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A B S T R A C T   

The detection of spatiotemporal changes in land use/land cover (LULC-SC) plays a paramount role in the analysis 
of smart cities, it can describe complex urban distribution, functions, and patterns. Chinas capital city has been 
developing rapidly in the past two decades, however, there are only few long-term studies on an annual scale of 
LULC-SC. To fill this research gap, we propose a remote sensing parallel framework for the detection of LULC-SC 
based on the combination of the Deep Siamese Network and long time series, which focuses on the spatial se-
mantic information at the object level. A Landsat time series from 2002 to 2022 serves as input satellite data. 
First, we focus on building graph constructions at the object level and then use an autonomously constructed 
deeper-feature graph convolutional network (DF-GCN) to mine deeper features, spatial semantic, and relation-
ships at the object level. Finally, the Siamese Network recognizes the changes in the spatial semantic tensors of 
long time series of Landsat images and quickly maps LULC-SC. The results prove that the proposed spatiotem-
poral change detection framework is effective in LULC-SC in Beijing. Compared with other networks, the optimal 
accuracy of semantic mining based on DF-GCN can reach about 90%. Over the past two decades, the LULC-SC of 
Beijing has changed in a complex way, with urbanization occurring primarily through the replacement of 
farmland. Consequently, the proposed framework can generate accurate LULC change maps at high temporal 
frequencies, which can contribute to a better comprehension of sustainable urban development and planning.   

1. Introduction 

Faced with the increasingly pressing issues of global population 
growth, dwindling resources, and environmental degradation, spatio-
temporal changes in land use/land cover (LULC-SC) have become a vital 
topic in the field of global change (Junfu et al., 2022). LULC-SC repre-
sents the spatiotemporal mapping of human activities and the natural 
environment, reflecting the direct interactions between socio-economic 
activities and natural ecological processes. Therefore, mapping and 
monitoring changes in LULC has significant implications for agricultural 
production, urban planning and development, environmental protec-
tion, and sustainable development (Baohui and Peijun, 2023; Zheng 
et al., 2022). 

With the booming development of remote sensing technology, sat-
ellite images are a comprehensive and timely data source, which can 
detect spatiotemporal changes across large areas of land surface, and 
have thus been increasingly applied to map LULC changes (Cetin et al., 
2021). The most widely used satellite data to detect LULC changes are 
from the Landsat program because of the long time series and the 

sufficiently high spatial resolution (30 m), wide spatial coverage, and 
rich spectral information (Xuexian et al., 2022). 

To detect LULC changes using remotely sensed imagery, LULC must 
be first classified using at least two images acquired at two different 
dates. Traditional image classification mainly uses low-level features, 
which include image bottom-level features and shallow visual features. 
Image bottom-level features such as spectrum, shape, and texture or 
widely used indices such as the normalized difference vegetation index 
(NDVI) and the normalized difference water index (NDWI) were used to 
directly classify LULC (Meng et al., 2023; Vincent and Irene, 2022). 
However, these traditional bottom-level features and indices are insuf-
ficient to characterize and explain complex land cover types. (Bao et al., 
2020) compared the Shenzhen classification map of multiple methods to 
reveal the limitations of low-level features. Subsequently, some shallow 
visual features (LBP, SIFT, HOG) were developed. Although they have 
achieved some success in LULC classification, these visual-features- 
based works are mainly applicable to simple situation (Fotso Kamga 
Guy et al., 2018; Mohan and Kapil Dev, 2021). The bottom-level features 
and shallow visual features mentioned in the above methods are all 
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guided by fixed expert knowledge, thus limiting the transferability be-
tween different regions and datasets. More importantly, the accuracy of 
results is often affected by these inaccurate low-level features. 

Recently, it has been demonstrated that Deep Learning (DL) has high 
potential to capture spatial features and semantics. Especially in the 
field of remote sensing, DL can solve problems of big data and 
complexity of geographic object features and their distribution (Xiangyu 
et al., 2023). Initially, Convolutional Neural Networks (CNN) and Fully 
Convolutional Networks (FCN) were used for geographical object clas-
sification and simple scene classification. However, contours and 
boundaries of objects were poor (Zhao et al., 2019; Zhenshi et al., 2022). 
While the U-net model makes up for the deficiency of CNN to extract 
detailed contour features of objects, it is only suitable for scenes with 
fewer objects (David and Ce, 2022; Huanxue et al., 2021); DeepLabv3 
and the network based on the idea of attention mechanism (for example, 
the development of Transformer) can not only describe the detailed 
outline of geographic objects but also complete complex scene classifi-
cation based on object levels (Jiaqi et al., 2023; Zhimin et al., 2022). 
However, all these methods that only use the features of the objects 
themselves and do not consider spatial knowledge such as spatial cor-
relation between objects, as well as deep contextual information (Wang 
et al., 2023; Zhou et al., 2023). 

Graph Convolutional Networks (GCN) have obvious advantages in 
mining spatial semantics from irregular data through graph convolution 
and is commonly applied in LULC classification research (Hong et al., 
2020; Liang et al., 2020). The core idea of a GCN is the use of spatial 
semantic connections to represent node information of ground objects 
and the characterization of new nodes (Yongyang et al., 2022; Zhang 
et al., 2021). However, GCNs can only interpret spatial relationships and 
cannot mine depth features (Yao et al., 2022). This conflict raises the 
question of how we can express spatial information while considering 
depth features. Consequently, a combination of CNN and GCN (CNN +
GCN) could overcome the disadvantages of both methods, because CNN 
can consider deep features while GCN accounts for spatial relationships 
(Ding et al., 2022; Liu et al., 2020). Previous studies from scene recog-
nition fields have proven the effectiveness of this method, but high-
lighted several limitations, such as mining capabilities of CNN are 
insufficient (Liang et al., 2020). Furthermore, as a result of carriers that 
are too small (pixel level) or too large (geographical scene), the spatial 
relationships of ground objects might be unclear (Jafarzadeh et al., 
2022). In addition, the combined CNN and GCN method has yet to be 
applied to land use and land use changes in complex large cities, as it is 
only suitable for simple and basic scene recognition (Li et al., 2020). 

