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Abstract

Classical statistical analysis of data can be complemented or replaced with data analysis

based on machine learning. However, in certain disciplines, such as education research,

studies are frequently limited to small datasets, which raises several questions regarding

biases and coincidentally positive results. In this study, we present a refined approach for

evaluating the performance of a binary classification based on machine learning for small

datasets. The approach includes a non-parametric permutation test as a method to quantify

the probability of the results generalising to new data. Furthermore, we found that a

repeated nested cross-validation is almost free of biases and yields reliable results that are

only slightly dependent on chance. Considering the advantages of several evaluation met-

rics, we suggest a combination of more than one metric to train and evaluate machine learn-

ing classifiers. In the specific case that both classes are equally important, the Matthews

correlation coefficient exhibits the lowest bias and chance for coincidentally good results.

The results indicate that it is essential to avoid several biases when analysing small datasets

using machine learning.

Introduction

In recent decades, machine learning (ML) has become one of the most widely used tools for

data analysis, as it significantly broadens classical statistical methods for analysing large data-

sets [1]. This is evident in various fields such as protein research [2], where ML models are

used to analyse protein properties, and in education [3], where ML aids in understanding stu-

dent performance and learning patterns. However, the analysis of small datasets with ML is

not straightforward and can be subject to biases and methodological errors. This may lead to

results that are not generalizable to other datasets and, therefore, are of limited use [4, 5].

Various decisions are relevant when analysing small datasets with ML. Apart from choosing

an algorithm, it is important to consider the evaluation metrics and the evaluation method to
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avoid overly optimistic results. The variance of the data can be used in this step to identify

good methods to avoid such misjudgements. Furthermore, methods from classical statistics,

such as hypothesis testing with p-values, can indicate whether the results are random or statis-

tically unlikely.

This paper aims to present a general approach and is therefore not specific to one algorithm

but rather focuses on the general issues that stem from the evaluation methodology for binary

classification. Exemplary algorithms for binary classification include random forests and Sup-

port Vector Machines (SVM). While different binary classifiers operate differently, they all

share common challenges that arise from the evaluation method, such as varying evaluation

results depending on the random seed [6]. To illustrate these issues, we have chosen to focus

on SVMs, because they generally yield high scores for various evaluation metrics used in this

paper. Apart from that, no broader generalisations can be made about the superiority of an

SVM over a random forest, as their performance may vary depending on the dataset [7].

Another aspect to consider when evaluating data using ML is the choice of evaluation met-

ric the classifier should be trained on. The performance metrics differ in terms of their sensi-

tivity to different features of the data. For example, accuracy (ACC) does not take into account

imbalances in the dataset: for highly imbalanced datasets, one might obtain a very high ACC

even though the algorithm trivially predicts only the same class [8]. There are many advantages

and disadvantages of common metrics, such as ACC, that are summarised in the Supporting

information.

Apart from the evaluation metrics, it is important to consider the evaluation method. Each

evaluation method has different properties, therefore, they are not equally suitable for various

types of datasets, and some methods may produce highly variable or biased results [5]. For

example, the train/test split method has a large variance for small datasets [6] and, therefore,

does not provide a precise estimate of classifier performance when analysing small datasets

with ML.

Typically, the classification error decreases as the number of data points increases [9], but a

strong negative correlation between the number of data points and high reported ACC was

found in an evaluation of the results of several studies on autism [5]. This correlation is rather

unexpected for ML algorithms and might be explained by an underlying bias [5] caused by

commonly employed methods like hyperparameter tuning or feature selection which can lead

to overestimate classifier performance if not used correctly. This negative correlation indicates

that misuse of feature selection and/or hyperparameter tuning might be common. However,

there are ways to avoid too optimistic evaluations, such as nested cross-validation (nCV) [10,

11]. In this method, an inner cross-validation loop is used to estimate the model performance

for each hyperparameter combination, and an outer cross-validation loop is used to estimate

the generalisation performance of the selected hyperparameters. However, for small datasets,

this method is susceptible to variance and repeating this method several times with the same

data but different random seeds yields different results. Therefore, it necessary to repeat this

method with different cross-validation (CV) splits [12]. Even for uncorrelated features and tar-

get variables, the data structure can lead to higher results than one would expect from random

data [13]. In particular, if the value of the metric produced by the classifier is close to what

would be expected from a random prediction, there is a chance that the performance of the

classifier will not generalise to new data. Standard methods such as train/test splitting or nCV

do not provide information on the probability that the trained algorithm will randomly per-

form well in the validation process [14]. During the evaluation of the classifier performance,

there may be inaccuracies that lead to an overly optimistic estimation of the prediction quality,

which can have crucial social and medical consequences, such as those related to the diagnosis

of COVID-19 from medical images [4].
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In classical statistics, one of the most commonly used methods for hypothesis testing is the

determination of the p-value [15]. The p-value indicates the probability that a null hypothesis

—for example, that a treatment in an intervention group has no effect compared to a control

group—is true. Below a certain threshold, such as 5%, the null hypothesis is rejected.

In ML, the determination of a probability comparable to the p-value is not well established.

However, such a probability can contain valuable information regarding the likelihood of

obtaining randomly high scores which do not generalise. Although similar evaluation methods

exist [13], they are usually not applied in practice [14]. Particularly for small datasets, which

are common in education research, an estimated good prediction quality might also be due to

chance [14]. This can happen if the features and the target variables are independent—that is,

there is no difference between classes [13]—or if the classifier was not able to exploit the

dependency in the data [16]. It is important to quantify a probability for this null hypothesis to

be true, because in this case, the results obtained from a high probability dataset would likely

not generalise to new data.

Currently some authors evaluate their work using only simple train/test splits or CVs even

when working with small data and obtaining results close to the value of random prediction

(e.g. [17]) or comparing results differing only slightly (e.g. [18]). Previous works showed that

different methods exist to avoid pitfalls [5], to reduce the variance of results [12] and to quan-

tify a probability that the results do not generalise [13].

