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A B S T R A C T   

Background and purpose: Ultra-hypofractionated online adaptive magnetic resonance-guided radiotherapy 
(MRgRT) is promising for prostate cancer. However, the impact of online adaptation on target coverage and 
organ-at-risk (OAR) sparing at the level of accumulated dose has not yet been reported. Using deformable image 
registration (DIR)-based accumulation, we compared the delivered adapted dose with the simulated non-adapted 
dose. 
Materials and methods: Twenty-three prostate cancer patients treated at two clinics with 0.35 T magnetic 
resonance-guided linear accelerator (MR-linac) following the same treatment protocol (5 × 7.5 Gy with urethral 
sparing and daily adaptation) were included. The fraction MR images were deformably registered to the planning 
MR image. Both non-adapted and adapted fraction doses were accumulated with the corresponding vector fields. 
Two DIR approaches were implemented. PTV* (planning target volume minus urethra+2mm) D95%, CTV* (clinical 
target volume minus urethra) D98%, and OARs (urethra+2mm, bladder, and rectum) D0.2cc, were evaluated. Sta
tistical significance was inferred from a two-tailed Wilcoxon signed-rank test (p < 0.05). 
Results: Normalized to the baseline, the accumulated PTV* D95% increased significantly by 2.7 % ([1.5, 4.3]%) 
through adaptation, and the CTV* D98% by 1.2 % ([0.1, 1.7]%). For the OARs after adaptation, accumulated 
bladder D0.2cc decreased by 0.4 % ([− 1.2, 0.4]%), urethra+2mm D0.2cc by 0.8 % ([− 1.6, − 0.1]%), while rectum 
D0.2cc increased by 2.6 % ([1.2, 4.9]%). For all patients, rectum D0.2cc was still below the clinical constraint. 
Results of both DIR approaches differed on average by less than 0.2 %. 
Conclusions: Online adaptation in MRgRT improved target coverage and OARs sparing at the level of accumulated 
dose.   

1. Introduction 

Since the introduction of integrated magnetic resonance imaging 
(MRI) guided linear accelerators (MR-linacs) to the clinic, magnetic 
resonance-guided radiotherapy (MRgRT) has emerged as a novel 

approach for prostate cancer treatment [1,2]. MRI is advantageous over 
cone beam computed tomography (CBCT) as an image-guidance tech
nology for radiotherapy due to its dose-free nature and enhanced soft 
tissue contrast, which allows tumor localization without any external 
surrogates or fiducial markers [3–5]. This improves the accuracy of 
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patient positioning and anatomical structure delineation [6]. MR-linacs 
also allow daily online adaptation of treatment plans to account for 
inter-fractional anatomical changes observed on the in-room set-up MRI 
scans [2,7–10]. Additionally, time resolved 2D imaging (cine MRI) can 
be acquired simultaneously with the beam delivery and used to gate the 
irradiation, enabling further margin reduction [11,12]. In recent years, 
with increased evidence of the low α/β ratio of prostate cancer, and the 
availability of online adaptive MRgRT, there has been a growing use of 
ultra-hypofractionation as an alternative to conventional fractionation 
schemes [13]. Studies have demonstrated that ultra-hypofractionated 
radiotherapy can achieve similar clinical outcomes in terms of failure- 
free survival and late toxicity as conventional fractionated schemes, 
such as 39 × 2 Gy [14–16]. The enhanced soft tissue contrast of MRI has 
also brought a renewed focus on urethra dose sparing with avoidance of 
hotspots [17]. 

Previous studies have assessed the impact of the intra-fractional 
prostate motion captured during gated MRgRT on the delivered dose 

[18–21]. The findings indicated that the magnitude of prostate intra- 
fractional motion is small, so that gating has a negligible effect on the 
delivered dose in most cases. Moreover, the benefit of online plan 
adaptation for prostate cancer patients has been examined retrospec
tively by comparing dose volume histogram (DVH) parameters of non- 
adapted and adapted doses at individual fraction level. No significant 
change in bladder and rectum exposure was observed on average, and 
planning target volume (PTV) and clinical target volume (CTV) coverage 
was mostly clinically acceptable even before adaptation [22]. However, 
an assessment of the consistency between the accumulated adapted dose 
over all treatment fractions and the baseline dose for ultra- 
hypofractionated prostate MRgRT has been lacking. To date, no inves
tigation has been conducted to compare the accumulated online adapted 
dose with the accumulated dose that would be obtained in the absence of 
plan adaptation. The accumulated dosimetric advantage of performing 
the time-consuming online adaptation has not yet been quantified 
[23–25]. 

