lattice geometries, including 1D
and 2D systems. Moreover, it enables an extremely efficient calculation of
dispersion relations compared to conventional methods like DMRG54,
which usually require a time-evolution of the state55. The dispersion scheme
yields a good agreement when comparing to exact diagonalization or
DMRG results, and is expected to perform even better for a better ground
state convergence. Inprinciple, it canalsobe combinedwith a translationally
symmetric NQS ansatz to improve the accuracy. Furthermore, the scheme
could be combined with additional symmetries, e.g. rotational symmetries,
enabling the calculation of m4 rotational spectra

83.

Methods
The RNN ansatz and its bottlenecks
Given these relatively high errors on the ground state energies in some cases,
we test potential bottlenecks of our approach in the Methods section,
namely: (i) Difficulties in learning either the phase or the amplitude, by
considering the partial learning problems separately. (ii) The optimization
procedure. (iii) The optimization landscape. (iv) The expressivity of the
RNN ansatz, compared to the complexity of the learning problem.

The partial learning problem. One potential bottleneck of our approach
is the way the RNN wave function is split into amplitude and phase. In
order to test if there are problems with the optimization of the phase or
amplitude alone, we consider their learning problems separately as
suggested e.g. in refs. 15,84.
1. Phase training: We sample from the exact ground state distribution

∣ψ∣2, calculated with ED, and optimize only the phase.
2. Amplitude training: Given the correct phase distribution from ED, we

optimize only the logarithmic amplitude to check if the ground-state
probability amplitudes can be learned.

Figure 7 shows the results of amplitude and phase trainings (dark and
light blue), compared to the full training of both amplitude and phase (red).

Fig. 7 | Partial training. Separate amplitude (dark blue) and phase (light blue)
training, for ground states of the t− J model on a 4 × 4 square lattice with t/J = 3,
open boundaries and without holes Nh = 0 (a) and with a single hole Nh = 1 (b),
compared to the full training in red. Thick lines andmarkers represent averages over
100 epochs (each with 200 samples) to guide the eye, with the respective standard
deviation denoted by the error bars. We use a hidden dimension of hd = 70.
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For all considered systems, the results of the partial trainings are closer to the
exact ground state, e.g. for open boundaries and Nh = 1, the relative error is
decreased from Δϵ = 0.0147(37) to Δϵ = 0.0040(30) for the amplitude train-
ing and Δϵ = 0.0039(33) for the phase training. However, for all considered
cases we observe the same problem as in the full training: the RNN gets stuck
in a plateau that survives up to 20000 training steps. Although the relative
error of theplateaudecreaseswhenconsidering thepartial learningproblems,
the improvement is surprisingly low given the amount of information that is
added to the training. Furthermore, whether the amplitude or phase training
is more problematic remains unclear. Even for the phase training, for which
the training samples are generated from the exact distribution ∣ψ∣2 calculated
with ED, the improvement is not significantly larger than for the amplitude
training. This is in agreement with the results of Bukov et al.15.

Comparison of optimizers. As a next test, we compare the optimization
results of different optimizers in Fig. 8a, namely Stochastic gradient
descent (SGD), adaptive methods like AdaBound85 and Adam86, and
more advanced methods such as Adam+Annealing20 and the recently
developed variant of stochastic reconfiguration (SR), minimum-step SR
(minSR)80. We show the optimization results for the t− Jz model on the
left and the t− J model on the right, both for Nh = 1.

Typically, Adam is used for RNN wave function optimization11,20,45,87,
adapting the learning rate in each VMC update. For 200 samples used in
eachoptimization step,Adamyields relative errors on the order ofΔϵ ≈ 10−3

for the t− Jz model and Δϵ ≈ 10−2 for the t− J model. AdaBound,
employing dynamic bounds on learning rates, yielding a gradual transition
from Adam to SGD during the training, has similar results.

Another modification of the Adam training is the use of variational
annealing, shown to improve the performance for frustrated systems20. The
idea of annealing is to avoid getting stuck in local minima by including an
artificial temperature T in the learning process. In order to do so, the var-
iational free energy of the model,

Fλ ¼ hHλi � TðnstepÞ � S ð4Þ

instead of the energy (13) is minimized. Here, the averaged Hamiltonian
〈Hλ〉 is given by 〈Hλ〉 =∑σ∣ψλ(σ)∣2Hλ(σ). Furthermore, S denotes the
Shannon entropy

S ¼ �
X
σ

jψλðσÞj2 log jψλðσÞj2
� �

: ð5Þ

Theminimization procedure that we use starts with a warmup phase with a
constant temperature T0, before decreasing the temperature
T(t) = T0(1− (t− twarmup)/τ) linearly with the minimization steps t. Typi-
cally, we use τ = 5000 and stop the training after tfinal = 20000 training
iterations, but tests up to τ = 20000 and tfinal = 40000 did not yield any
improvements. Figure 8a shows that for the square lattice, the use of
annealing does not bring any advantage within the error bars.