In this work, we combine the results of several previous studies (e.g. [5, 12, 19–23]) with

our own experimental results on both synthetically generated and real-world datasets to dem-

onstrate crucial factors in ML-based classification of small datasets. We demonstrate that indi-

vidual methods on their own (e.g. [5, 12, 13]) are not always sufficient for a generalizable ML-

based classification of small data sets. Instead, we show that it is necessary to unify all these

methods in form of a repeated nested cross-validation (rnCV) and use a non-parametric per-

mutation test [13, 24], analogous to the p-value in classical statistics. In this way, we intend to

raise awareness of these problems avoided by this method.

Materials and methods

Evaluated data

Several synthetically generated datasets as well as real-world datasets are examined. Predict-

able synthetic datasets are generated to investigate the dependence of the prediction quality

and the probability of the null hypothesis on the metric and the evaluation method used (see

Fig 1). These balanced binary datasets are constructed with distinct feature distributions per

class. Initially, half the dataset forms class 1, where the features follow a Gaussian distribu-

tion (mean = 0, stddev = 1). Subsequently, class 2 is generated, mirroring class 1’s genera-

tion process but altering the mean to 0.2. Post-generation, data points undergo random

shuffling. To find the dependence of the score on the number of data points, we created sev-

eral datasets containing 10 features with the following sizes: 25, 30, 40, 45, 50, 90, 130, 170,

210, 250, 290 and 330 data points. We choose this variable step size to find a compromise

between computation time and resolution. In addition, to determine the mean and variance

of the scores between the different datasets for different numbers of data points and fea-

tures, 100 datasets of each dimensionality are generated and analysed. Of course, it would

be advisable to analyse more datasets to obtain a more stable mean of the scores, but a bal-

ance has to be established between a sufficient number of datasets and the computational

time required.

The ‘Conceptual understanding of Electromagnetism Supported by Augmented Reality

experiments’ (CESAR) [25], ‘Breast Cancer Wisconsin (Diagnostic)’ (BCWD) [26] and
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‘Modified National Institute of Standards and Technology’ (MNIST) [27] datasets are used to

demonstrate the evaluation method on real datasets and to investigate the dependence of the

results on the metric in practice. The CESAR dataset is a multi-part educational science dataset

containing, among other things, the results of a test of representational ability on vector field

plots and field lines [28], the results of a concept test of electromagnetism, as well as demo-

graphic data of the students. This test was administered online using the Unipark survey soft-

ware [29]. A total of 515 students from the University of Saarland, the University of

Kaiserslautern and the Swiss Federal Institute of Technology Zurich participated in the study

and are included in the dataset. For the ML, only the 12 questions of the representational com-

petence test, the completion time, and the self-assessment of the data quality were used. The

column names of the features used are given in parentheses: duration (duration), data quality

(DQ) and answers to questions 1–12 (repko_1–repko_12) with questions 4 and 5 split into

four (4a–4d) and three (5a–5c) subquestions. In this paper, the responses to question 5b are

predicted using the responses to the remaining items of the representational competency test,

the test duration, and the data quality rating. To simulate real data collection and smaller data-

sets, the order of the data points is randomised and the first part of the resulting dataset is eval-

uated up to 25 data points, up to 50 data points, and up to the full size of 515 data points. We

do not examine dataset sizes between 50 and 515 data points because 50 data points on this

dataset already performs almost as well as the full data, and we do not expect to see much

improvement. We do not examine dataset sizes below 25 data points because this dataset size

already yields scores close to the expected value of a random prediction, and the probability

for the null hypothesis being true is already above 10% (see Table 3). A smaller sizes would not

yield better results and this dataset size is a suitable example for a dataset whose trained classi-

fier may not generalise to more data points. For dataset sizes between 25 and 50 data points,

we believe that no additional insight would be gained, as the larger datasets contain the entirety

of the smaller datasets. Furthermore, our results indicate that the 50 data point dataset is a

good example for a dataset on which a classifier can be reliably trained on and getting close to

its optimal performance despite not using many data points (see Tables 2 and 3). This is dem-

onstrated by the comparison to the complete dataset. Random sampling from a more extensive

population introduces varying degrees of skewness within different dataset sizes. The class

ratio within the 25-data point dataset stands at 11:14; for the 50-data point dataset, it becomes

20:30; while for the comprehensive dataset, it shifts to 201:314. The BCWD dataset is a widely

used benchmark dataset in ML, particularly in the field of classification. It consists of 569

Fig 1. Synthetic dataset creation process. In a first step, half of the target dataset size ‘n’ is created for the first class. For each data point, 10 features are

then added whose values are drawn from a Gaussian distribution with a mean of 0 and a standard deviation of 1. After adding these points to the

dataset, half the target dataset size data points are created for class 2, and for each point, 10 features are drawn from a Gaussian distribution with a mean

of 0.2 and a standard deviation of 1. These points are also added and the resulting dataset is shuffled.

https://doi.org/10.1371/journal.pone.0301276.g001
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samples, each representing a different patient, and 30 features describing characteristics of cell

nuclei present in digitised images of fine needle aspirate (FNA) of breast mass. The feature

measurements include mean values, standard error, and ‘worst’ or largest (mean of the three

largest values) measures of radius, texture, perimeter, area, smoothness, compactness, concav-

ity, concave points, symmetry, and fractal dimension of the cell nuclei. The outcome variable

is a binary label indicating whether the FNA sample is malignant or benign. The class distribu-

tion across the sampled smaller datasets are as follows: 11:14 for the 25-sample subset, 15:35

for the 50-sample subset, and 212:357 for the complete dataset. The MNIST dataset is another

popular benchmark dataset in ML, specifically for image recognition tasks. It contains 70,000

grayscale images of digits 0–9, each 28x28 pixels in size resulting in 784 features. The dataset is

divided into 60,000 training images and 10,000 testing images. Each pixel value ranges from

0–255, where 0 represents black and 255 represents white. In alignment with the focus of this

paper on investigating small datasets, we randomly extracted a subset of 250 data points from

the complete dataset. From this reduced sample, we further derived two even smaller subsam-

ples consisting of 50 and 25 data points respectively. Regrettably, evaluating the entire MNIST

dataset fell outside the scope of our investigation. For this binary classification problem, the

objective is to determine whether the image depicts a ‘1’ or not. The subset of 250 data points

contains 36 instances marked as ‘1’. Similarly, the 50-point subset includes 6 such instances,

while the smallest subset of 25 data points encompasses merely 2 instances denoted as ‘1’. For

the evaluation of all data one node consisting of 24 cores of the high performance computer

‘Elwetritsch’ at the University of Kaiserslautern-Landau (RPTU) was utilised. The code is

completely written in Python and mainly makes use of the scikit-learn library [30]. It can be

found at https://osf.io/8rkjb/.