Objects function as important bridges between pixels and regions. 
For downscaling purposes, objects are collections of pixels that reveal 
the shape and structure of ground objects; for the purpose of upscaling, 
they are a composition of geographical units that carry spatial semantic 
information and structural relationships. Therefore, focusing on the 
object level can provide a more accurate description of the real 
boundaries and shapes of ground objects, which helps to better 

understand and explain surface phenomena. LULC refers to geographical 
units within a certain region with different geographical objects, spatial 
relationships, and functions. The irregular distribution of objects and the 
connections between types of objects are not simply linear. As shown in 
Fig. 1, the geographical objects can be simplified as nodes. Connecting 
edges between nodes represent the spatial relationships between ob-
jects, such as adjacency, intersection, and separation (Xie et al., 2022; 
Zhang et al., 2019). 

The Siamese Network is a machine learning model that is akin to 
human insight and memory, enabling it to quickly find differences in a 
short time (Hongyang et al., 2023; Qiqi et al., 2022). Siamese Networks 
have shown great potential when facing long time series of data. Due to 
the tremendous changes over the past decades, Chinas capital Beijing 
serves as a good example to show the potential of Siamese Networks in 
detecting LULC-SC over time. Previous research on LULC-SC in Beijing 
focused on 5-year or 10-year time intervals, while annual changes have 
not been investigated so far (Huabing et al., 2017; Jiang et al., 2020) 
When assessed annually, changes in all types of LULC can not only be 
described in more detail, but they can also help better understand LULC- 
SC trajectories over a long time series. This is beneficial, as the detailed 
changes are often neglected and overlooked in a 5-year or 10-year time 
interval (Zhang et al., 2022). 

To further improve the mapping of annual LULC changes in Beijing, 
we propose a LULC-SC detection framework based on the deep Siamese 
Network that focuses on semantic information and spatial relationship 
mining as well as fusion at the object level. The detection framework 
used an autonomously constructed Deeper-Feature GCN Network (DF- 
GCN) and a Siamese Network to monitor spatiotemporal changes in long 
time series of remote sensing images. 

In contrast to previous studies, the monitoring framework proposed 
fully utilizes the object-level multispectral information and spatial se-
mantics by automatically mapping LULC-SC based on the Siamese 
Network. In summary, the main aims and hypotheses of this paper are as 
follows:  

1. We hypothesize that deeper feature and semantic information at the 
object level are important for evaluation. The strength of DF-GCN is 
fully utilized at the adaptive object level 

2. The framework proposed in this paper uses an autonomously con-
structed DF-GCN network. We tested if the DF-GCN network can 
better handle complex Landsat data at the deeper features and se-
mantic information levels. This results in a higher accuracy of DF- 
GCN networks compared to other methods  

3. To map the LULC-SC of Beijing at an annual scale, a framework based 
on deep Siamese network is proposed, which can perceive spatial 
semantic tensors’ changes in long time series of images and quickly 
map LULC-SC  

4. By applying the novel method at an annual-scale, the transformation 
of LULC in Beijing over the past 20 years is mapped, which provides 
support for future urban planning and sustainable development. 

Fig. 1. Objects spatial adjacency graph. (Adjacency refers to being closely connected; intersection refers to cross connection; separation means independence from 
each other and no connection.). 
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2. Study area and data sets 

2.1. Study area 

This study focuses on the area of Beijing, located in the northern part 
of the North China Plain (Fig. 2). As the political, cultural, and inter-
national exchange center of China, it is becoming a more international 
metropolis since the reform and opening-up. the population and eco-
nomic growth has experienced rapid, as well as significant changes in its 
urban landscape. 

2.2. Satellite data 

Landsat data has been widely used in LULC studies. After down-
loading all available land surface reflectance data from 2002 to 2022 for 
summer months that cover the study area, the data was visually screened 
and preprocessed. Finally, six spectral bands of the Landsat imagery 
were selected as input data, including the blue, green, red, near-infrared, 
SWIR-1, and SWIR-2 bands. To obtain suitable LULC classification and 
change monitoring results for Beijing, the atmospheric and illumination 
effects of the spectral reflectance from ground objects was removed 
during preprocessing. This was done by applying a radiometric and at-
mospheric correction to the Landsat imagery. 

2.3. Sample and training parameters 

The selection of samples is crucial to explore deeper features and 
spatial relationships. In this experiment, the labeled samples consisted of 
square patches attributed to land cover classes. Land use and cover types 
in Beijing were classified into seven categories: bare land, forest, 
shrubland, grassland, water body, urban, urban-green, and farmland. All 
samples were manually selected through visual interpretation to ensure 
representation of all classes and an appropriate and accurate number of 
samples for each category (Lv et al., 2018). 

To reinforce the robustness of the training network, we manually 
selected nearly 2,400 sample points, 80 % of them were randomly 
selected as input samples. These are then divided into 80 % for training 
samples and 20 % for the verification dataset. The validation dataset was 
used to test the accuracy of the model. Fig. 2 and Table 1 presents the 
spatial distribution and the actual numbers of samples used for training 

and internal model validation (Bao et al., 2020). The test data set is 
generated by image segmentation and object centering (Section 4.1). 

Furthermore, the input image has 7 bands, consisting of 6 remotely 
sensed spectral bands and one deep edge feature map. To ensure 
adaptability, the scale of the input patches matches the scale of the 
patches used to build the graph constructions (Section 5.2). 

2.4. Ground truth samples 

To reflect the accuracy of the LULC classification results more 
objectively and scientifically, therefore ground truth points are 
randomly generated to verify the accuracy of the model output results. 
Shown in Table 1, these 4500 ground truth points based on Land-use 
classes. Classes of each point have been manually labeled using the 
original image and Google Earth. Consequently, these ground truth 
points are independent and differ from the samples during the model 
training process. Finally, we constructed a confusion matrix to check the 
accuracy of model predictions against validation data from visual 
interpretation. 

2.5. Existing products 

GlobeLand30 is a 30 m resolution global land cover dataset, which is 
mainly derived from remote sensing satellite data (Landsat and China 
Environmental Disaster Reduction Satellite), aerial photography images, 
and ground survey data (Chen et al., 2017). 

