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Vector fields are a highly abstract physical concept that is often taught using visualizations. Although
vector representations are particularly suitable for visualizing quantitative data, they are often confusing,
especially when describing real fields such as magnetic and electric fields, as the vector arrows can overlap.
The present study investigates vector understanding at the end of secondary education. In particular, the
extent to which the geometry of the field can be derived from conventional unit vector representations and
representations with centered unit vectors was examined. To support this understanding, two exercises were
compared. The unirepresentational exercise argued within the conventional unit vector representation,
while the multirepresentational exercise attempted to support the link between centered and conventional
unit vectors. The results show that almost all test subjects solved the items for generating vector
representations correctly, but significant difficulties were encountered in interpreting vector representa-
tions. Drawing and interpreting vector representations therefore appear to be different skills that should be
practiced intensively and in an integrated way. Various problems could be identified when interpreting
vector representations. For example, the number of vectors is often erroneously used to estimate the
strength of the field, although more vectors per surface element actually only increase the resolution of the
representation. Here, however, the results suggest that the longitudinal density and the transverse density of
the drawn vectors are perceived differently by the learners. Furthermore, the learners recognized the field’s
geometry much more readily from centered unit vectors than from conventional unit vectors. Errors occur
especially when interpreting the geometry of conventional unit vector representations of rotational fields
and fields containing both sources and sinks while the geometries of fields containing only sinks were
interpreted quite well. The comparison between the two training exercises showed that a promising
approach to deepen students’ understanding would be to use an exercise that contrasts conventional and
centered unit vector representations and explains how to translate from one representation to the other,
rather than describing the main elements of only a single representation. Finally, based on the results of the
study, we propose a strategy for teaching vector representations in schools. Given the significantly
improved readability of the representation with centered unit vectors, the results even raise the question of
whether this type of representation could possibly replace the conventional representation in textbooks and
learning materials in the future.
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I. INTRODUCTION

When dealing with invisible physical concepts and
phenomena such as magnetic or electric fields, visualiza-
tions are essential to illustrate, communicate, and discuss
their inherent properties. In education, qualitative methods
such as field line drawings are typically used to characterize
fields. While magnetic fields can be observed experimen-
tally with iron filings or magnetic needles, electric fields

can be demonstrated using semolina and castor oil or
potassium permanganate [1]. Quantitative methods are
rarely used for various reasons, not least because of the
absence of experimental settings in which precise quanti-
tative data can be obtained and the long time required to
generate and visualize numerous measurements of the
field’s values, which are necessary to delineate its structure.
In the present day, digital media can reduce the time

required for dataset generation or visualization and provide
a quantitative alternative. For example, a web-based labo-
ratory that allows precise measurement, various visualiza-
tions, and detailed analysis of the field of a permanent
magnet is described in Ref. [2]. Further simulations that
offer similar visualizations of electromagnetic fields can be
found online, for example at Refs. [3] and [4].
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However, an open question remains regarding how to
appropriately visualize quantitative data for students. Field
line plots, which are commonly used for field visualiza-
tions, are unsuitable for visualizing accurate readings of
measured data. Ordinary vector representations, in which
the absolute value of the measured variable is represented
by the vector’s length, quickly become confusing, as the
field’s absolute values increase rapidly at positions closer to
the charge or magnetic pole and the arrows overlap
accordingly (see Fig. 1).

A. Considering research results
from cognitive science

According to cognitive load theory [5–8], it is desirable
to reduce the cognitive load related to the complexity of a
representation to ensure sufficient cognitive resources are
free to process the perceived information. Mayer and
Moreno [9] proposed nine different approaches to reduce
the cognitive load in multimedia learning environments—
of these, segmenting information, pretraining, weeding of
information, and signaling techniques are potentially suit-
able to reduce the cognitive load when learning from
representations of vector fields. For example, the presen-
tation can be segmented by separating information con-
cerning the directions and magnitudes of the measured
vectors into separate representations. This approach could
be particularly useful when emphasizing single character-
istics of the field during a pretraining phase. Furthermore, if
only the directions or magnitudes of the measured values
are relevant, by weeding out the other information, the
information load to be processed can be reduced. To
subsequently link the representations, e.g., in combination
with cross-representational questions, signaling techniques
can be used.

A theoretical background for learning with more than
one representation is described by the theory of learning
with multiple representations [10]. Ainsworth states that
learning with multiple external representations can be
advantageous as they can fulfill different functions when
combined [11]:

• Multiple representations can complement each other,
both in terms of the content shown and the processes
required for information processing.

• One representation can be used to constrain the scope
for interpretation of another.

• Integrating information from different representations
can facilitate a deeper understanding.

Separating the magnitude and direction of measured
vector quantities into different representations, therefore,
corresponds to the content branch of Ainsworth’s proposed
complementary function [10]. Overall, separating informa-
tion into multiple representations is intended to reduce the
information density of each representation and to stimulate
deeper understanding.
It is highly challenging for teachers to select suitable

visualizations of measured field values to ensure the best
outcomes for learners. These representations should build
on the learners’ previous experiences but also present the
field’s characteristic features such that they can be correctly
interpreted.
To address this issue, the present study aims to provide

concrete insights into how the directionality of measured
values of magnetic and electric fields can be visualized to
ensure that the representations can be correctly understood
by learners. Furthermore, promising potential approaches
are identified and recommendations are made to help
improve the understanding of directional representations
of vectors.

B. Background and related research
on vector representations

The following section first provides an overview of how
the concept of vectors is developed in traditional physics
lectures. Problems with vector representations of physical
fields are then discussed in more detail. Finally, the current
research background and research gap are outlined.
Students first encounter vector quantities when they

learn about physical forces in class. Forces have a point
of action, a magnitude, and a direction, which are visual-
ized by the starting point, length, and direction of the vector
arrow, respectively. Later, this convention is used to
visualize electric and magnetic fields. Here, the vectors
are initially force arrows that visualize the force acting on a
test charge in an electric field or the force acting on a test
current in a magnetic field. Subsequently, based on these
forces, the electric field strength and magnetic flux density
are described as properties of defined points in space.
Based on force vectors in mechanics, arrows are used to
visualize these new vector quantities. The starting point of

FIG. 1. Vector representation of the field of a permanent
magnet. Due to the rapid increase in field strength closer to
the poles, the vectors partially overlap, which makes this
visualization confusing.
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these field vectors indicates the position to which the value
refers, while the magnitude and direction of the field are
represented by the length and direction of the arrow,
respectively.
In high school mechanics education, problems can

usually be simplified so that the acting force is visualized
by a single force arrow, e.g., the gravitational force is
assumed to act at the object’s center of gravity. If
electromagnetic fields are visualized, however, many vector
arrows are necessary, each starting from its reference point.
This type of representation can cause various compre-

hension difficulties during the learning process:
(1) Vector arrows partially overlap, making the visuali-

zation confusing, e.g., when visualizing the mag-
netic flux density of a permanent magnet (see
Fig. 1). Changes in the scaling of the length (e.g.,
logarithmic scaling) only help to a limited extent,
especially as this approach can result in further
misinterpretation.