Preprocessing

We did not eliminate outliers for the CESAR data because it uses the self-assessment of data

quality, which can be learned by the algorithm if it really has an impact on the predictions. In

addition, the evaluation of this dataset is only exemplary. Therefore, we did not focus on opti-

mising the prediction. Since some of the data used have widely varying ranges of values, the

data must be normalised or standardised. In this case, the data is standardised because we do

not eliminate the outliers and the influence of the outliers is much smaller with standardisation

than with normalisation [8]. In addition, the SVM algorithm used does not rely on a fixed

range of values between 0 and 1. The responses to the questions are categorised solely by

numerical codes, with no additional significance attached to larger numbers. As such, all col-

umns apart from those pertaining to the self-assessment of data quality and processing dura-

tion were subjected to one-hot encoding resulting in 73 features (Supporting information).

For the MNIST and BCWD datasets, no one-hot encoding is necessary because they do not

contain categorical data except the target variable. Of course, the self-generated data do not

need to be cleaned of outliers, and the normalisation of these data would not be necessary, but

the influence of the metrics and the method should be studied as close to practice as possible.

Therefore, the data is standardised so that a possible influence of this procedure is included in

the results and so that realistic results can be obtained.

Feature selection

No feature selection was performed for the generated datasets, as they are generated so that

all features have the same importance. For the CESAR, BCWD and MNIST datasets, the fea-

tures were ranked using mutual information (see Supporting information) and the most

important features were used, treating the number of features to be selected as a
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hyperparameter to be adjusted. The mutual information implementation for categorical data

from scikit-learn [30] was used. This method was selected because it is rather simple, fast,

easy to implement, and—most importantly—non-parametric, which is sufficient to demon-

strate the influence of feature selection. If the prediction quality is to be optimised and the

choice of features is important, other more sophisticated methods are recommended (see the

Supporting information).

Handling class imbalances

For synthetically generated datasets specifically designed for balance, specialized techniques to

manage class imbalance are unnecessary. This is because such considerations are inherently

incorporated during the dataset creation process. However, for the real-world datasets that

were examined, these techniques remain crucial due to the presence of class imbalance. For

the CESAR, BCWD and MNIST datasets, we decided to use random oversampling because it

is a simple, easy-to-understand method that is sufficient for the demonstration. However, ran-

dom oversampling has a few disadvantages compared to more sophisticated methods (see the

Supporting information), so we generally recommend using alternatives as mentioned in sec-

tion Supporting information (e.g. SMOTE).

Hyperparameter tuning

For both the synthetic and real world datasets, the best hyperparameters for each dataset are

searched for during training. This is done using the GridSearchCV function of scikit-learn

[30], which attempts all possible combinations of the given parameters and selects the one

with the highest prediction quality. To determine the prediction quality, the function uses CV;

in this case, we chose to use a stratified 5-CV, as it still yields good results but takes less time to

compute than a 10-CV. Since the aim of this work is not to find optimal classifier performance

but to demonstrate differences between using hyperparameter and feature selection, we tried

to generate clear differences between the hyperparameters and number of features used.

Therefore, we used for the C parameter of the SVM the default value of ‘1’ as well as its value

divided by ten and multiplied by ten. For ‘gamma’, we chose both available options for choos-

ing a gamma value automatically as well as choosing at random the value of 0.1. We tested all

in scikit-learn available kernels and tried a number of features ranging from 10 to its threefold

of 30. The resulting parameter space under investigation is spanned by the following parame-

ters ‘C’: 0.1, 1, 10; ‘gamma’: 0.1, ‘scale’, ‘auto’; ‘kernel’: ‘linear’,‘rbf’,‘poly’,‘sigmoid’; ‘n_feature-

s_to_select’: 10, 15, 20, 25, 30. Here, ‘C’ is the regularisation parameter, which controls the

importance of misclassifications. ‘gamma’ controls the width of the bell-shaped curve of the

RBF kernel, and the value ‘scale’ sets gamma to the inverse of the product of the number of fea-

tures and their variance. The value ‘auto’ sets the gamma to the inverse of the number of fea-

tures. The parameter ‘n_features_to_select’ controls how many features must be selected

during feature selection. ‘kernel” controls the SVM kernel used, where ‘linear’ assumes linear

separability of classes, ‘rbf’ uses the RBF kernel, and ‘sigmoid’ uses the sigmoid kernel. (see

Supporting information). As mentioned, we employ a simplified approach that we deem ade-

quate for our purposes, as our objective does not involve maximising predictive accuracy but

demonstrating the method for real data. Nevertheless, should optimal results become the aim,

implementing an automated hyperparameter optimisation could prove beneficial (see Sup-

porting information).
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Metrics

Both the training and the evaluation of the prediction quality of a dataset are always per-

formed with the same metric. We study the following metrics: F1, recall, precision, ACC, bal-

anced accuracy (BA), Cohen’s kappa (κ), area under the receiver operating characteristic

curve (AUC), and the Matthews correlation coefficient (MCC). We selected these metrics

because they are commonly used in the literature and there are several papers that address

their advantages and disadvantages (see Supporting information). Additionally to investigat-

ing these metrics on a large esemble of synthetical generated balanced datasets we exemplary

investigate the differences between using MCC, ACC and F1 for evaluating MNIST, BCWD

and CESAR dataset. For the CESAR dataset are also recall, precision, BA, κ and AUC

demonstrated.