The Copernicus Global Land Service (CGLS) provides a range of bio- 
geophysical products on surface conditions and evolution at the global 
scale. Global land cover maps are available at 100 m spatial resolution. 

The European Space Agency （ESA）provides global land cover 
maps with a resolution of 10 m based on Sentinel data. 

For this study, the GlobeLand30 data sets in 2010 and 2020, the 
Copernicus Global Land Cover data sets in 2018 and 2019, and the ESA 
data in 2020 and 2021 were downloaded and selected. The Beijing area 
was selected as a reference to compare and verify the proposed method. 

3. Methods 

The analysis has been performed on a Windows 10 operating system 
using a CPU (3.4 GHz core i7-6700), RAM (16 GB), and GPU (NVIDIA 

Fig. 2. Geographical location of Beijing and the training sample sets.  
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RTX-A4000). TensorFlow2.3 was selected as the deep learning 
framework. 

The overall process framework of LULC-SC mapping is shown in 
Figs. 3 and 4. As main input to Deep Siamese Networks, images acquired 
at two different time steps are used to generate semantic tensors, and the 
similarity of the two semantic tensors is calculated under the framework 
of the Siamese Network to implement change detection. Its main com-
ponents are DF-GCN network and similarity calculation. 

As the core component, DF-GCN network mainly consists of three 
parts (Fig. 4): the blue part symbolizes the segmentation of Landsat 
images by scale-adaptive hierarchies, which establishes the object-level 
spatial adjacency graph (OSAG). In the green part, DF-CNN is used to 
mine deeper features, while finally the exploration of spatial relation-
ships and information using GCN is performed symbolized by the pink 
part. 

Finally, semantic tensor is generated through fusion and input to the 
Siamese Network to calculate the similarity to map LULC-SC in Beijing 
region at an annual scale (see Appendix for the algorithm). 

3.1. Adaptive scale estimation strategy in hierarchical segmentation 

To solve the problem of large data volume and insufficient single 
scale to express complex objects, adaptive-scale hierarchical segmen-
tation strategy was adopted. As shown in Fig. 5, the entire image is first 
segmented into several large regions using multi-texture calculation. 
Afterwards, the spatial scale is estimated for each sub-region, allowing 
the geographical objects to obtain a better scale representation. Among 
them, the edge feature comes from texture calculation, which contains 
rich boundary information, so it can effectively limit the boundary to 
approximate to the real world. 

This paper used the algorithm of adaptive multiscale estimation, by 
computing the average local variance of different windows in the image 
to verify the spatial scale transformation of geographical objects (Drăguţ 
et al., 2014). The method iteratively segments the image in a bottom-up 
manner, and when the average local variance of a scale is equal to or 
lower than the previous scale, the iteration, and the next level of scale 

estimation begins. 
This method has good potential in the objectivity and adaptability of 

scale selection, and can meet the precise expression of different object 
scales. It therefore provides possibilities for subsequent research (Xu 
et al., 2019). 

3.2. DF-GCN: The organic fusion of DF-CNN and MB-GCN 

3.2.1. DF-CNN: Deeper features capturer 
Inspired by the inception and attention modules, this study autono-

mously constructs a deeper-feature convolutional neural network 
(Deeper-feature CNN, DF-CNN) based on the attention mechanism. The 
DF-CNN consists of five convolutional modules and a Squeeze-and- 
Excitation (SE) module, along with pooling layers, and a global 
average pooling layer (Fig. 6). 

Instead of traditional convolutional layers, we adopt a deeper con-
volutional module (D-Conv), which expands the perception field and 
fully utilizes contextual information. (D-Conv) includes a 1x1 convolu-
tional filter, two 3x3 convolutional filters, and a 3x3 deep separable 
convolution. Deep separable convolution can consider spatial informa-
tion first and then spectral information, accelerating the efficiency of 
convolutional computations. 

The SE module represents the channel attention mechanism module, 
where S and E denote the squeeze and excitation operations, respec-
tively. It can focus on bands with more information to improve feature 
representation capabilities. As shown in Fig. 6, it is composed of global 
pooling, two fully connected layers, ReLU, and sigmoid activation 
function. 

Global average pooling is used as the squeeze operation, where the 
2D feature space (composed of spectral bands and textures) is com-
pressed into a scalar sequence along the spatial dimension. It mixes local 
information and has a global receptive field. The computation formula is 
as follows: 

fc = Fsq(Xc)
1

W*H

∑W

i=1

∑H

j=i
Xc(i, j) (1) 

Fsq is the Squeeze operation function, Xc is the feature map of size 

Table 1 
The training samples, internal model validation samples and ground truth samples for validation of the LULC maps.  

Category Urban Bare land Urban-green Forest Grassland Shrubland Waterbody Farmland 

Training 
Validation 

398 
113 

156 
34 

89 
22 

218 
53 

208 
53 

189 
41 

60 
16 

200 
48 

Ground Truth 1200 450 270 600 600 600 180 600  

Fig. 3. Overview of the workflow of the proposed LULC-SC detection framework based on Deep Siamese Network. The red dashed box symbolizes the DF-GCN 
(mining semantic tensors) and comparator (calculate the semantic tensor similarity of the same points in different times), which is further illustrated in Fig. 4. 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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W*H for the C-th feature space, and fc is the compressed feature vector 
after squeezing. 

The excitation operation generates a weight factor k for each feature 
space using the parameter w. The parameter w is used to learn the cor-
relations between feature space. 

k = Fex(fc,w) = sigmoid(g(f ,w) ) = sigmoid(w2ReUL(w1, f ) ) (2) 

Fex is the excitation operation function and fc is the result of the 
squeeze operation. w1 and w2 are the dimension reduction and expan-
sion parameters, w1 ∈ R C

R*C, w2 ∈ RC*C
R , where C is the number of feature 

space and R is the reduction ratio. The activation functions sigmoid and 
ReUL are used. 