(2) Vector representations of fields can become prob-
lematic when interpreting the symmetry of the fields.
Since the arrows start at the reference point and are
plotted from there, asymmetries arise that can
directly affect the interpretation of the field’s pre-
sented geometry (see Fig. 2).

As described in Sec. I A, overlap of vector arrows can be
avoided by separating the information describing the
vectors’ magnitudes and directions into two different

representations. One visualization shows the directions
of the field, allowing its geometric structure to be inter-
preted, while another provides information about the field’s
magnitude.
In terms of deriving the geometry of the field from this

type of directional representation, the question remains
whether a conventional vector representation is suitable.
One potential approach to better visualize the symmetries
of the field would be to center the vectors at their reference
points. However, to the best of our knowledge, no studies to
date have provided any insights into whether this adapted
form of representation provides any advantages in terms of
understanding the field’s geometry.
Previous studies have highlighted that two-dimensional

field line images, e.g., those of point charges, which are
often used in schools, are unsuitable for representing a
vector field’s strength as these images suffer from projec-
tion effects including equatorial clumping, false monopole
moment, and boundary clumping [12]. To avoid these
issues, Wolf et al. [12] suggested placing field vectors at the
vertices of a square grid as an alternative form of repre-
sentation; however, student problems with such vector
representations have been previously reported. Based on
the results of a developed “vector knowledge test” [13],
Knight concluded that students require explicit instruction
and practice with the use of vectors. These results also led
to further studies of physics students’ understanding of
vector addition, magnitude, and direction [14,15].
Problems with vector representations included that the
vector quantity assigned to a point within a field is
represented by an expanded spatial arrow that extends
over a certain spatial area or the confusion between field
lines and vector representations [15].
Gire and Price [16] highlight that vector representations

contain an ambiguity in the meaning of space, which can
cause difficulties for learners. Different points in the vector
plot correspond to different locations in real space, and the
distances between points in the vector plot indicate dis-
tances in real space; however, the distance between the
starting point and tip of a vector is used as a measure of its
absolute value. They also describe the misconception that a
vector arrow is not only related to its reference point but
also to all points that it overlaps.
Based on previous studies [13,14,17–32], Barniol and

Zavala [33] developed a taxonomy describing the most
frequent errors university students make after learning
about vector concepts. Building on this, they developed
a context-free multiple-choice vector concept test named
the “test of understanding of vectors” (TUV). Four cat-
egories of the most frequently occurring incorrect answers
could be identified, including difficulties in understanding
the graphical properties of the direction, magnitude, and
components of a vector [33]. More recent works presented
a “vector field representations” test (VFR) [34] and a
concept test named “representational competence of fields

FIG. 2. Unit vector representation of the electric field surround-
ing two point charges with the same magnitudes and different
signs. Due to the convention of how the vectors are drawn,
asymmetries arise in the representation of the field geometries
that could be misinterpreted.
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inventory” (RCFI) which is intended as a context-indepen-
dent assessment of specific representational competence
levels when working with field line images and vector field
representations as well as when translating between these
two representation types [35].
Bollen et al. [34] investigated student difficulties in

terms of interpreting, constructing, and switching between
vector field representations based on a target group of
university students. The investigation showed that many
misconceptions regarding vector representations remain
even at the university level. One common misconception
was identified during the construction of vector plots from
their mathematical description, in which some learners
incorrectly drew arrows centered on their reference point.
This behavior was shown by students from a certain
university and the cause of this phenomenon was not clear.
Another misconception identified by Bollen et al. [34] was
that the density of vector arrows was thought to describe the
magnitude of the field. A possible explanation for this
could be the activation of a cognitive structure described in
Ref. [36], namely an intuitive knowledge element that Elby
[36] calls WYSIWYG (“what-you-see-is-what-you-get”).
For example, in the case of magnetic fields, this would
mean that learners transfer previous experiences of visu-
alizations using iron filings, in particular the increased
accumulation of the filings at a magnet’s poles, to the vector
representation of fields: this then leads to the misconception
that closely adjacent vectors imply a stronger field.
However, previous studies to date have not investigated
whether there are differences in the perception of the
transverse density and the longitudinal density of vectors.
In contrast to the VFR, the RCFI test addresses middle

and high school students as well as entry-level university
students. In the RCFI, no drawing tasks are required—
although these are very good at identifying students’
conceptions and competencies, they also make high gen-
erative demands on the learners [37]. For details, see
Ref. [38] which describes a framework based onmultimedia
theory [39] that can be applied to the processes underlying
drawing construction. Furthermore, the symbolic level of
the vector field representationwas omitted in the RCFI since
this aspect is not dealt with in depth in schools. Overall, the
results of the RCFI test showed that the field line concept, as
understood by university students, is fraught with miscon-
ceptions [35]. It was proven that problems of understanding
remain at the university level, the elimination of which was
missed in physics classes at school.
The interpretation of unit vectors has not been exten-

sively investigated in the past. In 2014, Barniol and Zavala
[33] provided an overview of research into students’ errors
when dealing with different vector concepts. Research
results on unit vectors in the Cartesian plane could not
be found here. Their developed TUV contains an item in
which the students are asked to find the unit vector in the
direction of a given vector, and more than half the students

could not solve this item correctly. The tasks in VFR that
require unit vectors concern the construction of a possible
mathematical expression for a given vector field presented
graphically [34]. The graphical interpretation of unit
vectors, on the other hand, is not required for this exercise.
Previous studies have already investigated various strat-

egies to improve students’ understanding of vector repre-
sentations. For example, Klein et al. [40] conducted an eye-
tracking study to compare the effectiveness of visual
strategies to qualitatively interpret the divergence of
graphical vector field representations. Their study found
that learners benefited most when they were free to choose
which of the two strategies to use. In a second study, Klein
et al. [41] showed that the cognitive linking between the
representations of vector fields and mathematical equations
defining the vector field’s divergence and curl can be
promoted by embedding visual cues in the instructional
material. However, in both studies, the magnitudes at
different locations in the vector fields only varied very
slightly; hence, the representations were clear and unam-
biguous as the vectors did not overlap.
In contrast, in the case of real electromagnetic fields