Determination of the probability of the null hypothesis

In this paper, we use an empirical, non-parametric permutation test (see the Supporting infor-

mation) to test whether two groups (classifier performance on original data and on data with

randomly permuted labels) are equal (null hypothesis), because for this test the dataset does

not need to fulfil any assumptions regarding the statistical properties. In this manner, the pre-

sented approach is more transferable to various small datasets that may not meet the statistical

requirements of a parametric test. We believe that the computational time required for the test

is still acceptable for small datasets and the methods studied here. The test randomly permutes

labels and reassigns them to other attributes, thereby breaking the link between labels and

attributes. In this work, only 25 permutations are performed for the synthetic datasets, and the

performance of the ML algorithm is evaluated using both the rnCV and nCV methods. For the

evaluation of the CESAR, MNIST and BCWD datasets, we use 50 permutations to resolve the

difference in the returned probability between the datasets. In fact, 999 or more permutations

are required for an effective approximation of the probability (see Supporting information).

However, the focus of this work is on the qualitative behaviour and the demonstration of the

evaluation methodology and, therefore, fewer permutations are used for reasons of computa-

tional time. For each permutation and each dataset, an rnCV is performed with five repetitions

as well as five nested CVs with different random seeds. This is done to estimate the influence

of randomness, to obtain a mean that is less dependent on randomness, and to examine the

difference between using rnCV and simple nCV in permutation testing. The same permuta-

tions are used to calculate the probability of the rnCV as those used to calculate the nCVs, so

we use their results to calculate the results of the rnCV. In addition, this allows for good com-

parability of results, as differences are entirely due to the calculation method and not due to

chance.

Validation methods

The predictive quality of a model is evaluated for each dataset using both an rnCV and an

nCV.

Nested cross-validation. Depending on what you want to do with your data (e.g. use fea-

ture selection or not), the structure of the nCV used varies. The structure in our case is

depicted in Fig 2. To avoid overly optimistic performance estimates and to increase compara-

bility, particularly for asymmetric metrics, the minority class of the full dataset is always

selected as the positive class. The outermost stratified n-CV divides the full dataset into n equal

parts with class proportions that reflect the class proportions of the full dataset. Each of these

parts is used once as test data to determine the prediction quality of the model trained in the

following steps. To estimate the prediction quality, we choose for the synthetic and the CESAR
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datasets n = 10 for the outer stratified n-fold CV, as it yields results with low bias and variance

(see the Supporting information). For the BCWD and MNIST datasets, we use the same

parameters except that we used a 5-CV for inner and outer CV. The reason for this is the

strong imbalance of the MNIST dataset regarding ones and all other numbers. For the dataset

versions consisting of only 50 and 25 points there are not enough ones for every fold otherwise.

Fig 2. Structure of the nested cross-validation method in this study. It consists of an outer CV to evaluate the performance of the trained ML model

and an inner CV to find the optimal (hyper)parameters and features of the model. In the innermost loop, feature selection, standardisation, and

oversampling are applied to the training subset of the inner CV before passing the data to the SVM classifier. The combination of hyperparameters that

achieves the highest score in the inner CV is used to retrain the model on the outer CV training data and predict its test data. The averaged results of all

iterations of the outer CV are returned as the result.

https://doi.org/10.1371/journal.pone.0301276.g002
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The other n-1 parts are passed to the GridsearchCV function of scikit-learn [30], which system-

atically uses all m possible combinations of the given hyperparameters (see section Hyperpara-

meter tuning) and divides the training dataset passed from the outer n-CV into k parts with

equal class ratios in another inner stratified k-CV. Each of these k parts is used once to test the

prediction quality of the model created in the following steps, and the other k-1 parts are used

to train the model. As a compromise between computational time and variance and bias of the

results, we choose k = 5 in the inner stratified k-fold CV for model selection. Thereafter, the

training dataset of the inner CV is passed to a pipeline, which selects features based only on this

training dataset (see section Feature selection), then standardises the data (see section Prepro-

cessing), balances the class ratios by random oversampling (see section Handling class imbal-

ances), and finally passes the processed training data to the actual ML algorithm. For the ML

algorithm, we chose an SVM because it is widely used and can handle small datasets, but other

classifiers such as a random forest would also be suitable. The SVM trained on these k-1 parts

is then applied to the last part of the inner CV, which is kept for testing; using a metric such as

the MCC, the prediction quality score is determined by comparing the predictions with the

true values. After all k parts have been used once as a test dataset, the k scores of the prediction

qualities are averaged and thus the prediction score of the k-CV is determined. This is done for

all m combinations of hyperparameters. From the resulting m scores, the combination with the

highest score is selected. The selected model is refitted to the full training dataset of the n-CV

and used to predict the corresponding test dataset. After each of the n parts is used as a test

dataset, the obtained n scores are averaged and thus the final score of the nCV is obtained.

Repeated nested cross-validation. The nCV method described above is repeated five

times with different random seeds and the results are averaged to obtain the result of the

rnCV.

Train/test split. For a Train/Test Split, a portion of the data is used to train the classifier

and another part is utilised to test the fully trained classifier. To demonstrate the variance of

this approach on small datasets, we evaluate the full BCWD dataset five times using this

method with different random seeds using ACC. In each instance, 80% of the data is desig-

nated as the training dataset, while 20% of the data served as the testing dataset.

Ablation study

The main goal is to identify which elements have the most significant impact on overall perfor-

mance of the rnCV and understand their respective roles better. To achieve this, we identified

the most important components of our rnCV and evaluated our real world data multiple

times. In each iteration, one component was removed while keeping all other conditions con-

stant. This allowed us to isolate the effects of removing specific components without introduc-

ing additional confounding factors. We evaluated the full rnCV, the rnCV without feature

selection, the rnCV without hyperparameter tuning as well as the rnCV with neither hyper-

parameter tuning nor feature selection (therefore not using the inner CV). Because the MCC

is most suitable for skewed data (Supporting information) we use the MCC when investigating

the ablation of rnCV components.