Fig. 1. Example accumulated Dbase, Dnon-adapt, and Dadapt dose distributions. (a) patient 1 and (c) patient 11 from cohort 1, superimposed on the pMRI, with cor
responding DVH curves (b: patient 1, d: patient 11). The white arrow in (a) indicates the area with insufficient CTV coverage. Contours of CTV* (pink), rectum 
(green) and bladder (yellow) are displayed. All results from DIR1-based accumulation. 
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This shortcoming is related to the fact that dose accumulation is still 
lacking in today’s clinical routine, even though it could pave the way 
towards better understanding of clinical outcomes such as treatment 
toxicities. After confirming the feasibility [26] and accuracy of contour- 
based deformable dose accumulation for organs-at-risk (OARs) in 
prostate MRgRT through phantom validation [27], Bohoudi et al. 
demonstrated that the total accumulated dose outperformed the base
line dose in predicting acute urinary symptoms for the bladder in ultra- 
hypofractionated MRgRT [28]. 

The aim of this study was to investigate the impact of daily online 
plan adaptation on the accumulated dose for ultra-hypofractionated 
MRgRT of prostate cancer patients. Therefore, the daily delivered and 
simulated non-adapted doses for prostate cancer patients were accu
mulated over all treatment fractions. The baseline plan and the resulting 
accumulated adapted and non-adapted doses were compared in terms of 
target coverage and OAR sparing to quantify the benefit of daily plan 
adaptation. 

2. Materials and methods 

2.1. Patient cohort 

A total of 23 prostate cancer patients from two institutes (cohort 1: 
fifteen patients treated at the University Hospital of LMU Munich; cohort 
2: eight patients treated at the Heidelberg University Hospital; see 
Table S1 for details; mean age 67 years; range from 49 years to 84 years) 
were included in this study. All patients were in the low/intermediate or 
early high-risk group without distant metastases and participated in the 
multi-centric stereotactic MRI-guided radiation therapy for localized pros
tate cancer (SMILE) study (ethic project number LMU: 20–291; Heidel
berg: S-915/2020). None of the patients had received prior pelvic 
radiation therapy or local therapy of the prostate gland [13]. All patients 
received definitive stereotactic MRgRT with a fractionation scheme of 
5 × 7.5 Gy at a 0.35 T MRIdian MR-linac (ViewRay Inc., Oakwood 
Village, OH, USA) [6,10]. All patients gave informed consent, and the 

study was approved by the local ethics committees. 

2.2. Clinical workflow 

To ensure consistent bladder and rectum filling, the patients were 
instructed to follow a drinking and eating protocol for both planning 
imaging and subsequent irradiation sessions [13,18]. The non-contrast 
enhanced planning MRI (pMRI) was acquired at the MR-linac using a 
clinical balanced steady-state free precession sequence (bSSFP) with an 
isotropic voxel of size (1.5 mm)3 with the patient in supine position 
(TrueFISP 2D sequence; TR/TE: 3.38 ms/1.45 ms; flip angle: 60◦). A 
planning CT image (pCT; voxel size of 1.0 × 1.0 × 3.0 mm3) was ac
quired using the same patient setup immediately after the pMRI acqui
sition. Deformable image registration (DIR) of the pCT to the pMRI was 
automatically performed in the clinical MRIdian treatment planning 
system (TPS) to create a baseline synthetic CT (sCT) image for dose 
calculation. Contours were delineated on the pMRI. The CTV included 
the prostate and, in case of an intermediate risk profile, the base of the 
seminal glands [13]. The PTV enclosed the CTV with an isotropic margin 
of 3.0 mm [13,22,29]. All patients received step-and-shoot intensity- 
modulated radiation therapy (IMRT). 