(especially near the poles), it is not usually possible to
visualize the vector field without overlapping arrows. Unit
vector representations are less problematic in this respect
because overlap can be avoided due to the uniform vector
length and corresponding spacing of the grid points.
However, there has been no research to date into the
interpretation and teaching of this type of directional
representation. It is conceivable that the geometry of the
fields may be better understood by learners using centered
unit vectors rather than conventional vectors, but there are
not yet sufficient empirical studies on this topic.
Additionally, as the established conventional way of

drawing unit vectors is commonly used in textbooks and
learning materials, it is important to know ways to improve
the understanding of these representations in the future.
However, there is no empirical evidence to date regarding
what kind of exercise can improve understanding of
conventional unit vector representations best. Two prom-
ising approaches emerge from theory: first, based on the
functions of multiple external representations [11], an
exercise contrasting centered unit vectors and conventional
unit vectors might help constrain the interpretation of the
conventional vectors. Accordingly, such an exercise should
aim to create global coherence [42] and an integrated cross-
representational understanding. Second, in terms of the
single concept principle [43], an exercise could highlight
core aspects of the unit vector representation and thus
improve the understanding of this single representation in
the sense of local coherence [42]. Since the learners would
only have to concentrate on one representation type,
according to the cognitive load theory [5–8], resources
in the working memory would be freed up for processing
the essential information.
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In summary, there are open research questions in the
interpretation of vector representations. The literature
described shows that it has not yet been tested whether
the longitudinal and transverse density with which vectors
are drawn has an influence on the estimation of the field
strength. Also, it is not clear whether these misconceptions
can occur even if learners already have a correct idea about
the convention of vector representations. Further, previous
studies have not investigatedwhether a field geometry can be
better recognized using traditional unit vector representa-
tions or centered vector representations, and accordingly,
there is no evidence as to which exercise would be most
effective in promoting theunderstandingof conventional unit
vector representations. The present study aims to address
these described research gaps. The findings of this work can
help to anticipate problems in understanding vector field
representations, which would allow appropriate measures to
be prepared to correct these misunderstandings.

C. Research questions

1. Are learners better able to derive the correct field line
image from a conventional unit vector representation
or a representation with centered unit vectors, based
on the knowledge of vector fields they acquire
during their school career?

2. What type of exercise is better suited to improve the
interpretation of unit vector representations: A cross-
representational exercise that relates conventional
unit vectors to centered unit vectors or an exercise
that uses a single representation?

3. How well can learners generate and interpret vector
representations by the end of the 11th grade, and
how do the two exercises influence comprehension?

4. Can learners identify areas where the magnitude of
the field strength reaches its maximum based on
unit vector representations of already-known field
configurations, and, in addition, how do the two
exercises influence this ability?

II. METHODS

A. Participants

A total of 124 students from eight different school
classes participated in the study. The participants all
attended the 11th grade of a Bavarian high school. The
survey took place at the end of the school year. In Bavaria,
representations of fields are discussed in schools for the last
time in this grade; thus, at the time of the study, the learners
had completed the full syllabus of field representations
taught in schools.

B. Design

This study had two goals. First, vector understanding,
including the interpretation of conventional unit vectors and
centered unit vectors, was examined using a questionnaire.

Second, a pre-post design was used to evaluate the effective-
ness of two exercises, which both aimed to improve the
generation and interpretation of vector representations. An
interventionwas conducted between the pretest and post-test.
The two different intervention groups are called “multi-
representational” and “unirepresentational” (for details, see
Sec. II C 1). The subjects were randomly assigned to the two
groups. Figure 3 shows the study’s design.

C. Materials

1. Intervention

Following the pretest, the intervention took place. Each
participant worked on a learning environment about vector
quantities that was presented on a tablet computer. The
intervention took 20 min.
In both conditions, the learning environment comprised

three parts. In the first part, participants reviewed aspects of
vector quantities and their representations that they should
have previously learned in school. Additionally, the rela-
tionship between conventional unit vectors, centered unit
vectors, and field lines was discussed. The second part was
the only one that differed in the two intervention groups.
Here, a different strategy for interpreting conventional unit
vectors was introduced in each intervention group (see
below for a detailed description of the two strategies). In the
third part of the application, the taught strategy had to be
applied in two paper-and-pencil tasks to deepen under-
standing. In both tasks, the taught strategy first had to be
applied to a conventional unit vector field representation,
second, field lines had to be drawn into the representation,
and third, the border of the measuring area had to be
marked. After completing the task, the correct solution was
presented on the tablet computer.
The following two subsections describe the strategies

used to teach the derivation of field line images from
conventional unit vector representations.

Multirepresentational intervention. Previous studies have
reported that learning with multiple representations can
lead to a deeper understanding of the subject matter [11].
Accordingly, an exercise that relates conventional and
centered unit vectors is a potentially promising approach

FIG. 3. Illustration of the study’s design. The abbreviations
of the individual test components are explained in detail in
Sec. II C 2.
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to promote improved understanding. Integrating both
representations may also trigger coherence-building proc-
esses that lead to global coherence (see Sec. I B).
To promote the understanding of the conventional and

centered unit vector representations, the strategy in this
intervention aimed to establish a connection between the
two representation types. As this approach uses multiple
external representations to improve understanding, this
condition is referred to as multirepresentational hereafter.
In this intervention, an animation shows the conversion of a
conventional unit vector into its centered representation;
specifically, a conventional unit vector is extended back-
ward by its length, resulting in a centered vector repre-
sentation. The application argues that when drawing field
lines in a conventional unit vector representation, the
vectors in the studied area should first be converted to
centered vectors.

Unirepresentational intervention. Working with two
abstract representations at the same time can adversely
affect the processing of the conveyed information due to
cognitive overload (see Sec. I A) [5–8]. By showing only
one representation, the cognitive load could be reduced so
that additional cognitive resources are available for
processing the explanations associated with that represen-
tation. This approach is consistent with the single concept
principle (see Sec. I B). Therefore, the second intervention
argues within the conventional vector representation. As
the arguments are made only within one representation, this
condition is referred to as unirepresentational hereafter. In
the associated exercise, it was highlighted that when
drawing field lines in a conventional unit vector represen-
tation, particular attention should be paid to the direction of
the field on the axis.

2. Pretest and post-test

The pretest and post-test consisted of the same items. As
previously described in the theory, there are open research
gaps regarding the misinterpretation of the longitudinal and
transverse density with which vectors are drawn and the
extent to which misunderstandings can occur even when
learners already have a correct understanding of the
convention of vector representations. Furthermore, it is
unclear whether already known field geometry can be
recognized using conventional unit vector representations
and whether centered vector representations can be helpful
for the interpretation of conventional unit vectors. In order
to investigate these points, a questionnaire with the follow-
ing seven constructs was designed based on considerations
of the physical content:

(i) Drawing vectors (DV);
(ii) interpreting the transverse density of vector ar-

rows (TD);
(iii) interpreting the longitudinal density of vector ar-

rows (LD);

(iv) interpreting the length of vector arrows (AL);
(v) deriving information about field strength maxima

from an associated directional representation (FS);
(vi) interpreting the directions of a conventional unit

vector representation (VR);
(vii) interpreting the direction of a unit vector represen-

tation in which the vectors are centered at the
reference point (CV).