Confusion matrix

The Confusion Matrix is a table that is often used to describe the performance of a classifier on

a set of test data for which the true values are known. It provides a way to visualize the number

of false positives, false negatives, true positives, and true negatives [8]. In the context of our

study, the first row of the Confusion Matrix corresponds to the actual members of the first cat-

egory, while the second row corresponds to the actual members of the second category. The
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first column represents the members which are predicted as belonging to the first category,

while the second column represents those predicted as belonging to the second category. Since

the rnCV method produces multiple estimators and consequently multiple confusion matri-

ces, we will examine the average of all generated matrices. This approach allows us to better

understand the overall performance of our classifiers across different iterations.

Artificial intelligence tools and technologies

For some paragraphs of this paper, the authors utilised ‘DeepL Write’ as well as ‘Mixtral 8x7B’

for the sole purpose of improving the language of already written text while carefully checking

that the content wasn’t altered by these AI tools.

Results

Influence of the number of permutations on the result of the permutation

test

We determined the probability that the null hypothesis is true for balanced synthetic datasets

using a permutation test using rnCV and the MCC (Fig 3). At a sample size of 50 data points,

the probability is between 0.30 and 0.33 for each number of permutations (N = 25, 50, 75,

Fig 3. Dependence of the probability obtained with the permutation test using the MCC on the number of data points for different numbers of

permutations. The probability obtained is depicted as a function of the number of data points for 25 (orange), 50 (blue), 75 (red), and 100

permutations (green). The coloured area represents the 95% confidence interval calculated over all datasets using bootstrapping—that is, it is derived

from the results of repeated resampling of the population. The dotted grey line indicates a probability of 5%.

https://doi.org/10.1371/journal.pone.0301276.g003
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100). The average probabilities decay with an increasing number of data points, and they cross

a probability of 0.05 at approximately 230 data points (N = 100), at 235 data points (N = 75),

and 240 data points (N = 50). The examined range up to 330 data points is not sufficient for 25

permutations to attain an average probability of less than 5%.

Comparison of metrics

A comparison of three common evaluation metrics reveals that the the average MCC increases

slightly with increasing number of data points (Fig 4), while the probability obtained by the

permutation test decreases (Fig 4). The MCC has a lower probability of the null hypothesis

being true than the F1 score and the recall for all data points. Although the increase in the F1

score with more data points is greater than the increase in the MCC, there is a slower decrease

in its probability. If we examine the dependence of the normalised recall score on size of the

dataset (Fig 4), the recall decreases as the number of data points increases. However, the recall

Fig 4. (a) Dependence of the normalised prediction score and (b) the probabilities of the corresponding

permutation tests on the number of data points using MCC, F1 and recall. The MCC score was normalised to the

same range of values from 0 to 1 as the other two metrics. The coloured area represents the 95% confidence interval

calculated by bootstrapping over all datasets.

https://doi.org/10.1371/journal.pone.0301276.g004
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shows values above 0.65, which is at the upper end of its value range. Despite the decrease in

recall, the probability obtained by the permutation test (Fig 4) nevertheless declines when

there is a larger number of data points. The probability of recall is higher than that for the

other metrics for all numbers of data points. Comparing MCC, κ, ACC, BA (S1 Fig), the trends

are very similar and there are only very small deviations among them. As the amount of data

increases, the 95% confidence interval decreases for all metrics, but this decrease is most evi-

dent for the MCC.

Comparison of nCV and rnCV

To understand the influence of repetitions of the nCV, we averaged the results of all equally

sized balanced synthetic datasets for each number of data points. We used five repetitions

within the rnCV to determine the MCC and the probability, and obtained the results for MCC

and probability by averaging the results of five nCVs. This means that we used the same pre-

dictions to calculate the results for the nCVs and that of the rnCV; thus, only the method of

calculation differs and, therefore, the results for this comparison are exact.

It must be noted that the score of the rnCV (see Fig 5) is identical to the mean score of the

nCVs. However, the probabilities of the null hypothesis being true are consistently higher for

the nCV than for the rnCV (see Fig 5).

To demonstrate the improved reliability of the rnCV compared to the nCV, we used a simi-

lar method to evaluate the CESAR dataset as well as its subsets. Table 1 shows the minimum

and maximum MCC score of each of the five nCVs and their standard deviation. It also shows

the probability of using a single rnCV compared to the averaged probability of the nCVs. As

with the balanced synthetic data, the probabilities are higher when only nCVs are used. In

addition, the standard deviation and the difference between the minimum and maximum

score achieved increase with fewer data points.

Real world datasets: Comparison of metric score and null hypothesis

probability between metrics

To quantify the impact of this procedure on a real dataset, we determined different metrics

and the probability that the null hypothesis is true for the publicly available datasets, CESAR,

BCWD and MNIST. The probabilities were calculated for 25 and 50 random data points of the

dataset as well as for the complete dataset. In this manner, we effectively simulate results of

smaller real datasets with comparable data quality. Tables 2 and 3 present the results of an

complete rnCV.

For all investigated complete real world datasets all metrics are well above the expected

value of a random data prediction (see Table 2 and S3 Table) and the permutation tests indi-

cate that the results are statistically significant—that is, p< 0.05 (see Table 3 and S4 Table).