Lastly, we apply two recently developed variant of stochastic reconfi-
guration (SR): minSR80 and the linear algebra trick by Rende et al.81. Both
methos are introduced later in the text, see Eqs. (17) and (18). For a stable
training, we ensure non-exploding gradients by adding a diagonal offset δ(t)
to the diagonals of the T-matrix, with δ(t) exponentially decaying from 1 to
10−10. After determining the gradients using Eq. (17), we apply the Adam
update rule, which we empirically find to perform better than the GD
update. Moreover, since it is crucial to use enough samples for a sufficiently
good approximation of the gradients in SR, typically more samples than for
the other optimization routines are needed. Here, we use 1000 samples in
each minSR update and find that the results on the one-hole t− J ground
state errors improve below the values obtainedwithAdam, see Fig. 8a on the
right. However, we show in the Supplementary Note 2 that a comparison
with Adamusing the same number of samples does not lead to a conclusive
result, which optimization routine is better, similar to the SR results
in ref. 15.

The reason behind this can be understood when considering the
spectrum of the T-matrix of the minSR algorithm: Similar to the results of
ref. 82 for the S-matrix of the SR algorithm, Fig. 8b shows that the eigen-
values of T, λi, decrease extremely rapidly, in particular at the beginning of
the training, indicating a very flat optimization landscape. This is a typical
problem of autoregressive architectures82 and causes uncontrolled, high
values of T−1 and consequently also of the gradients δθ, see Eq. (17). Fur-
thermore, the shape of the spectrumdoes not have any feature that indicates
that the spectrum could be cut off at a specific eigenvalue, making a reg-
ularization very difficult. Hence, the diagonal offset δ(t) must be chosen
relatively large, yielding parameter updates that are very similar to the plain
vanilla Adam optimization as long as δ(t) is larger than many of the T-
eigenvalues. The spectrum of the (XTX) matrix of the SR variant by Rende
et al.81, see Eq. (18), exhibits the same problem.

When comparing the results for different hidden dimensions, e.g. for
minSR in Fig. 8a (right), it may suggest that a hidden dimension hd > 100
could in principle improve the results further. However, we will show later
that for such a large number of parameters, it is even possible, by restricting
to a fixed number of holes and hence reducing the Hilbert space dimension
to≪3Nsites , to encode the wave function using exact methods.

Symmetries. The RNN ansatz we use has implemented Uð1Þ ¼
Uð1ÞN̂ ×Uð1ÞŜz symmetry, i.e. a conserved total particle number and
atotal magnetization Ŝz ¼ 0ð0:5Þ for even (odd) particle numbers11,25.
This is done by calculating the current particle number Np(i) (magneti-
zation Sz(i)) after the i-th RNN cell during the sampling process and
assigning a zero conditional probability if Np(i) =Ntarget (Sz(i) = Sz,target)
for all sites j > i that are considered afterwards, see Supplementary
Note 1C. For even (odd) particle numbers, we use Sz,target = 0
(Sz,target = 0.5). As a next test, we employ additional spatial symmetries:
For a symmetry operation T according to the lattice symmetry, we know
that

jψðσÞj2 ¼ jψðT σÞj2 ð6Þ

Fig. 8 | Testing different optimizers. a Optimization results for the t− Jz model
(left) and the t− J model (right) on a 4 × 4 square lattice with t/Jz = 3, both for a
single holeNh = 1 and periodic boundaries, using stochastic gradient descent (SGD),
AdaBound, Adam, Adam+Annealing and minimum-step stochastic reconfigura-
tion (minSR), and 200 samples (1000 samples for minSR) in each variational Monte
Carlo (VMC) step. All values are averages over the last 100 training steps, error bars
denote the respective standard deviation. b Eigenvalues of the T-matrix (minSR
algorithm80, solid lines) and of the XTXmatrix (stochastic reconfiguration variant of
Rende et al.81, dotted lines) before the training, for the 4 × 4t− J systemwith one hole
and open boundaries and hidden dimensions hd = 30, 70, using 1000 samples.
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for the exact ground state. For rotational C4 symmetry of the square lattice,
we employ this constraint (i) in the training, by implementing it in the cost
function, or (ii) in the RNN ansatz as in ref. 11.