In the following section, these seven constructs are
described in detail.

3. Drawing vectors

The three items in this category test the extent to which
learners can visualize magnetic flux density and electric
field strength values using vectors. Each of the three items
provides information about the location, direction, and
magnitude of a vector quantity. The task involves visual-
izing this vector quantity in a preprinted coordinate system
on the test sheet. The participants can achieve a maximum
of three points per task. One point is awarded for each of
the following three aspects: correct starting point, correct
length, and correct direction of the vector arrow. To test the
internal consistency, Cronbach’s alpha was calculated for
the pretest and post-test, with high values obtained for both
the pretest (α ¼ 0.921) and post-test (α ¼ 0.911).

4. Interpreting the transverse density of vectors

Using two items, it was tested whether the transverse
density of vector representations affects the participants’
interpretation of the field strength. One of the items is
shown in Fig. 4. Two vector plots were shown that differed
in the density of vectors perpendicular to their direction.
Each vector was of the same length. The task was to
compare the field strengths of the two representations, and
there were four answer alternatives: (i) field strength in
representation 1 is higher, (ii) field strength in representa-
tion 2 is higher, (iii) both representations show a field of the
same field strength, and (iv) none of the possible answers is
correct. To test the consistency of this two-item scale,
Spearman-Brown coefficients were calculated for both the
pretest (0.698) and the post-test (0.710).

5. Interpreting the longitudinal density of vectors

Two items were used to test if the longitudinal density of
vectors influences the participants’ interpretation of the
field strength. One of these items is depicted in Fig. 5. Two
vector plots were shown that differed in terms of the density
at which the vectors were plotted in the direction of their
vector arrows. All vectors were of equal length. The task
was to compare the field strengths of the two representa-
tions, and there were four answer alternatives: (i) field
strength in representation 1 is higher, (ii) field strength in
representation 2 is higher, (iii) both representations show a
field of the same field strength, and (iv) none of the possible
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answers is correct. To test the consistency of this two-item
scale, Spearman-Brown coefficients were again calculated
for both the pretest (0.869) and the post-test (0.847).

6. Interpretation of the length of vector arrows

Another two-item scale was used to investigate whether
the length of the displayed vectors is correctly interpreted

as an indicator of field strength. Figure 6 shows one of the
two items. Again, two vector plots were presented. Each
consisted of the same number of vectors which all pointed
in the same direction and were located at the same positions
in the two diagrams. The only difference was that the
arrows in the two representations differed in length. The
participants were asked which of the two visualizations
showed a higher field strength. They had to choose between

Which vector representation shows a field of higher electric field strength? 

1. 2.  

□ Representation 1 □ Representation 2 

□ The electric field strength in 1 and 2 is 

the same 
□ None of the answer alternatives are 

correct 

FIG. 4. Example of an item regarding the interpretation of the transverse density of vectors.

Which vector representation shows a field of higher electric field strength? 

1. 2.  

□ Representation 1 □ Representation 2 

□ The electric field strength in 1 and 2 is 

the same 
□ None of the answer alternatives are 

correct 

FIG. 5. Example of an item regarding the interpretation of the longitudinal density of vectors.

Which vector representation shows a field of higher electric field strength? 

1. 2.  

□ Representation 1 □ Representation 2 

□ The electric field strength in 1 and 2 is 

the same 
□ None of the answer alternatives are 

correct 

FIG. 6. Example of an item regarding the interpretation of the length of vector arrows.
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four answer alternatives: (i) field strength in representation
1 is higher, (ii) field strength in representation 2 is higher,
(iii) both representations show a field of the same field
strength, and (iv) none of the possible answers is correct. To
test the consistency of this two-item scale, Spearman–
Brown coefficients were calculated for both the pretest
(0.741) and the post-test (0.833).

7. Deriving information about field strength maxima
from a directional representation (FS)

If working with known field configurations, based on
previously acquired knowledge, the positions of field
strength maxima can be deduced from the fields’ directions.
The two items in this scale test whether the participants can
correctly compare field strength maxima in three given
areas. One of the two items is depicted in Fig. 7. The vector
representations of the two items both show the field
directions resulting from two charges with the same
absolute value but different signs. The two items differ
only in terms of the position of the charges. In the first item,
the positive charge is on the left while the negative charge is
on the right, and vice versa in the second item. Two of the
three marked areas in which the magnitudes of the field
strengths are to be compared (areas 1 and 2 in Fig. 7)
contain a charge. The third area (area 3 in Fig. 7) does not

contain a charge and is located between the two charges,
outside the axis of symmetry. For each item, the partic-
ipants can choose between four alternative answers: (i) the
maximum of the absolute value of the field strength in area
1 is higher than in area 2, (ii) the maximum of the absolute
value of the field strength in area 2 is higher than in area 1,
(iii) the maximum of the absolute value of the field strength
in area 1 is equal to that in area 2, while the maximum of the
absolute value of the field strength in area 3 is smaller than
both, and (iv) the maxima of the absolute value of the field
strength in areas 1, 2, and 3 are the same. Again, to test the
consistency of this two-item scale, Spearman-Brown coef-
ficients were calculated for both the pretest (0.931) and the
post-test (0.950).

8. Interpreting the directions of a conventional
unit vector representation

Ten items tested the participants’ ability to relate the
correct field line picture to a given unit vector representa-
tion. These items were selected so that they cover fields that
have already been dealt with quantitatively in school and
with which the learners already have previous experience.
In detail, these are combinations of fields generated by
either up to two electrical charges or electrical currents of
either the same or different magnitude and of the same or

FIG. 7. Example of an item regarding interpreting the strength of a vector field from its directional representation.
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different sign. The ten tested field configurations were as
follows:

i. Electric field of one point charge;
ii. electric field of two point charges of the same

magnitude and same sign;
iii. electric field of two-point charges of the same

magnitude but different signs;
iv. electric field of two point charges of different

magnitude and the same sign;
v. electric field of two-point charges of different

magnitude and different signs;
vi. magnetic field of a current-carrying wire;
vii. magnetic field of two current-carrying wires where

the currents have the same magnitude and the same
direction;

viii. magnetic field of two current-carrying wires where
the currents have the same magnitude and opposing
directions;

ix. magnetic field of two current-carrying wires where
the currents have different magnitudes and the same
direction;

x. magnetic field of two current-carrying wires where
the currents have different magnitudes and opposing
directions.