The scores of the metrics of the MNIST and BCWD don’t differ much and are both notably

higher than the scores of the CESAR dataset. Despite the fact that the full dataset is much larger

than its 50 data point variant, the metric values for the 50 data point CESAR dataset are for

BA, precision, F1 and κ only slightly lower than for the full dataset and for the other metrics

even slightly higher or the same. For the MNIST dataset the MCC and F1 score do noticeably

degrade compared to the complete dataset while the ACC only decreases slightly. Nevertheless

they are still far above chance value and the probability for the null hypothesis is only 2%. For

25 data points of the CESAR and MNIST datasets the metrics are barely above and in some

cases below the expected value of chance; the probabilities are not statistically significant. For

the BCWD dataset, the probability of the null hypothesis is at 2% for all dataset sizes for ACC,

F1 and MCC. It is therefore the only dataset in our test, where 25 data points are enough to
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train a classifier for which we can reject the null hypothesis. As examples, we analysed the

errors made by the classifiers trained on ACC, F1 and MCC. Table 4 shows that the classifier

trained on the ACC for the complete CESAR dataset as well as the 50 data point dataset slightly

prefers to predict the majority class, and therefore, more often misclassifies a minority class

Table 1. Minimum, maximum and standard deviation of scores of the MCC for the individual nCV components of a rnCV. It includes the probability of the null

hypothesis when evaluating using rnCV, contrasted with the average probability derived from utilising nCV for five iterations in the permutation test, rather than a singu-

lar rnCV. Assessments are performed on random subsets of the CESAR dataset.

Points MCC Min MCC Max MCC standard deviation Probability rnCV Averaged probability nCVs

515 0.32 0.40 0.03 0.02 0.02

50 0.29 0.52 0.09 0.04 0.05

25 0.00 0.40 0.16 0.15 0.35

https://doi.org/10.1371/journal.pone.0301276.t001

Fig 5. Mean value of (a) the MCC, and (b) the probability of 5 nCV versus the MCC of an rnCV consisting of five

replicates. The red line represents the bisector for clarity and the connecting line between the data points is only a

guide for the eye.

https://doi.org/10.1371/journal.pone.0301276.g005
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class member as majority class member than the other way around. For the 25 data point data-

set, the prediction is quite balanced. The F1 score on the other hand seemed to more often mis-

classify a majority class member as minority class member for all investigated dataset sizes. For

the MCC, there is not such a clear trend visible. For the complete dataset and 25 data points, it

slightly more often misclassifies a majority class sample as minority class, for 50 data points, it

is the other way around. For the MNIST and BCWD dataset, there are no big difference in

confusion matrices between different metrics (see S5 Table).

Real world datasets: Ablation study

In the case of the CESAR dataset, the full dataset exhibited comparable performance with or

without hyperparameter tuning and feature selection (see Table 5). With 50 data points, leav-

ing out either feature selection or hyperparameter tuning resulted in degraded metric scores

compared to including both components. Using neither feature selection nor hyperparameter

tuning resulted in the worst performance. Interestingly, for 25 data points leaving out feature

Table 2. Scores of the ACC, BA, precision, recall, F1-Score, MCC, AUC, and κ for rnCV on a random subsets of the CESAR dataset.

Points ACC BA Precision Recall F1 MCC AUC κ

515 0.70 0.67 0.70 0.90 0.63 0.36 0.74 0.36

50 0.72 0.68 0.67 0.99 0.59 0.40 0.74 0.35

25 0.56 0.45 0.45 0.94 0.41 0.16 0.54 0.13

https://doi.org/10.1371/journal.pone.0301276.t002

Table 3. Probabilities of the ACC, BA, precision, recall, F1-Score, MCC, AUC and κ for rnCV on a random subsets of the CESAR dataset.

Points ACC BA Precision Recall F1 MCC AUC κ

515 0.02 0.02 0.02 0.02 0.02 0.02 0.02 0.02

50 0.02 0.02 0.02 0.02 0.04 0.04 0.02 0.02

25 0.29 0.31 0.12 0.12 0.45 0.15 0.39 0.19

https://doi.org/10.1371/journal.pone.0301276.t003

Table 4. Confusion matrices of the ACC, F1-Score, and MCC for rnCV on a random subsets of the CESAR dataset.

Points ACC F1 MCC

515 24:8 6:6

8:8 11:3

 !
19:5 11:9

5:5 14:6

 !
22:2 9:2

7:0 13:1

 !

50 2:5 0:5

0:9 1:1

 !
2:1 0:9

0:7 1:3

 !
2:4 0:6

0:9 1:1

 !

25 0:8 0:6

0:5 0:6

 !
0:6 0:8

0:5 0:6

 !
0:8 0:6

0:5 0:6

 !

https://doi.org/10.1371/journal.pone.0301276.t004

Table 5. Scores of the MCC for rnCV missing either the hyperparameter tuning, the feature selection or both on a random subsets of the CESAR dataset.

Points full rnCV missing feature selection missing hyper parameter tuning missing feature selection and hyper parameter tuning

515 0.36 0.35 0.38 0.37

50 0.40 0.30 0.37 0.18

25 0.16 0.19 0.25 -0.02

https://doi.org/10.1371/journal.pone.0301276.t005
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selection or hyperparameter tuning increased the score, but leaving out both decreased it. The

corresponding probabilities in this case on the other hand got worse or stayed the same despite

increasing scores (see Table 6). In case of the MNIST dataset, the ablation of the feature selec-

tion improved the scores as well for all dataset sizes if left out alone or if left out together with

hyperparameter tuning (see S6 Table). Leaving out hyperparameter tuning did not change the

score notably. In general, the classifier seems to perform very well on both the 250 data point

subset as well as on the 50 data point subset. Only in case of 25 data points the MCC drops to

zero when using feature selection, and the performance without feature selection is strongly

diminished compared to using more data. The probability is always 0.02 except when using

feature selection, where it becomes 1.0 for 25 data points (see S7 Table). All probabilities of the

BCWD dataset achieve the minimal value of 0.02 for all dataset sizes and ablations, because

high MCC scores are yielded in every case. Nevertheless there are differences between the

scores. While it does not seem to make a big difference when ablating any component or both

for the full dataset, it gets more impact for smaller dataset sizes. In case of 25 data points, leav-

ing out feature selection degrades the score by 0.27 while leaving out only hyperparameter tun-

ing leads only to a marginal degradation. Curiously leaving out both degrades the score much

less than only leaving out the feature selection.

Discussion

For the balanced synthetic datasets a smaller number of permutations implies that the permu-

tation test overestimates the probability that the null hypothesis is true. Thus, fewer permuta-

tions are more likely to lead to false acceptance of the null hypothesis than to false rejection.