The constraint in the cost function that we use in (i) is calculated by
rotating all samples drawn from ∣ψλ∣2 according to C4 in each VMC step,
calculating pλðT iσÞ ¼ jψλðT iσÞj2 for all fT igi and adding the squared
difference γðtÞPσ jψλðσÞj2 � jψλðT iσÞj2

� 	2
with a prefactor γðtÞ ¼

γ0log10ð1þ 9ðt � twarmupÞ=τÞ to the cost function. Typically, we use long
decay times on the order of τ = 5000 steps.

For (ii), we assign

pλðσÞ ¼
1

jfT igij
X

T ¼1;fT igi
jψλðT σÞj2 ð7Þ

for all operationsT i in the symmetry group, similar to ref. 11. Note that this
symmetrization scheme keeps the autoregressive property of the RNN, as
pointed out e.g. in ref. 88.

The optimization results using (i) and (ii) are shown in Fig. 9 for the
t− J and t− Jz model on a 4 × 4 square lattice. It can be seen that con-
straining the RNN wave function directly via (ii) is more succesful than via
the cost function (i): Using (ii), we get an order of magnitude lower relative

errors compared to the results without spatial symmetries for the t− Jz
model. This possibly results from the fact that the additional constraint on
the symmetry leads to barriers in the loss landscape in the regions where the
symmetry is violated. Even when increasing the symmetry constraint gra-
dually during the training, as described above, these barriers can prevent
getting close to the minimum.

The t− Jmodel results donot improve significantly for both symmetry
implementations (i) and (ii), with an error on the order of Δϵ ≈ 10−2 with
and without spatial symmetries. Hence, we conclude that applying sym-
metries does only help to improve the accuracy if the ground state can
already be learned sufficiently well, as for the t− Jz model.

For systems with sufficiently high convergence, also rotational sym-
metries like s, p or d-wave symmetries could be enforced to probe the
competition between the ground state energies in the respective symmetry
sectors60, which is highly relevant for the studyof high-Tc superconductivity.
In addition, also low-energy excited states for these symmetry sectors could
be calculated bymakinguse of the dispersion schemepresented in thiswork,
e.g.m4 rotational spectra

89.

Complexity of the learningproblem. Lastly, we consider the complexity
of our learning problem and compare it to the expressivity of our RNN
ansatz in terms of the number of parameters that are encoded in theRNN.
In Fig. 10 on the left, we show the number of parameters used in the RNN
ansatz for the 4 × 4t− J square lattice for hidden dimensions
30 ≤hd ≤ 100. The number of parameters encoded in the ansatz is slightly
lower than the number of parameters that is actually used (gray circles on
the left). This is due to the way we encode the U(1) symmetry in our
approach, resulting in a small fraction of weights that are not updated
since the respective probabilities are set to zero to obey the U(1) sym-
metry, see SupplementaryNote 1C. Furthermore, we show the dimension
of the Hilbert space for the same system (with variable particle number)
316 in black. For the small system size that we consider in Fig. 10, this
Hilbert space dimension is two orders of magnitude larger than the
number of RNN parameters. For the 10 × 4 system in Fig. 1 however, our
RNN representation has 13 orders of magnitude less parameters than the
Hilbert space with dimension 340 that is learned.

The Hilbert space dimension 3Nsites considered so far in this section
allows for three states per site – spin up, down and hole –, i.e. for a variable
number of holes in the system. For a fixed number of holes, the number of
parameters to describe the exact state is given by all D combinations to
distribute a fixed number of holesNh, particlesN↑ andN↓ on theNsites sites,
i.e.

D ¼ Nsites!

ðN#!ÞðNsites � N#Þ!
� � ðN" þ NhÞ!

ðN"!Nh!Þ
; ð8Þ

shownalso in Fig. 6a and c (gray), withD≪ 3Nsites , as shownby the blue lines
in Fig. 10 for 1≤Nh≤4. In fact, for Nh = 1 our RNNs encode even more
parameters than this exact parameterization when hd > 70. This reveals one
main problem of our RNN ansatz, namely the way how the U(1) symm-
metries are encoded: The fixed particle and magnetization Hilbert space
dimension D is typically much smaller than the dimension of the RNN,
since setting the RNN conditionals to zero during the sampling path cor-
responds to a dimension 3x2y1z with x+ y+ z =Nsites and typically y and z
small. For future studies, we envision an RNN ansatz for a fixed number of
holes in the spirit of Eq. (8), reducing the dimension of the parameter space
that needs to be learned and hence facilitating the learning problem.