For each field configuration, the participants had to
select the field line picture that best fits the displayed vector
plot. In total, eight different answer alternatives were given.
Distractors addressed different symmetries and properties
of fields as well as different geometries of the borders of the
measurement area. Taking the shape of the borders of the
measurement area into account provides information about
whether the learners have correctly identified the locations
to which the drawn vector arrows relate. Since the unit
vector representations do not convey any information about
the strength of the field and focus on providing the best
possible insight into the geometry of the field, for better
comparability, the field line images were also drawn to best
reflect the geometry of the field. To test the internal
consistency, Cronbach’s alpha was determined for the
pretest (0.560) and post-test (0.843). One of the 10 items
is shown in Fig. 8.

9. Interpretation of the directions
of centered unit vectors

A further 10 items tested the participants’ ability to
associate the correct field line picture with a given unit
vector representation, where the vectors were centered on
the point to which they belong. The ten-field configurations
were the same as mentioned above (see Sec. II C 8), and the
same distractors were used. Again, participants had to
choose from eight alternative field line pictures and select
the one that best represents the given field. To test the
internal consistency of the ten items, Cronbach’s alpha was
calculated for the pretest (0.790) and post-test (0.714). One
of the ten items is shown in Fig. 9.

D. Procedure

A total of eight different 11th-grade classes participated in
the study. In the 11th grade of the G8 curriculum in Bavaria,
electrical and magnetic fields are taught in school for the last
time. To ensure that all school-relevant content on magnetic
and electric fields had already been studied, the examination
was conducted at the end of the school year. First, the
participants worked on the pretest for 30 min before being
randomly assigned to one of the two intervention groups.
During the intervention, participants worked through the
learning environment on the tablet for 20 min. Finally, they
had 30 min to complete the post-test.

E. Statistical methods

1. Internal consistency of the test items

In the pretest and post-test, different physical concepts
regarding the graphical representations of vector fields are
assessed (see Sec. II C 2). Some of these concepts are
represented by three or more items, whereas others are
represented by only two items for reasons of test efficiency.
To test the internal consistency of the scales with three or
more items, Cronbach’s alpha was calculated, while
Spearman-Brown coefficients were used to assess the
internal consistency of the two-item scales, as recom-
mended in Ref. [44].

2. Exploratory factor analysis

An exploratory factor analysis was performed to exam-
ine the structure of the questionnaire in more detail. To test
whether the correlation matrix is significantly different
from an identity matrix, Bartlett’s test was conducted.
Furthermore, the Kaiser-Meyer-Olkin measure of sampling
adequacy was calculated to check how suitable the data are
for an exploratory factor analysis. Because the data are not
continuous, a mixed correlation matrix was calculated
using the psych package in R. Since the factors are
expected to correlate with each other, oblique rotation
was performed using the oblimin rotation method. In
addition, the Kaiser criterion and a scree plot were used
to determine the number of factors.

3. Wilcoxon test and Mann–Whitney U-test

Data were not normally distributed in either intervention
group. Therefore, instead of computing paired sample t
tests, nonparametric Wilcoxon tests were calculated to
examine the differences between the pretest and post-test
for each group. Similarly, nonparametric Mann-Whitney U
tests were used to investigate differences between groups in
terms of the improvement between the pretest and post-
tests. In accordance with Ref. [45], the distributions of the
dependent variable were checked for differences between
the groups using Kolmogorov-Smirnov tests. To account
for a multiple comparison problem, the results are corrected
according to Ref. [46].
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III. RESULTS

A. Exploratory factor analysis of the structure
of the questionnaire

To test the questionnaire’s structure, a factor analysis
(minimum residual solution)was conducted on the 31 pretest

items with oblique rotation. The Kaiser-Meyer-Olkin
measure confirmed the adequacy of the data (KMO ¼
0.61; “mediocre,” according to Ref. [47]). Bartlett’s test of
sphericity, χ2ð465Þ ¼ 1782, p < 0.001, indicated that the
correlations between the items were sufficiently large. An
initial analysis of the eigenvalues of each component

FIG. 8. Example of an item regarding the interpretation of the directions of a conventional unit vector representation.
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revealed that eight of the components had eigenvalues greater
than the Kaiser criterion of 1.
The scree plot was ambiguous and suggested 7, 8, or 11

components. Since the content of the questionnaire was

designed to capture seven constructs and this number is
consistent with the scree plot (whereas Kaiser’s criterion
tends to overestimate the number of factors [48]), seven
components were used for subsequent analysis.

FIG. 9. Example of an item regarding the interpretation of the directions of a unit vector representation with centered vectors.
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The factor loadings after rotation can be found in Table 1
of the Supplemental Material [49]. The results reflect the
originally intended structure relatively well:

• Factor 1 represents the ability to draw vectors.
• Factor 2 represents the understanding that a vector
field’s strength is not encoded in the transverse density
of vector arrows.

• Factor 3 represents the understanding that a vector
field’s strength is not encoded in the longitudinal
density of vector arrows.

• Factor 4 represents the interpretation of the length of
vectors in terms of field strength.

• Factor 5 represents the ability to derive information
about the absolute field strength value from a given
unit vector representation.

• Factor 6 reflects the interpretation of unit vector
representations.

• Factor 7 reflects the interpretation of centered unit
vector representations.

However, factor 6 must be considered in more detail. The
items that load particularly high on this factor all show
rotational fields (VR1, VR5, VR7, and VR8; field configu-
rations vi, ix, vii, and x, see Sec. II C 8). This factor thus
appears to particularly reflect the ability to interpret conven-
tional unit vector representations of rotational fields.
Although not quite as clearly, items VR3, VR9, and
VR10 also load on this factor. These items show electric
fields with sinks and sources (VR3 and VR9; field configu-
rations v and iii, respectively) and amagnetic field caused by
currents of the same magnitude and opposite direction
(VR10; field configuration viii). However, items VR2,
VR4, and VR6 (field configurations i, ii, and iv), which
show field configurations only containing sinks, have almost
no load on factor 6 but instead, load on the factor regarding
the interpretation of centered unit vectors (factor 7).
The correlations between the identified factors can be

found in Table 2 of the Supplemental Material [49].
Interestingly, the factor relating to the ability to draw
vectors (factor 1) shows almost no correlation with the
three factors representing the ability to interpret vector
representations (factors 2–4). In addition, the factors
relating to the interpretation of the transverse (factor 2)
and longitudinal (factor 3) density of the vectors are only
weakly to moderately correlated.