However, the qualitative relationship between the probability and the number of data points

appears to be preserved; thus, a small number of permutations is sufficient to make qualita-

tive statements regarding their relationship. In general, at least 999 permutations should be

selected for an effective approximation of the true probability according to Edgington [24]

(see Supporting information). In line with classical statistics, we suggest a probability thresh-

old of 5% that the null hypothesis is true—that is, to consider the result of a classification task

to be significant. In this study, this value proved to be useful to interpret the results of the

smaller and larger datasets. We used the same original and permuted datasets to analyse the

characteristics of different metrics. The comparison of the dependence of the recall and the

corresponding probability (Fig 4) on the dataset size confirms that a high score alone does

not imply a relationship between features and target variables. This is also evident in the only

moderate increase of the MCC with a simultaneous strong decrease in the associated proba-

bility as well as in the narrowing of the confidence interval of all metrics when using more

data points. A narrowing confidence interval implies that it becomes increasingly unlikely to

obtain values much larger or much smaller than the mean. This is consistent with the decreas-

ing probability of the permutation test, whereas the score of the metric remains the same or

even decreases. Thus, the score alone is not sufficient and a permutation test should be

Table 6. Probabilities of the MCC for rnCV missing either the hyperparameter tuning, the feature selection or both on a random subsets of the CESAR dataset.

Points full missing feature selection missing hyper parameter tuning missing feature selection and hyper parameter tuning

515 0.02 0.02 0.02 0.02

50 0.04 0.04 0.04 0.15

25 0.15 0.20 0.15 0.57

https://doi.org/10.1371/journal.pone.0301276.t006
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performed in any case. In addition, the result of the permutation test also depends on the size

of the dataset.

The synthetic datasets studied are somewhat predictable, since they are generated with a

small difference in the distribution of the features of both classes. In other words, the null

hypothesis can be rejected for these data, and the metrics should provide the lowest possible

probability for it. From the much lower probabilities obtained by performing a permutation

test using the MCC compared to those obtained using the recall, it is evident that the MCC is

better at detecting a relationship between the features and the target variable than the recall.

This is also true for the F1 score calculated from recall and precision. κ, MCC, ACC, and BA

are equally suitable for the evaluation of the studied datasets. However, one should keep in

mind that previous research [31] considers MCC more suitable and ACC rather unsuitable for

unbalanced datasets, which are only exemplary examined here (see S1 and S2 Tables). It should

be noted that the high probabilities >5% of the null hypothesis being true for all metrics are

partially due to the small number of features used and the small difference in the value distri-

butions of the two classes. With more features and a larger difference between the classes, bet-

ter probabilities could be obtained with fewer data points.

The equivalence of the average nCV score in Fig 5 to the rnCV score can be attributed to

their computation from identical predictions using the same process. Nevertheless, the nCV

probabilities generally surpass those of rnCVs due to differing computational methods: The

nCV probability is derived by comparing a single nCV from the original dataset to corre-

sponding single nCVs within the permuted dataset, yielding an empirical probability. This

approach can lead to slight underestimation of the original dataset score and potential overes-

timation of the permutation score due to nCV variability. Conversely, the rnCV calculates the

mean nCV scores before comparing them against equivalent permutation means, reducing

result variability. As a result, individual permutations are less likely to outperform or under-

perform the original dataset, enhancing overall result reliability for rnCVs relative to nCVs.

This improved reliability decreases the likelihood of incorrectly concluding that the null

hypothesis is true when it is actually false. It is crucial to highlight that this direct comparison

is feasible owing to consistent permutation usage across both nCV and rnCV calculations, as

well as the rnCV probability computation relying on nCV outcomes.

When comparing the metrics used in the analysis of three distinct datasets—MNIST,

BCWD, and CESAR—it was observed that the scores were significantly higher for MNIST and

BCWD than for CESAR at all dataset sizes (see Table 2 and S3 Table). Furthermore, the confu-

sion matrices showed minimal differences across various metrics for MNIST and BCWD (see

S5 Table) and more significant ones for the CESAR dataset (see Table 4). All this suggests a

stronger link between features and labels in MNIST and BCWD than in the CESAR dataset.

There, the values of the metrics decreased significantly with smaller dataset sizes, and more sig-

nificant differences in the confusion matrices were observed between the use of different met-

rics (see Table 4).

The value of repeatedly assessing small data sets like CESAR that challenge a classifier’s pre-

diction capabilities is showcased in Table 1. Had only one repetition been used for a set of 50

data points, the MCC obtained could have been 0.52, and it would be possible that the MCC

obtained from the full set would have been 0.32. This might foster a misunderstanding about

the classifier’s efficacy with larger data sets. Moreover, employing rnCV during the evaluation

of probability, rather than simply averaging probabilities from several nCVs, holds signifi-

cance. If we used multiple nCVs, it might indicate non-significant (p> 5%) classification

results for 50 data points; yet, applying rnCV establishes statistical significance. The variance

and therefore the importance of using repetitions increases with smaller dataset sizes. Further-

more, the 50 data point subset, although significantly smaller than the full CESAR dataset,
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shows only slightly inferior or even slightly superior scores, depending on the metric used (see

Table 2), which might initially imply comparable classifier performance. However, a closer

examination of the probability distributions reveals slightly poorer outcomes for MCC and F1,

indicating that some of these scores could be influenced by the specific data structure rather

than the model’s effectiveness (see Table 3). Consequently, this highlights the importance of

considering factors beyond mere absolute scores for accurately evaluating a dataset’s

predictability.

For the CESAR and BCWD datasets (see Table 5 and S6 Table), the MCC scores got lower

or at least remained the same when leaving out hyperparameter tuning or feature selection

which is expected as parameters are chosen which are better suited to predict the data and not

relevant features are ignored. This is not the case for the 25 data point CESAR dataset as the

scores increase when leaving out either of both but heavily degrade when leaving out both at

once. This seems less strange when looking at the corresponding probabilities (see Table 6).