The Reweight operation involves using the output weights, k, from 

Fig. 4. DF-GCN framework (illustrated as red rectangle in Fig. 3). The blue part is hierarchical segmentation (see Fig. 5 for further details); the green part is the deep 
feature miner (see Fig. 6 for details): DF-CNN, and the pink part is the spatial relationship detector—Mini-GCN (see Fig. 7 for details). (For interpretation of the 
references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 5. Flowchart of the Adaptive Scale Estimation Strategy in Hierarchical Segmentation. From top to bottom, the segmentation from regional to object scale is 
shown. (Edge Feature Map is used to constrain segmentation boundaries). 
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the excitation operation as the weights for each feature space. These 
weights are the applied for each element through multiplication to the 
previous features, resulting in the recalibration of the original features 
along the feature-space dimension. 

X̃C = Fscale(XC, kC) = kC • XC (3) 

Fscale is the element-wise multiplication function. Xc represents the 
feature map of size W*H for the C-th feature space, and kc represents the 
weight of the C-th feature space. 

Furthermore, a global average pooling layer is used at the end to 
lessen the number of parameters and prevent overfitting, thus ensuring 
the representation of deep-level features of LULC. 

3.2.2. GCN: Spatial relationship detector 

3.2.2.1. Graph construction. In this paper, the nodes of the graph are 
generated from the geometric center points of the objects. A topological 
graph is constructed using the K-nearest neighbors (KNN) method. 
Furthermore, the similarity of object classes is used as the edge weight, 
with higher weights assigned to connections between nodes of the same 
class. This approach aims to construct a more accurate adjacency matrix. 

The feature matrix of the object nodes is denoted as X ∈ RN*C, where 
N and C represent the number of object nodes and features in the feature 
vector. The calculation of the Euclidean distance Di,j between two nodes 
Ni and Nj is given by the following formula: 

di,j =

(
∑C

c=1
|Nic − Njc|

2

)1
2

(4) 

The distance measurements between all pairs of nodes can be rep-
resented as a symmetric distance matrix D = di,j ∈ RN*N. For instance, the 
element di,j in matrix D represents the Euclidean distance between the i- 
th and j-th objects. 

To facilitate graph constructions and reduce redundant information, 
we choose the K nearest objects to each sample node Ni as its adjacent 
nodes and connect them with edges. This process is used to build graph 
constructions as samples. 

3.2.2.2. Minibatch graph convolutional network (MB-GCN). To focus on 

local information, we adopt mini-batch learning in GCN, which can 
reduce training complexity and accelerate computation. As graph con-
volutional networks can only directly operate on graph constructions, it 
is crucial to construct the Landsat imagery as a topological graph 
structure (Hong et al., 2020). Therefore, building the graph construction 
involves three steps: 1. Determining nodes and their own features; 2. 
Determining adjacency between nodes; 3. Computing edge weights for 
the nodes. 

We represent an undirected graph as G = (N, E,A), where N repre-
sents the set of nodes and N ∨ n indicates that there are n nodes in the 
input patch. E represents the set of edges, and the adjacency matrix A ∈

Rn*n records the adjacency relationships between nodes. The degree 
matrix Di,i =

∑
iAi,j stores the number of connections associated with 

node Ni. 
To address the challenge of convolution definition caused by the lack 

of translation invariance in graph data, the convolution on graphs can be 
defined in the spectral domain after Fourier transformation using the 
following an equation: 

gθ • x = UgθUT x (5) 

Here, x represents the signal on the nodes, gθ = diag(θ) is a param-
eterized diagonal matrix, U is a matrix composed of the eigenvectors of 
the normalized Laplacian matrix, UTx represents the graph Fourier 
transform of x. 

The calculation formula for the graph Laplacian matrix is as follows: 

L = In − D− 1
2 AD− 1

2 = UΛUT (6) 

L represents the graph Laplacian matrix, Λ is the diagonal matrix 
composed of the eigenvalues of L. 

The convolution operation defined in equation (5) requires the 
eigen-decomposition of the Laplacian operator. Considering the number 
of nodes and features, the equation is approximated using a Chebyshev 
polynomial expansion up to the k-th order. 

gθ • x ≈
∑K

k=0
θkTk

(
L̃
)

x (7) 

L̃ = 2
λmax

L − In, λmax is the largest eigenvalue of L; θ ∈ Rk is the Che-
byshev coefficient vector. To lessen parameters and computational 
complexity and prevent overfitting, we set k = 1 and λmax = 2, 

Fig. 6. Configuration of DF-CNN framework. The network has 5 layers, each layer is mainly composed of deeper convolution module, SE module and pooling layer. 
For an overall view on the CNN-GCN model, see Fig. 4 (green box). (For interpretation of the references to color in this figure legend, the reader is referred to the web 
version of this article.) 
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simplifying equation (6) to: 

gθ • x ≈ θ
(

In +D
− 1
2 AD

− 1
2

)
x (8) 

Then, we introduce “renormalization” by denoting In +D− 1
2 AD− 1

2 as 

D̃
− 1
2 ÃD̃

− 1
2 , where Ã = A + In, D̃i,i =

∑
iÃi,j. By stacking multiple con-

volutional layers with the above definition, we obtain the GCN model. 
The expression for the (l + 1) th layer is: 

Hl+1 = σ
(

D̃
− 1
2 ÃD̃

− 1
2 HlWl

)

(9) 

Here, W represents the weight matrix, l denotes the layer number in 
the convolutional network, and σ is the activation function. 

Considering the minibatch GCN, the graph convolution for the j-th 
batch can be expressed as shown in equation (9): 

Hl+1 = σ
(

D
− 1
2

j ÃjD
− 1
2

j Hl
j W

l
j

)

(10)  

3.3. Feature fusion 

We have designed a simple feature tensors fusion module. The 
feature descriptors extracted from two branches (DF-CNN and MB-GCN) 
are integrated and passed to the comparator of the deep Siamese 
Network. The description of feature fusion is as follows: 

Hl+1
fusion = Hl

DCNN ⊕ Hl
Mb− GCN (11) 

Where the operator ⊕ represents element-wise addition. Hl
DCNN and 

Hl
GCN respectively represent the features extracted from DF-CNN and 

MB-GCN at the l − th layer. 

3.4. Siamese network construction 

We use images of two different years for the deep Siamese Network 
(Fig. 3), which shared weights in parallel network. By comparing the 
similarity of the semantic tensor’s pairs to achieve image change 
detection. 