Lastly, we would like to point out that the learning problem that we
consider here is more complex than for spin systems that are typically
consideredwith this architecture11,36,37,45, as can be seenwhen comparing the
Hilbert space dimensions for local dimensions d = 2 as for spin systems, vs.
d = 3 as for the t− J model in Fig. 10 on the right. For larger systems, this
difference increases, e.g. for the 10 × 4 system in Fig. 1 the Hilbert space
dimension increases by seven orders of magnitude when going from a spin

Fig. 9 | The effect ofU(1) and spatial symmetries.Relative error for t− J (dark blue)
and t− Jz (light blue) models on a 4 × 4 square lattice with one hole, t/Jz = 3 and
periodic boundaries, averaged over 100 training steps with 200 samples per step
(error bars denote the respective standard deviation). We use a recurrent neural
networks (RNN) with implementedUð1Þ ¼ Uð1ÞN̂ ×Uð1ÞŜz symmetry,U(1) andC4

symmetry, implemented via the cost function and the RNN ansatz, with a hidden
dimension of hd = 70. For the t− Jz model, we provide the relative energy errors as
numbers in light blue.

Fig. 10 | Number of parameters for the exact wave function of a 4 × 4 system
compared to the recurrent neural network (RNN) ansatz. a We compare the
number of parameters of the exact wave function using Uð1ÞN̂ ×Uð1ÞŜz symmetry
for 0≤Nh≤4 holes (blue) to theHilbert space dimension 316 that wewant to learn with
the RNN ansatz. The effective number of parameters of the RNN ansatz, i.e. the
number of parameters that is kept when enforcing the U(1) symmetry, with hidden
dimension 30≤hd≤100 is denoted by the graymarkers. bHilbert space dimension for
a local dimension of 2 (Heisenberg model), 3 (t− J model) and 4 (Fermi-Hub-
bard model).
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to a t− J system(withflexiblenumberof holes). This problembecomes even
more pronounced when the Fermi-Hubbard model with local dimension
d = 4 would be considered.

NQS dispersion relations
Our dispersion scheme relies on an additional term in the cost function that
penalizes momenta of the NQS away from the target momentum. The
momentum kNQS of the NQS wave function is calculated from the trans-
lation operator T̂R, which translates a state ψ(r) by the respective vector R,
i.e. T̂RψðrÞ ¼ ψðr � RÞ. Furthermore, it can be written as90

T̂R ¼ exp �iR � k̂
� �

; ð9Þ

with the momentum operator k̂. To determine the expectation value
kNQS = (kx, ky) using samples σ drawn from the NQS wave function, we
calculate the expectation value of T̂R. For example, for a square lattice, this is
done by translating all snapshots byR = ex andR = eywith ∣eμ∣ = a for lattice
distance a and μ = x, y. Then, we calculate the respective translated states,
ψλðT̂eμ

σÞ, to determine the expectation value

ψλ



∣T̂eμ

∣ψλ

� ¼ exp �ieμ � kNQS
� �

≈
1
Ns

X
i

ψλðT̂eμ
σ iÞ

ψλðσ iÞ
; ð10Þ

with the first equality due to the translational invariance of the ground state
of a square lattice, which we assume to be (approximately) present for our
NQS ground states, see also Supplementary Note 3. Hence,

kμNQS ¼
i
a
log ψλ



∣T̂eμ

∣ψλ

�
: ð11Þ

Using a sufficiently converged NQS ground state wave function as
initial state,we trainusingVMCwithanadditional term in the loss function,

CðktargetÞ ¼ γðtÞ
X
μ

kμNQS � kμtarget
� �2

; ð12Þ

with the RNNmomentum kNQS and the target momentum ktarget.We use a
prefactor γðtÞ ¼ γ0log10ð1þ 9ðt � twarmupÞ=τÞ that is turned on with
typically τ = 100,…, 1000 and γ0 = 1,…, 10 and gradually lifts all areas in
the loss landscape that correspond to aNQSwave functionwithmomentum
kNQS ≠ ktarget, forcing the NQS to a higher energy state at momentum
kNQS = ktarget, see Fig. 2.

For ktarget far away from the ground state momentum, we observe
empirically that the imaginary part of kNQS can become large, on the same
order as the real part, in particular if the ground state accuracy was not
sufficiently high. In these cases, the RNN ends up in states that are not
eigenstates of the momentum operator. In order to prevent our RNNwave
function to get trapped in these states we apply an additional constraint in
the loss function in these cases, penalizing large imaginary parts of the
momentum, Im kNQS.