The probabilities get worse or in best case stay the same when leaving out hyperparameter tun-

ing and/or feature selection. This indicates that by pure chance the datastructure of the 25 data

point set was more suitable to be evaluated with the default parameters and features on all

folds even when the classifier did only find a connection between features and classes which

does not generalise. In this case, the use of the permutation test was necessary to fully under-

stand the results. For the MNIST dataset, the scores always increase whenever no feature selec-

tion is used (see S6 Table). We suspect that the reason for this is that our search space for the

features was inappropriate. We selected a maximum of 30 features out of the 784 available,

which does not seem to be sufficient as indicated by the decreased score when using feature

selection. This demonstrates that it is crucial to search for ideal hyperparameter and features

using a suitable method and search space.

For the BCWD and CESAR datasets, the scores of the 50 data points are more or less the

same as for the full dataset, although they consist of a multiple of data points (see Table 2 and

S3 Table). Usually one would expect a classifier to perform better when trained on more data

[9] so this may indicate that the classifier is limited by the intrinsic connection between fea-

tures and labels in the investigated datasets. The scores of the BCWD dataset are in general

much higher than for the CESAR dataset indicating that this is no effect caused by a high score

consolidating the assumption that the inherent data structure prohibits much better predic-

tions. Consistent with this interpretation, the MCC score differences between 50 data points

and the full dataset are also small for the MNIST dataset when the feature selection of only 30

features is omitted.

The probabilities for the 25 data point subset of the BCWD and CESAR datasets are heavily

dependent on the metric used for training and evaluation. Which metric performs best seems

to depend on the dataset. For the BCWD dataset, the probability of the F1 score is lower than

for the ACC but for the CESAR dataset it is the other way around. It follows that it may be

worthwhile to examine more than one metric, as they may happen to perform particularly well

or poorly on the dataset. For not well predictable data, it again corroborates the usefulness of

the permutation test which enables this comparison in the first place. With the highest proba-

bility of 2%, given the number of permutations used, the ML estimator uses the correlation

between features and labels within the full CESAR dataset to predict the answer to question 5b.

This prediction exceeds the expected value of zero associated with random classification, and

significantly outperforms the worst case of -1, as indicated by a Matthews Correlation Coeffi-

cient (MCC) of 0.36. The similar prediction quality on only 10% of the data suggests that the

dependence between questions is not sufficiently large to achieve much better accuracy. We

were furthermore able to demonstrate our method of evaluation for the MNIST and BCWD

datasets. We achieved an MCC score of 0.88 in predicting whether a cell sample is benign for
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the full BCWD dataset with the lowest possible probability of the null hypothesis being true in

our case. The largest subset of the MNIST we evaluated consisted of 250 data points, and the

estimator achieved an MCC score of 0.89 in predicting whether an image is a one or not. It is

important to note that these values are the average of the rnCV, and some individual nCVs

yielded higher scores by chance. This again emphasises the value of the repetitions. Krstajic

et al. [12] demonstrated the relevance of repeating evaluation with various random seeds in

their work, Vabalas et al. [5] highlighted the importance of using nCV, and Ojala & Garriga

[13] showcased the advantage of permutation tests. We have now shown that for optimal

results on small datasets, all three methods must be combined. The use of nCV alone leads to

higher variance, and particularly for small datasets when the estimator yields scores close to

the expected value of random prediction further evaluation using a permutation test is neces-

sary. A practical example where the use of repetitions could be interesting is the work by Naji

et al. [18]. They used single train/test splits to evaluate BCWD and compare five ML algo-

rithms. In our tests across five different train/test splits using a SVM, we obtained the worst

accuracy as 0.89 and the best as 0.96. This fluctuation range is greater than the differences

between the compared classifiers (0.94 to 0.97) in their work. An example where the use of the

permutation test could have been advantageous is the work of Kılıç et al. [17]. Using binary

classification on a dataset of 700 data points, they reported an ACC of 0.62. Given the proxim-

ity to the expected value of 0.5 from random prediction in balanced datasets, assessing the

probability of the null hypothesis would be beneficial due to the variance of these results and

uncertainty about which value would emerge through permutation of target variables.

Conclusion

In social sciences, ML has a great potential to stimulate significant advances. When the aim is

to evaluate the strength of the dependency between features and target variable and not to find

one specific classifier, it is important to specify a probability value for the null hypothesis, par-

ticularly for small datasets and moderately good metrics. In this case, there may be a non-neg-

ligible probability that the classifier will fail to predict new data, as its performance is only an

artefact of the data structure of the dataset under consideration. To obtain this probability, we

suggest using a non-parametric permutation test in combination with a rnCV approach,

which yields more reliable results than the traditional nCV method. Our results on synthetic

data, where a low probability is expected, reveal that the probability determined by the permu-

tation test is higher when the recall or F1 score is used, compared to the MCC for our dataset.

Furthermore, we found that evaluating datasets with multiple metrics can help to better assess

the predictive quality of the model, as revealed by the analysis of the CESAR, MNIST and

BCWD datasets. We demonstrate that repeating a nCV with different data splits reduces the

variance of estimated classifier performance as well as the probability of randomly good

results. We recommend using multiple repetition in the future evaluation of small datasets to

reduce the variance especially if comparing results with only small differences. Most reliable

results can be achieved by using the repetitions directly in the permutation test instead of run-

ning multiple tests and averaging afterwards. Furthermore, we recommend using the MCC as

well as other metrics for training and evaluation, as the optimal metric may depend on the

dataset.
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S1 Fig. (a) Dependence of the prediction score as well as (b) the probabilities of the associ-

ated permutation tests on the number of data points using MCC, κ, ACC, and BA. The
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the other two metrics. The coloured area represents the 95% confidence interval calculated by

bootstraping over all datasets.

(TIF)
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and disadvantages of ACC, BA, κ, and F1 Score are presented.
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S2 Table. Overview of the characteristics of different metrics. In this table, the advantages
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S6 Table. Scores of the MCC for rnCV missing either the hyperparameter tuning, the fea-
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