The formula for calculating similarity is as follows: 

Dw(T1, T2) = ‖(Sw(T2) ) − (Sw(T1) )‖ (12) 

where Dw is the distance between two feature tensors, and the sim-
ilarity is calculated through the distance of tensor. T refers to different 
times. Sw represents the network model, and w is the shared parameter 
weight. 

The essence of the Siamese Network is to train a metric function that 
outputs larger values in areas with significant changes and smaller 
values otherwise. Therefore, we adopt a contrastive loss function, which 
is expressed as follows: 

L =
1

2N

∑N

n=1
yd2 +(1 − y)max(margin − d, 0)2 (13) 

Here, d = ∨ft1 − ft2∨2 represents the Euclidean distance between 
different temporal semantic tensors, and y is the label indicating 
whether the feature tensor pairs are matching: y = 1 indicates that the 
semantic tensors are similar or matching, while y = 0 indicates that they 
are not matching. Margin refers to the threshold set for comparison. 

3.5. Comparison with other machine learning classifiers 

3.5.1. Comparison with other machine learning classifiers 
To compare the performance of DF-GCN method, we used the same 

dataset of satellite and training data to train other widely used classifiers 
such as random forest (RF), CNN (AlexNet), DF-CNN, GCN and the 
combination of CNN + GCN. Afterward, the differences and overall 
accuracy between the different methods were compared qualitatively 

and quantitatively via confusion matrices. 

3.5.2. Comparison with other change detection methods 
To verify the effectiveness and superiority of our proposed change 

detection framework based on deep Siamese network, three popular 
change detection methods are selected as comparison methods in this 
study.  

1. LandTrendr is a time segmentation algorithm used to capture long- 
term, gradual, or short-term drastic changes in time series. It can 
monitor each pixel to determine whether it has changed 

2. Mspsnet builds a parallel convolution strategy. Different convolu-
tions achieve feature aggregation and improve the receptive field, 
while the self-attention module makes it easier to detect changing 
areas  

3. BiT is a transformer-based network. Transformer encoders are used 
to model the spatiotemporal context of compact pixel information. 
Changes can then be monitored by refining the raw features through 
a transformer decoder 

3.6. Evaluation metrics 

This study uses several evaluation metrics commonly used in change 
detection, including the overall accuracy (OA), precision (Pre), recall 
(Rec). Among these metrics, TP, TN, and FN indicate true positive, true 
negative, false positive, false negative, respectively. The calculations of 
these five indicators are formulated as follows. 

OA =
TP + TN

TP + TN + FP + FN
(14)  

Pre =
TP

TP + FP
(15)  

Rec =
TP

TP + FN
(16)  

4. Results 

4.1. The results of the adaptive-scale hierarchical segmentation 

Based on the multi-texture computing and the strategy of scale 
estimation, Beijing city was divided into 5 sub-zones. The segmentation 
parameters were adjusted continuously through empirical refinement. 
Subsequently, spatial scale estimation was carried out for each sub-zone. 
The estimated scale parameters are shown in Table 2 for the year 2002 
as an example. In this paper, we adopt an adaptive multi-scale seg-
mentation method. The hierarchical scale estimation results are shown 
in Fig. 8. 

4.2. Ablation experiments 

The designed ablation experiments are shown in Table 7, where 
every two adjacent experiments form a group of control experiments. 
For example, using RSI and EFM (Exp.2) has better results than using RSI 
alone (Exp.1) because the Overall is 0.041 higher. By combining hier-
archical segmentation to focus on the object level (Exp.3), Overall can be 
further improved from 0.787 to 0.832. In addition, the contributions of 
deep feature-based models and spatial relationship-based models to the 
classification were tested separately in experiments (Exp.3–6). When 
only considering deep features, Overall improves from 0.832 (Exp.3) to 
0.899 (Exp.4) respectively. In addition, through the joint use of deep 
features and spatial relationships, Overall is further improved to 0.921 
(Exp.6). In Exp.3 and 5 and Exp.4 and 6, with the support of spatial 
relationships, the accuracy increased by 0.037 and 0.022 respectively. 

Ablation experiments show that all strategies used in the proposed 
framework improve classification accuracy to a certain extent, with DF- 
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CNN and GCN making the most significant contributions. Therefore, in 
the following sections, we focus on the contribution of using DF-CNN 
and GCN to the impact, including scale, the synergistic mechanism of 
DF-CNN and GCN and their advantages compared with other methods. 

4.3. Results of deep Siamese network change detection 

Fig. 9 shows in detail the LULC-SC in Beijing from 2002 to 2022 
detected by the deep Siamese Network. Between 2002 and 2010, LULC 
in Beijing underwent major changes, especially around 2008; thereafter, 
the changes slowed down, with some apparent changes from 2016 to 
2018; there was almost no change in LULC between 2020 and 2022. 

Since there is currently no authoritative data on the change of LULC 
in Beijing, we validated the change maps using random samples. The 

results are shown in Appendix for Table B, which proves that the 
detection framework of the deep Siamese network is robust and 
effective. 

5. Discussion 

5.1. Effectiveness of the adaptive-scale hierarchical segmentation 

To validate the availability of the adaptive scale hierarchical seg-
mentation, the entire image of Beijing in 2002 was input into the 
network without hierarchy. According to Fig. 10 (a), it is evident that 
the overall accuracy of the non-hierarchy and fixed-scale approach is 
lower than that of the strategy we proposed. The optimal accuracy is 
achieved at a network training scale of 65 (discussed in 5.2), with a 

Table 2 
The parameters of Hierarchical Segmentation.   

Zone 1 Zone 2 Zone 3 Zone 4 Zone 5 
Level L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 L1 L2 L3 

SP 48 68 108 37 67 117 47 73 133 66 126 193 48 67 148 
Num 4174 1822 641 3716 1072 367 4589 1811 471 6234 1381 541 5525 2552 506  

Fig. 7. The workflow of the Mb-GCN module. The node refers to the geometric center point of the object. Different colors represent different class labels. The red 
node is the node being calculated. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

Fig. 8. Results of the adaptive-scale hierarchical segmentation left part and corresponding satellite image. Each zone is symbolized by different colors and contain 
adaptive segmentation objects. 
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classification accuracy of 92.1 %. Hierarchy provides a better adaptive 
environment for segmentation while reducing the computation time. 
Scale Estimation can find the optimal segmentation scale to improve the 
efficiency of the experiments (Ming et al., 2015). 