B. Conventional vs centered unit vector plots

To answer the first research question, which relates to
whether field geometries can be more easily recognized
from conventional or centered unit vector representations,
the results of the VR and CV items of the pretest were
evaluated.
The participants achieved an average score of 3.15 out of

10 possible points when answering the items regarding
conventional unit vectors (VR). In contrast, in the tasks
with centered unit vectors (CV), they scored an average of

8.23 out of 10 points. TheWilcoxon signed-rank test results
reveal significant differences in the median scores achieved
in the two task categories (Z ¼ 9.138, p < 0.01, r ¼ 0.82,
R2 ≈ 0.67). According to Cohen [50], this corresponds to a
large effect size.
For the items with conventional (VR) and centered unit

vectors (CV), the frequency of the correct answers and the
frequency at which the geometry, border, or both were
estimated incorrectly can be found in Tables 3 and 4 in the
Supplemental Material [49]. As shown, the correct answer
frequency was similar for field configurations i, ii, and iv in
both conventional and centered unit vector representations.
The most common source of error in these three configu-
rations was that a different field geometry was identified,
but in most cases, the border area of the unit vector
representation was correctly interpreted (see Table 3 in
the Supplemental Material [49]).
For all other field configurations, better results were

achieved from the centered unit vector representations. The
most common source of error in the conventional unit
vector representations was that the border of the displayed
unit vector representation was not correctly recognized. In
addition, both the border and geometry were quite com-
monly misinterpreted. More rarely, mistakes were made
regarding the geometry of the field while the shape of the
representation’s border was correctly understood (see
Table 3 in the Supplemental Material [49]).
The items with centered unit vectors were consistently

answered very well. If there were errors, these were mostly
because the field’s geometry was not interpreted correctly.
The learners very rarely misinterpreted the border area in
the centered unit vector representations (see Table 4 in the
Supplemental Material [49]).

C. Multirepresentational vs unirepresentational
exercise to improve interpretation of unit vectors

To compare the learning effectiveness of the two
interventions with regard to the correct interpretation of
conventional unit vector representations and representa-
tions with centered unit vectors, within and between
differences were examined. To investigate the impact of
the intervention for each group, Wilcoxon tests examined
the difference between pretest and post-test scores when
interpreting conventional and centered unit vector repre-
sentations. A Mann-Whitney U test was used to test for
group differences in the difference scores between pretest
and post-test in the interpretation of conventional and
centered unit vectors.
The difference scores of the items with conventional unit

vectors showed the same distribution, Kolmogorov-
Smirnov p > 0.05. For the items with centered unit vectors,
the distributions of the difference scores differed between
the two groups, Kolmogorov-Smirnov p < 0.05.
In both the multirepresentational (z ¼ 5.646, p < 0.05)

and unirepresentational groups (z ¼ 4.905, p < 0.05), the
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interpretation of conventional unit vectors improved sig-
nificantly from pretest to post-test. However, for the items
concerning centered unit vectors, only the multirepresenta-
tional group (z ¼ 2.204, p < 0.05) showed a significant
improvement, whereas no significant improvement was
identified in the unirepresentational group (z ¼ −1.248,
p > 0.05).
In terms of the Mann-Whitney U test used to examine

the difference scores between pretest and post-test when
working with conventional unit vectors, there were no
significant differences between the multirepresentational
(median ¼ 3.0) and unirepresentational (median ¼ 2.5)
groups (U ¼ 1756.5, Z ¼ −0.832, p > 0.5). However,
when investigating the difference scores in the multi-
representational (Mrank ¼ 69.57) and unirepresentational
(Mrank ¼ 55.43) groups when working with centered
unit vectors, there are clear differences (U ¼ 1483.5,
Z ¼ −2.282, p < 0.5, r ¼ −0.29, R2 ≈ 0.08). It should
be noted that there are some potential ceiling effects as the
tasks concerning the interpretation of centered unit vectors
were often answered correctly in the pretest (particularly in
the unirepresentational group; see Tables 7 and 8 in the
Supplemental Material [49]). In summary, in the part of the
intervention that aims to improve the interpretation of
vector representations, the multirepresentational strategy
that relates centered and conventional unit vector repre-
sentations achieved superior outcomes.
In all tasks regarding the interpretation of conventional

unit vectors, the results increased from the pretest to the
post-test. An analysis of the errors made in individual items
in the pretest and post-test (see Tables 5 and 6 in the
Supplemental Material [49]) reveals that after the inter-
vention, fewer errors were made when interpreting the
border of the conventional unit vector representation.
However, mistakes were still frequently made, especially
in field configurations iii, v, vi, vii, viii, ix, and x.

D. Multirepresentational vs unirepresentational
exercises to foster the abilities to generate

and interpret vector representations

The statistical data for the items related to the generation
and interpretation of vector representations are presented in
Tables 9–17 of the Supplemental Material [49]. In general,
no significant differences in the improvement from pretest
to post-test were identified between the two intervention
groups for each of the item categories (Table 9 in the
Supplemental Material [49]). Both interventions were thus
similarly efficient in improving the generation and inter-
pretation of vector representations.
A closer inspection of the pretest and post-test scores

within the two groups (Tables 10 and 11 in the
Supplemental Material [49]) reveals that there is no
significant improvement for the vector drawing tasks
(DV) or items related to interpreting the longitudinal
density of vectors (LD). However, in both groups, the

interpretation of the transverse density of vector arrows
(TD) improved significantly.
In the unirepresentational group, significantly better

results were achieved in the items related to the interpretation
of arrow lengths (AL) in the post-test compared to the pretest.
In contrast, these changes were not significant in the multi-
representational group. The results for the individual items
are given in Tables 12–17 of the SupplementalMaterial [49].
The tables show that when assessing the strength of the

field, the participants mostly paid attention to how many
vectors were drawn per spatial area. Surprisingly, this
interpretation also persists in the post-test results even
though this misconception was explicitly addressed during
the intervention.

E. Multirepresentational vs unirepresentational
exercises to help identify areas of maximum magnitude
of field strength from unit vector representations of

known field configurations

In addition to the above analyses, we tested whether
learners can identify areas of the maximum magnitude of
the field strength from conventional unit vector represen-
tations of previously known field configurations.
The mean score in the multirepresentational intervention

group increased from 0.74 (37.0%), SD: 0.922 (46.1%) in
the pretest to 0.79 (39.5%), SD: 0.960 (48.0%) in the post-
test. Similarly, the score in the unirepresentational group
increased from 0.90 (45.0%), SD: 0.987 (49.4%) to 0.98
(49.0%), SD: 0.983 (49.2%). The mean difference score
between the pretest and post-test was 0.0484 (2.4%), SD:
0.52565 (26.3%) in the multirepresentational group and
0.0806 (4.0%), SD: 0.79545 (39.8%) in the unirepresenta-
tional group.
No significant effect could be found for the interventions

in the “multirepresentational” group (z ¼ 0.722) or the
unirepresentational group (z ¼ 0.907). There were also no
significant differences identified in the difference scores of
the pretest and post-test results between the two interven-
tion groups (U ¼ 1914.0, Z ¼ −0.062, p > 0.05).
A closer examination of the answers to the individual

field strength-related items reveals that the proportion of
correct answers changes only slightly (see Table 19 in the
Supplemental Material [49]). However, the data reveal a
tendency that, after the exercise, more participants state that
the field is equally strong everywhere, while the proportion
who interpret that the field is strongest in the location
containing the most vector arrows decreases.