Architecture and training
In the present paperweuse a recurrent neural network (RNN)91 to represent
a quantum state defined on a 2D lattice with Nsites =Nx ⋅Ny positions
occupied by Np particles. RNNs and similar generative architectures com-
bined with variational energy minimization have already been applied
successfully for spin systems5,11,36,45. One of the advantages of these archi-
tectures is their autoregressive property, which allows extremely efficient
independent sampling from theRNNwave function19,92, which is important
for the training procedure.

In order to represent fermionic wave functions, we start from the same
approach as for bosonic spin systems and use an RNN architecture con-
sisting of Nsites (tensorized) gated recurrent units (GRUs), each one

representing one site of the system. The information is passed from the first
cell, corresponding to the first lattice site, to the last site in a recurrent
fashion, see Supplementary Note 1a.

In order to find the ground state of the system under consideration, we
use the variational Monte Carlo (VMC) minimization of the energy92,93.
VMC has already been used in a wide range of machine learning applica-
tions (see e.g. refs. 6,18 for an overview). In VMC, the expectation value of
the energy of the RNN trial wave function,

hEλi ¼
X
σ

jψλðσÞj2 Eloc
λ ðσÞ≈ 1

Ns

X
i

Eloc
λ ðσ iÞ; ð13Þ

is minimized. Here, we have defined the local energy

Eloc
λ ðσÞ ¼ hσjHjψλi

hσjψλi
: ð14Þ

As shown e.g. in refs. 11,29 one can use the cost function

C ¼ 1
Ns

X
i

Eloc
λ ðσ iÞ � hEloc

λ i� �
|fflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflffl}

¼:�
ffiffiffiffi
Ns

p
�ϵðσiÞ

ð15Þ

to minimize both the local energy as well as the variance of the local energy
to make the training more stable. In Eq. (15), we have defined
�ϵðσ iÞ :¼ � 1ffiffiffiffi

Ns

p Eloc
λ ðσ iÞ � hEloc

λ i� �
, where Ns denotes the number of

samples.
One of the main difficulties of neural network quantum states is the

optimization of Eq. (15), due to its typically rugged landscape with many
local minima and saddle points15. If not stated differently, we use the Adam
optimizer86 for the optimization of Eq. (15), following previous works on
NQS using RNNs10,11,45. To improve the optimization, often stochastic
reconfiguration (SR)94,95 is used. Here, we use two recently proposed, SR
variants, namelyminimum-stepstochastic reconfiguration (minSR) and the
SR variant based on a linear algebra trick by Rende et al.81. In contrast to
conventional SR, these variants enable the use of a large numbers of NQS
parameters, see Supplementary Note 2. In minSR, each parameter λk of the
neural network is optimized individually according to

�Oσik
δλk ¼ �ϵðσ iÞ; ð16Þ

where σi denote the sample configurations, k the parameter index, Oσ ik
¼

1
ψðσ iÞ

∂ψðσiÞ
∂λk

and �Oσ ik
¼ ðOσ ik

� hOσ ik
iÞ= ffiffiffiffiffiffi

Ns

p
. Eq. (16) is solved by

δλk ¼ �Oy
kσ0i
ðT�1Þσ 0iσ i �ϵðσ iÞ ; ð17Þ

with T ¼ �O�Oy80. In the version of Rende et al.,

δλk ¼ Xkσ 0i
ðXTXÞ�1

σ 0iσ i
fσi ; ð18Þ

with X ¼ ConcatðRe �O; Im �OÞ and fσ i ¼ ConcatðRe�ϵðσ iÞ;�Im�ϵðσ iÞÞ81.

FermionicRNNWaveFunctions. The architecture introduced above is
per se bosonic. When considering fermionic systems, we need to take
the antisymmetry of the wave function into account. This anti-
symmetry is included during the variational Monte Carlo steps when
calculating the local energy introduced in Eq. (14). We can expand the
local energy to

Elocðσ iÞ ¼
X
σ 0i

σ i

 ��H σ 0i

�� �hσ 0ijψλi
hσ ijψλi

: ð19Þ

In this sum, wemultiply each termwith a factor (−1)P if σ 0 is connected to σ
by P two-particle permutations, as suggested in ref. 29. In order to do so, we
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take the permutations along the sampling path into account. For the
t−XXZ Hamiltonian under consideration we only need to consider the
hopping term for calculating the antisymmetric signs. An example is shown
in Fig. 11. This procedure is equivalent to the implementation of Jordan-
Wigner strings as e.g. in ref. 25.

Data availability
The data of all figures of this paper is provided in https://github.com/
HannahLange/Fermionic-RNNs/in the data folder. Other data are avail-
able from the corresponding author on request.

Code availability
The code used for this paper is provided here: https://github.com/
HannahLange/Fermionic-RNNs/in the src and src_dispersion
folders.
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