5.2. Training scales effect 

The appropriate scale can capture both macro and micro features of 
the image, enabling a comprehensive analysis and interpretation of 
different geographical phenomena and patterns (Zhou et al., 2020). As 
can be seen from Fig. 10 (b), if the patch is too small, there will be fewer 

Fig. 9. The annual LULC changes in Beijing. In the maps, changes between years are symbolized by black color.  

Fig. 10. (a) The accuracy of the adaptive-scale hierarchical strategy (Beijing 2002). (b) The information content of different training scales.  
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connections on the adjacent edges, and the relative use of spatial in-
formation is insufficient; if the patch is too large, the spatial information 
may be redundant, and key information cannot be collected. 

A separate classifier can realize the output of the intermediate 
product-classification map. Fig. 11 presents the classification results at 
different training scales, highlighting the presence of the salt-and- 
pepper phenomenon in small-scale results. As the scale increases, the 
phenomenon gradually diminishes, and the accuracy of LULC classifi-
cation initially improves and then decreases (as shown by the orange 
line in Fig. 10 (a)). The spatial relationship of vegetation is relatively 
simple and the proportion of the same type is relatively large. When the 
scale is large, it cannot focus on the connection of a small number of 
different types, which results in the large-scale distribution of classified 
vegetation. The best classification accuracy rate in Beijing in 2002 was 
scale 65, reaching 92.1 %. Table 3 clarifies the specific accuracy of 
various scales in Beijing in 2002. 

5.3. Advantages of DF-GCN 

5.3.1. Feature visualization 
To better demonstrate the effectiveness of DF-GCN, we visualized 

and analyzed the convolution kernel and intermediate features (Wang 
et al. 2020). Fig. 12 (a) shows a partial visualization of the convolution 
kernel of the convolution module: at first, it is a simple color filter, 
which horizontal, vertical and density looks relatively regular. As the 
number of convolution layers increases, the convolution kernel begins to 
show a water ripple texture, the density changes continuously and the 
shape gradually becomes abstract. Finally, the convolution kernel at 
layer 5–1 abstracts into very complex fossil-like textures. 

Fig. 12 (b) indirectly explains the process of deep feature mining: as 
the layers are gradually deepened, the textures gradually change from 
fine and detailed to coarse and abstract. Further analysis shows that the 
different feature texture maps seem to highlight features at different 
locations of the image, which also clarifies that different abstract 
convolution kernels match different features of objects at different 
locations. 

5.3.2. Ablation experiment based on DF-GCN 
To demonstrate the superiority and robustness of DF-GCN in this 

paper, we conducted experiments on the same Landsat data (Beijing 
2002) using RF, CNN (AlexNet), DF-CNN, GCN and the same 

combinations with GCN, respectively. The comparison of classification 
accuracy among the methods is shown in Table 4. Random forest per-
formed worst, while deep learning approaches led to more promising 
results. Among the previously applied deep learning approaches, Alex-
Net + GCN had the highest accuracy of 90.03 %. Our new approach 
outperformed all other approaches and led to an accuracy of 92.10 %. 

Fig. 13 presents the LULC maps of different combination methods. 
The Random Forest method performs relatively poorly from a visual 
perspective, such as misclassifying some forests and grasslands as 
shrublands. The GCN method, which only considers adjacency re-
lationships, also has mediocre performance. The use of CNN and DF- 
CNN improves the classification of forests, grasslands, and shrublands. 
Further improved CNN + GCN and DF-GCN achieve relatively better 
results in the classification of urban areas, urban green spaces, and 
farmlands with close relationships. According to the red block in Fig. 13, 
we can observe the disadvantage of the random forest method in dis-
tinguishing vegetation categories, while the introduction of neural 
networks improves the classification of vegetation. Under the influence 
of deep-level features and spatial relationships, DF-GCN demonstrates 
excellent performance in LULC classification. For example, in the 
enlarged image within the black box, we can observe that the classifi-
cation result of GCN is relatively chaotic, and CNN has some misclassi-
fication of farmland and bare land. Random forest and CNN achieve 
relatively accurate classification, but relying solely on feature prediction 
seems to have limitations. Due to the complexity and proximity of LULC 
types and various interference from adjacency relationships, some 
misclassifications and false classifications still occur. The two hybrid 

Fig. 11. Classification results for different training scales (Beijing 2002).  

Table 3 
The ablation experiment results in Beijing (2002 Year). RSI: remote sensing 
imagery. EFM: edge feature map. HS: Hierarchical segmentation Based on ob-
ject. DFCNN: Deep convolution module and SE module. GCN: local spatial 
relationship and semantics modeling.  

Exp. Strategy Overall 
RSI EFM HS DFCNN GCN 

1 √      0.746 
2 √ √     0.787 
3 √ √ √    0.832 
4 √ √ √ √   0.899 
5 √ √ √  √  0.869 
6 √ √ √ √ √  0.921  
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networks exhibit relatively good extraction results in this area, with DF- 
GCN outperforming the others, further proving the advantages of DF- 
GCN in exploring and integrating deep-level features and spatial 
relationships. 

Therefore, conclusions can be drawn based on quantitative and 

qualitative analysis: RF only considers shallow information. The intro-
duction of AlexNet and DF-CNN addresses the issue of insufficient 
exploration of deeper features and improves the classification accuracy 
of LULC. GCN lacks the support of deeper features and does not achieve 
satisfactory accuracy. The novel DF-GCN model combines deeper 

Fig. 12. Visualization of Convolution Kernel (left panel) and visualization of intermediate features (right panel).  

Table 4 
Overall accuracy of the different scales (year 2022). (T: training accuracy; V: verification accuracy; GT: ground truth accuracy).  