IV. DISCUSSION

A. Findings regarding the interpretation of field
geometries from conventional vs centered unit

vector representations

The results of this study show that learners recognize
field geometries much better from centered unit vectors.

VECTOR REPRESENTATIONS AND UNIT VECTOR … PHYS. REV. PHYS. EDUC. RES. 20, 010150 (2024)

010150-13



The exploratory factor analysis reveals that when interpret-
ing conventional unit vector representations, various
sources of error arise that should be examined more closely
in a future study with a larger sample size. Errors occur
especially often when interpreting conventional unit vector
representations of rotational fields. In particular, the bor-
ders of the traditional unit vector representation are often
misinterpreted, showing that participants did not correctly
identify the positions to which the measurement encoded in
the arrows belonged.
However, there are field geometries that can be read from

conventional unit vector representations equally as well as
from centered vector representations. In the present study,
this was the case for the electric fields containing a single
negative point charge (i), two negative point charges of the
same magnitude and sign (ii), and two negative point
charges of different magnitude and the same sign (iv), i.e.,
fields that only contain electric field sinks. These cases
share the commonality that the angle between the vectors
and the line perpendicular to the border always lies within
the range of approximately −45° to þ45°; hence, the
vectors always meet the border at a relatively steep angle.
If mistakes were made in these three configurations, it was
because the wrong geometry was chosen. The border areas,
on the other hand, were interpreted correctly in most cases.
It is expected that pure source fields would also produce a
similar response behavior; however, this cannot be sub-
stantiated by the currently available data.
From the centered unit vector representations, the

geometries of the fields and borders of the measuring area
were consistently interpreted very well. The latter shows
that, in contrast to the representation with conventional
vectors, it is easy for the participants to identify the
measurement locations belonging to the centered vectors.
If errors occurred, it was because the field geometry was
not correctly assessed. Although this convention for rep-
resenting the directions of vector fields is not usually taught
in schools, it intuitively leads to better results than the
traditional approach.

B. Discussion of the results of the cross-representational
exercise and the exercise which argues within the

conventional representation to improve unit
vector interpretation

Both interventions led to significantly better results for
the interpretation of conventional unit vectors in the post-
test. When interpreting centered unit vectors, however, only
the interventions that related the conventional and centered
unit vector representations to each other led to a significant
improvement. Therefore, creating a relationship between
the two representations not only improved the participants’
interpretation of conventional unit vectors but also of the
centered ones. The intervention, which argued within the
representation with conventional unit vectors in its explan-
ation did not significantly deepen understanding of the

items regarding centered vectors, which is understandable
considering the lack of practice time with the representation
in this intervention group.
However, focusing on the conventional representation

did not lead to a higher increase in performance from
pretest to post-test in understanding this representation
compared to the group that used a combination of both
types of representations during the intervention. This can
be demonstrated by comparing the difference scores from
the pretest and the post-test. In terms of the conventional
vector representations, both training methods were sim-
ilarly effective, and there were no significant differences in
score improvement from the pretest to the post-test. In
contrast, for the interpretation of centered unit vectors, the
intervention that related both representations led to a
significantly greater improvement.
These findings thus indicate that a promising approach to

deepen students’ understanding of conventional unit vectors
and centered unit vectors would be to use an exercise that
contrasts both representations and explains how to translate
from one representation to the other rather than describing
only the key elements of a single representation type. The
effectiveness of this approach may relate to both representa-
tions being equally deepened during practice; thus, not only
the conventional unit vector representation is practiced but
the centered unit vectors are also better understood.However,
it should be noted that potential ceiling effects may have
occurredwhen interpreting the centeredvectors, as verygood
results were already achieved in the pretest.
For the conventional unit vectors, the results suggest

that it is particularly difficult for learners to correctly
relate the values represented by the vectors to the corre-
sponding positions. Both interventions resulted in signifi-
cant improvements in this skill.

C. Insights regarding the generation
and interpretation of vector representations

Almost all test subjects solved the items for generating
vector representations correctly, while significant difficulties
were observed when interpreting vector representations.
The factor analysis showed virtually no correlation between
the factors related to drawing vector representations and
the factors related to interpreting vector representations.
Even if the conventions of vector representations can be
used correctly for drawing, it cannot be assumed that this
knowledge will also be applied correctly to interpreting the
vector representations. Drawing and interpreting vector
representations therefore appear to be different skills that
must be practiced intensively and in an integrated way.
No significant effect on the drawing of vector repre-

sentations was demonstrated in either intervention.
However, this could also relate to the pretest scores in
this category being already very high.
Difficulties arose in the interpretation of the longitudinal

density of vectors both in the pretest and post-test. No

HOYER and GIRWIDZ PHYS. REV. PHYS. EDUC. RES. 20, 010150 (2024)

010150-14



significant improvement was achieved with either inter-
vention, and no differences were found between the two
groups.
When interpreting the length of vectors, the exercise that

argues within a single representation resulted in a signifi-
cant interpretation improvement. This probably occurred
because the learners spent more time on conventional
vector notation during this exercise and less time on
transfer between conventional vectors and centered vectors.
In contrast, no significant improvement was identified
between the pretest and post-test in the comprehensive
exercise that relates conventional vectors to centered ones.
However, no significant differences in the difference score
from the pretest to the post-test could be found between the
intervention groups.
Notably, the main error that arose was that learners used

the density of the vectors and not their length to estimate the
strength of the field. The mistake was also made very
frequently in the post-test. Therefore, the effects reported
by Bollen et al. [34] and Elby [36] are also demonstrated
here (see Sec. I B). Additionally, there are also indications
that their results should be examined in more detail,
specifically in terms of distinguishing between the trans-
verse and longitudinal density of vectors.
The results show that it is important to investigate the

interpretation of transverse and longitudinal density of
vector arrows separately as these two concepts seem to
be perceived differently by learners. This is demonstrated
by the results of the factor analysis. When calculating
the exploratory factor analysis, the items that are about
recognizing that in a vector representation, the strength of
the field is not encoded in the transverse density of the
drawn vectors result in one factor, and the items that test
exactly the same for the longitudinal density result in
another factor. Interestingly, there is only a weak-to-
moderate correlation between these two factors. A possible
explanation is that the interpretation of the transverse
density as an indication of a stronger field may be
generalized from field line representations to vector rep-
resentations. In contrast, the longitudinal density of vector
arrows possibly is not influenced by existing ideas about
field lines.
Both interventions had a significant positive effect on the

answers to the test items dealing with the interpretation of
the transverse density of vectors. The difference scores
between the pretest and post-test did not differ between the
two groups; thus, both exercises were similarly effective for
this task. This effect can possibly be explained by the fact
that after the training, the concept that an increased trans-
verse field line density implies a stronger field is no longer
simply transferred from field line representations to vector
representations. However, the descriptive data show that the
representation is still very often interpreted such that a
higher transverse density of vectors is taken to imply a
higher field strength.

Overall, apart from the aforementioned differences
regarding vector length interpretation, the two exercises
were almost equally effective for generating and interpret-
ing vector representations. It can also be concluded that the
topic of vector representations has not yet been completely
understood by the end of the 11th grade and that the
participants have a considerable need for more in-depth
study.
Based on the findings of this analysis, it would be

reasonable to consider using additional alternative forms of
representation in schools. For example, unit vector repre-
sentations in conventional and centered form with color
coding could be used to clearly display information about
the strength of the fields without requiring overlapping
vectors. For questions that only concern the magnitude of
the field strength, heatmaps, contour maps, or 3D repre-
sentations could also be valuable alternatives. In the sense
of creating coherence, a flexible use of all these forms of
representation seems to be the basis for a deeper under-
standing. Therefore, the learning effectiveness of these
forms of representation should be systematically examined
in future studies.

D. Interpretation of the results regarding the
identification of areas of maximum magnitude
of field strength in unit vector representations

of known fields

The pretest answers show that a high proportion of
participants judged the field’s strength by evaluating the
number of unit vector heads per area element. This is
probably due to the visual impression of these representa-
tions, combined with the interpretation that a higher element
density means a higher field strength. Interestingly, the
effects reported by Bollen et al. [34] and Elby [36] (see
Sec. I B) are also demonstrated for unit vector representations
in the present study.
After training, the results revealed that there were still

difficulties in understanding. In terms of performance
improvement, both training exercises had no significant
effect. After the intervention, a higher percentage of
respondents rated the representation as having the same
field strength everywhere. This indicates that participants
were seemingly unable to associate the field geometry with
a known field configuration. Additionally, a comprehen-
sion problem in the interpretation of unit vector represen-
tations could have arisen here due to the training.

V. LIMITATIONS

In the used tests, some concepts were tested with only a
few items. To obtain more detailed insights into each
concept, a closer examination would be necessary, which
was not possible within the scope of this work. The present
study aimed to provide a broad overview of students’
understanding of different vector representations while not
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exceeding the time frame available for the investigation.
However, the items in this study still provide valuable
insights for investigating and interpreting this research
theme, as detailed above.

VI. CONCLUSIONS AND POSSIBLE
IMPLICATIONS FOR TEACHING

The results of the present study show that vector
representations are usually drawn correctly by the end of
11th grade; however, when interpreting vector representa-
tions, stubborn problems of understanding arise. This
difference between generative and interpretative tasks is
particularly noteworthy, and the causal relationships
between these factors should be examined more closely
in the future. Consequently, from a teaching perspective, it
is essential that drawing and interpreting vectors should be
practiced in an integrated way.
The data show that comprehension difficulties concern

both the interpretation of the directions and the strengths
of vector fields. To examine the aspect of interpreting
directions more closely, two types of unit vector repre-
sentations were compared. The results reveal that while
the directions of fields can be read very intuitively from
representations with centered vectors, learners have diffi-
culties understanding conventional directional representa-
tions. Therefore, a tiny change in the established
representation of directional fields can immensely simplify
the readability of the representation. If the results can be
reproduced in the future with a larger cross-national
sample, it would also be worth considering whether it
might be worthwhile to replace the established way of
representing directional fields in school books and learning
materials with the adapted way of representing them using
centered unit vectors.
To improve the learners’ understanding, the tested

exercise that links the two unit vector types proved to be
particularly successful. However, even after the exercise, it
was difficult for learners to identify already-known field
configurations from directional unit representations to
compare field strengths in different areas.
Further mistakes were made when interpreting vector

drawings where the information describing the field
strength is encoded in the vector length. Although in vector
representations there is no information about the strength of
the field encoded in the number of vectors shown per
spatial area, the data show that the field strength is often
estimated to be stronger when the spatial density of vectors
is higher. Attempting to increase the granularity of the
representation by drawing vector arrows more densely can
therefore lead to misconceptions about the strength of the

field. Furthermore, a higher longitudinal density of vectors
seems to be perceived differently than a higher transverse
density of the drawn vectors in terms of interpreting the
strength of a field. Subsequent studies should examine this
in more detail and address causal relationships. For
example, the idea that a higher density of field lines
(measured perpendicular to the direction of propagation
of the field lines) represents a stronger field might have a
greater influence on the interpretation of the transverse
density of the vectors than on the interpretation of the
longitudinal density. The results were partly improved by
the exercises; however, the exercises in this study were
short and more classroom time should ideally be spent on
understanding vector representations.
A promising approach for teaching would be the

following: when evolving from force vectors on a test
charge to field vectors that describe the properties of
specific points in space (see Sec. I B), attention should
be paid to explaining how the fields’ directions can be read
from the representation. To illustrate the procedure, and for
reasons of clarity and cognitive load, unit vector repre-
sentations should be preferred for this task (see Sec. I A).
Also, it could be helpful to start with field configurations
that can already be interpreted well from a conventional
vector representation. This study’s results show that exam-
ples of such fields include the electric field of a single-point
charge (i), the electric field of two-point charges of the
same magnitude and sign (ii), and the electric field of two-
point charges of different magnitudes and the same sign
(iv). In the next step, making a connection between
conventional and centered vectors via a cross-representa-
tional exercise could emphasize the meaning of the
representations and help foster global coherence [42].
Subsequently, students could work on field configurations
that would potentially lead to incorrect assessments in the
conventional notation (e.g., rotational fields) and describe
the differences in the corresponding representation with
centered vectors. However, further studies are needed to
validate this approach.
Since the multirepresentational exercise revealed that it

can be helpful to integrate different forms of representation
in one exercise, it may also be helpful to introduce and
combine further different representations that accentuate
individual properties of the field (e.g., heatmaps and
contour maps to illustrate the field’s strength in combina-
tion with unit vector representations that provide informa-
tion about the field’s directions). Learning from these
multirepresentational systems can fulfill the functions of
learning with multiple external representations [11] and
thus lead to a deeper understanding.
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