Scales 15 25 35 45 55 65 75 85 95 105 

T (%) 
V (%) 

95.1 
83.0 

94.6 
88.2 

95.5 
90.1 

95.8 
93.6 

96.2 
93.1 

95.6 
94.5 

94.8 
92.7 

94.7 
90.5 

95.6 
88.8 

96.6 
85.4 

GT (%) 76.4 84.0 88.4 89.0 89.5 92.1 87.2 84.3 81.8 79.4  

Fig. 13. Fig. 13. Comparison of classification results of the different methods for year 2002. (Red box: macroscopic differences. Black Box: Comparison of details.). 
(For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 
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features and spatial information, fully realizing the expression of land 
features, and provides the possibility for better LULC classification in 
Beijing (Ding et al., 2022; Yao et al., 2022). 

5.4. Advantages of change detection framework based on deep Siamese 
network 

5.4.1. Comparison between feature fusion and decision fusion strategy 
Table 5 shows the response time and detection accuracy of the 

connection fusion method and the additive fusion method (2002). 
Connection fusion is the merging of feature sets. Although all the in-
formation of the two feature maps is retained and the number of features 
is significantly increased, the information redundancy leads to an in-
crease in the amount of calculation and may even lead to errors. In 
contrast, additive fusion can enhance important features, weaken noise, 
speed up response time, and help improve the stability and generaliza-
tion ability of the network. 

5.4.2. Comparison with the State-of-the-Art method of change detection 
Since there is no change true value map available, we used the 

classification map of DF-GCN, which has the highest accuracy. The 
difference between 2002 and 2003 were calculated to approximate the 
true value. Table 6 shows the numerical results of different change 
detection methods. Our proposed deep Siamese-based change detection 
framework achieves relatively good results. 

The change maps obtained by LandTrendr have salt-and-pepper 
spots and contain false detections. BiT has a Transformer module that 
can emphasize the connection between high-level semantic features, 
and the detection results are relatively complete. However, there are 
also a few discontinuities and pieces. The above methods are all due to 
pixel-level detection, which results in ground objects being granular and 
partially blurred. Compared with other methods, our proposed detection 
framework focuses on the object level, and the detection results are 
closer to the real situation of ground objects, with fewer missed and false 
detections. At the same time, compared with MSPSNet, our method also 
focuses on object spatial relationships and semantics, thus showing good 
detection results. Regardless of qualitative or quantitative analysis, our 
proposed deep Siamese-based change detection framework is effective 
in object-level multi-scale feature extraction and spatial semantic 
modeling. 

5.5. Comparison with GlobeLand30 

To demonstrate the validity of the method under consideration of the 
time span and availability of the data, we selected three existing prod-
ucts for comparison. Table 7 shows the accuracy of different products. 
Combined with the results in Table A in the Appendix, the overall ac-
curacy of our results is higher than existing products. We also provided 
several detailed views to explore the differences in local area classifi-
cation. The LULC maps presented in this paper showed better coherence 
compared to GlobeLand30.This is because features need to be expressed 
at an appropriate spatial scale rather than the original pixel, and 
GlobeLand30 focuses more on global coverage, which limits its ability to 
capture local detail. 

Furthermore, the changes over the 10-year period differed as well. In 
Fig. 15, the change detection results in this study were more detailed and 
smoother compared to GlobeLand30, which can be attributed to the 
consideration of both feature-level and spatial relationship 

contributions at the object level (Chen et al., 2019). 
As shown in Fig. 16, CGLC also has classification coherence problem, 

for example near water bodies (Fig. 16 (A1), this is due to too low res-
olution and fuzzy boundaries at the pixel level. Likewise, airport is 
mistakenly classified as bare-land. In addition, EAS WorldCover ach-
ieved better classification results with the help of high resolution. The 
boundaries of ground objects were clear, but there were some deviations 
in the division of forests, shrubland and grasslands Fig. 16 (A2). 

Since the focus is laid on the object level, the proposed DF-GCN- 
based construction shows better p erformance in the classification 
(Table 8) of the Beijing area. 

5.6. 20 years of LULC change analysis 

With the development of industrialization and urbanization in Bei-
jing, land resources are facing increasing spatial and environmental 
pressures. Beijing has experienced one of the highest rates of LULC 
change over the past two decades, mainly driven by urban expansion 
and a decrease in farmland. 

Based on the analysis of changes in Beijing from 2002 to 2022, it is 
obvious that the urban area shows a growing trend, while the cultivated 
land area is relatively reduced, and other land use categories have 
relatively little change (Fig. 17). This is mainly due to the stimulation of 
the urban economy, and the population inflow into the city leads to the 
formation of an expansion-development cycle (Mahtta et al., 2022). 
Therefore, the urban area is continuing to expand, growing by approx-
imately 11.58 % (Fig. 17 (C)). Consequently, a large amount of farmland 
and other vegetation land types have been cut down and developed into 
urban areas. Among them, farmland, which decreased by approximately 
825.6 square kilometers (Fig. 17 (D)). Especially around 2008, hosting 
the Beijing Olympics stimulated economic growth, employment needs, 
and accelerated the urbanization process. However, excessive urbani-
zation has caused exponential population growth. As of 2015, Beijing’s 
population was 21.705 million, more than double that of 2002. The 
exponential growth of population has led to Beijing’s urban congestion, 
increased emissions and pollution, urban heat island effect, and 
increased disaster risks. Simultaneously, the quality of people’s living 
environment has declined, the proportion of urban green space has 
continued to decrease, and there are irregularities in the water’s quality. 

For the sustainable development of cities, China implemented the 
“Thirteenth Five-Year Plan” in 2016, focusing on ecological protection 
and environmentally sustainable development. Therefore, the urbani-
zation process slowed down from 2018 to 2020, focusing on protecting 
and maintaining the ecological environment around the city; the pro-
portion of urban green spaces and water bodies increased relatively 
(Fig. 17 (B1 and B2)), which improved the use of resources and allevi-
ated the pressure on the city. However, due to the COVID-19 epidemic, 
Beijing’s city closure policy has caused urbanization to stagnate until 
2022 when the city opened more intensively. The increase in water 

Table 5 
Comparison of overall accuracy of the different methods.  

Methods RF AlexNet DF- 
CNN 

GCN AlexNet +
GCN 

DF- 
GCN 

Overall 
accuracy (%)  

80.67  85.87  88.65  82.37  90.03  92.10  

Table 6 
The Overall accuracy of the different methods.  

Method Connection fusion Additive fusion 

Pre 93.1 92.5 
Rec 95.5 95.3 
OA 96.9 96.6 
Response time 33 min 22 min  

Table 7 
Numerical results of different change detection methods. (2002–2003).  

Method Landtrendr MSPSNet BiT Our 

Pre  86.24  90.11  88.67  92.5 
Rec  88.37  91.59  90.37  95.3 
OA  90.9  93.5  91.4  96.6  
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bodies in Beijing since 2015 is mainly caused by the water storage of the 
Miyun Reservoir in the northeast of Beijing. In addition, the construction 
of numerous artificial lakes in new residential areas also contributed to 
increase. 

The change detection improves the readability and interpretability of 
land change trends and policies in the past 20 years. At the same time, 
the regularities and patterns can help planners better understand the 
development trajectory of cities and formulate more effective urban 
planning and policies to cope with urban growth and changes. 

Furthermore, to respond to the sustainable development of cities, 
LULC-SC helps to assess the degree of sustainability, improve the effi-
ciency of resource utilization, and improve the ecological health of the 
city. 

5.7. Limitations of the study 

The quantity and quality of the samples in this study may introduce 
some uncertainty (Lv et al., 2018). The construction of the graph should 
consider more spatial distances and relationship weights. Additionally, 
the validation of long-term continuous LULC-SC maps is an onerous task 
as obtaining multi-year reference data can be difficult. Moreover, 
ground truth data is obtained through manual visual interpretation, 
which also carries a certain level of uncertainty. In fact, the low tem-
poral frequency may sometimes result in uncertainties due to the un-
availability of high-resolution imagery for every year. Furthermore, this 
study only focuses on Beijing as an example, and the urban diversity and 
complexity is relatively limited. In the future, this method will be 
applied to multiple cities to evaluate its applicability. 

6. Conclusions 

In this study, we proposed a Siamese-based DF-GCN spatiotemporal 
change detection framework for mapping land cover in Beijing using 
Landsat time series data from 2002 to 2022. We generated annual, 
multi-class land cover maps and produced LULC-SC maps for Beijing. 
Compared to various classification algorithms, the proposed DF-GCN 
algorithm effectively integrates deep-level features and spatial adja-
cency relationships, achieving accurate classification of LULC in Beijing 
with classification accuracies exceeding 90 %. Moreover, the deep Sia-
mese Network enables rapid comparison of spatial semantic tensors in 
time series of remote sensing images, facilitating the generation of 
annual-scale LULC maps for Beijing. Therefore, the method proposed in 
this study allows for the effective mapping of LULC over long time series, 
and the results can be used to planning and optimize LULC patterns, 
providing comprehensive knowledge to promote and coordinate 
regional sustainable development. (Gong et al., 2022). 
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Fig. 14. Change detection results of different methods (for years 2002 to 2003). (A) The left is the 2002 image and the right is the 2003 image. (B) Difference 
between 2002 and 2003 classification maps (DF-GCN). (C) Change maps of LandTrendr (D) BiT (E) MSMPNet and (F) our method. 
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Appendix 

Table A1. The Overall accuracy of each year in Beijing. (T: training accuracy; V: verification accuracy; GT: ground truth accuracy).   

Year 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 

Optimal-Scale 65 65 55 65 55 55 55 65 65 65 65 
T (%) 95.6 96.6 96.3 97.0 97.0 96.4 95.4 97.1 96.9 97.2 97.5 
V (%) 94.5 96.4 95.7 95.6 96.3 96.0 95.6 96.8 95.8 95.9 96.5 
GT (%) 92.1 93.2 94.0 93.5 92.9 95.3 93.6 94.5 93.9 94.7 94.2    

Year 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 

Optimal-Scale 65 65 55 65 55 65 55 55 65 65 
T (%) 97.6 97.5 96.8 95.6 96.8 96.9 96.8 97.4 97.3 96.7 
V (%) 96.1 96.4 95.4 95.1 96.1 96.3 95.9 96.4 96.0 95.3 
GT (%) 93.6 92.9 94.2 93.2 94.6 94.1 94.0 94.3 93.8 93.5  

Table B1. Accuracy verification of change maps. 

Fig. 15. Comparison between results of our method and existing GlobeLand30 data. (White box: Detailed view near the reservoir; Black box: detail of the suburbs; 
Gray box: 10 years of change). 
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Year 2002–2003 2003–2004 2004–2005 2005–2006 2006–2007 

Precision (%) 
Recall (%) 

92.5 
95.3 

92.3 
94.4 

93.3 
95.7 

93.0 
94.4 

94.0 
95.7 

Accuracy (%) 96.6 96.2 96.0 95.5 96.9   

Year 2007–2008 2008–2009 2009–2010 2010–2011 2011–2012 

Precision (%) 
Recall (%) 

92.4 
93.0 

93.4 
95.6 

93.1 
94.8 

92.9 
93.8 

91.2 
93.9 

Accuracy (%) 94.3 96.6 95.5 95.9 95.7    

Year 2012–2013 2013–2014 2014–2015 2015–2016 2016–2017 

Precision (%) 
Recall (%) 

91.5 
94.5 

91.6 
93.1 

93.5 
95.4 

92.8 
95.4 

92.6 
95.1 

Accuracy (%) 95.2 95.6 96.9 97.5 97.2   

Fig. 16. Comparison between results of our method and existing other data produces. (A) Comparison with Copernicus Global Land Cover Map. (B) Comparison with 
EAS WorldCover Map. (Ellipses show details). 

Table 8 
The Overall accuracy of the different datasets.  

Produces GlobeLand30 Copernicus Global 
Land Cover 

EAS 
WorldCover 

Year 2010 2020 2018 2019 2020 2021 

Overall Accuracy (%)  81.6  82.9  78.3  80.7  88.6  90.1  
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Year 2017–2018 2018–2019 2019–2020 2020–2021 2021–2022 

Precision (%) 91.8 92.9 91.8 93.4 93.3 
Recall (%) 93.6 94.3 93.9 96.4 95.0 
Accuracy (%) 95.6 96.1 96.0 97.3 96.8  

Fig. A1. Classification results for each year from 2002 to 2022 in Beijing. 
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