Baseline plans with a 6 MV flattening filter-free photon beam were 
created. These plans were calculated on a (3.0 mm)3 dose grid using a 
Monte Carlo algorithm with a statistical uncertainty of 1% [30]. The aim 
of the baseline plan was to cover at least 95% of the PTV with 95% of the 
prescribed dose (35.63 Gy). According to the SMILE protocol, the near- 
maximum doses (D0.2cc) to the bladder and rectum should be ≤ 38.5 Gy. 
For urethral sparing, the avoidance volume defined as the urethra with 
an isotropic expansion of 2 mm (urethra+2 mm) should receive D0.2cc ≤

37.5 Gy. 
At every treatment fraction, a daily MRI (dMRI) was acquired using 

the same sequence as for the pMRI. A daily sCT was generated using 
pMRI-to-dMRI DIR. The translational patient setup error was corrected 
using soft tissue alignment, followed by a couch shift [22]. The target 
structures were rigidly transferred to the dMRI, and OAR structures were 

Table 1 
Median values (IQR [25 %, 75 %]) of ΔDx, Dx

base versus Dx
non-adapt, and Dx

base versus Dx
adapt. Significance of differences (p < 0.05) is indicated by a dagger (†). All values 

are given in percent. The results over all patients are shown in a). The results from both cohorts are individually presented in b) and c).  

a) Both cohorts         
PTV* 
D95% 

CTV* D98% CTV* D50% CTV* 
D2% 

Bladder D0.2cc Rectum D0.2cc Urethra+2mm D0.2cc 

Δ Dx 2.7†
[1.5, 4.3] 

1.2†
[0.1, 1.7] 

0.3 
[− 0.1, 1.2] 

− 0.1 
[− 1.0, 0.2] 

− 0.4 
[− 1.2, 0.4] 

2.6†
[1.2, 4.9] 

− 0.8†
[− 1.6, − 0.1] 

Dnon− adapt
x − Dbase

x
Dbase

x 

− 3.7†
[− 5.3, − 2.4] 

− 0.9†
[− 1.7, − 0.3] 

− 0.3†
[− 1.0, 0.0] 

− 0.8†
[− 1.3, − 0.6] 

− 1.1†
[− 1.9, 0.0] 

− 4.8†
[− 6.9, − 2.0] 

− 0.1 
[− 0.5, 0.7] 

Dadapt
x − Dbase

x
Dbase

x  

− 0.8†
[− 1.4, − 0.3] 

0.3 
[− 0.5, 0.7] 

0.0 
[− 0.4, 0.1] 

− 1.1†
[− 1.8, − 0.7] 

− 1.4†
[− 2.1, − 0.9] 

− 1.0†
[− 1.7, − 0.7] 

− 0.7†
[− 0.8, − 0.5]  

b) Cohort 1         
PTV* 
D95% 

CTV* D98% CTV* D50% CTV* 
D2% 

Bladder D0.2cc Rectum D0.2cc Urethra+2mm D0.2cc 

Δ Dx 3.1†
[2.0, 4.8] 

1.0†
[0.2, 1.7] 

0.3 
[0.0, 1.0] 

− 0.2 
[− 1.0, 0.3] 

− 0.9 
[− 1.3, 0.1] 

3.5†
[1.7, 6.1] 

− 0.9†
[− 1.7, − 0.1] 

Dnon− adapt
x − Dbase

x
Dbase

x 

− 4.1†
[− 5.5, − 2.8] 

− 1.0†
[− 1.7, − 0.3] 

− 0.5†[− 0.9, 0.0] − 0.8†
[− 1.3, − 0.6] 

− 0.9†
[− 1.9, 0.1] 

− 5.0†
[− 7.6, − 2.5] 

0.1 
[− 0.6, 0.8] 

Dadapt
x − Dbase

x
Dbase

x  

− 0.6 
[− 1.1, 0.0] 

0.0 
[− 0.5, 0.8] 

0.0 
[− 0.4, 0.1] 

− 1.2†
[− 1.8, − 0.7] 

− 1.3†
[− 2.0, − 1.0] 

− 1.0†
[− 1.6, − 0.8] 

− 0.7†
[− 0.9, − 0.4]  

c) Cohort 2         
PTV* 
D95% 

CTV* D98% CTV* D50% CTV* 
D2% 

Bladder D0.2cc Rectum D0.2cc Urethra+2mm D0.2cc 

Δ Dx 1.9†
[1.3, 2.8] 

1.3†
[0.2, 1.6] 

0.2 
[− 0.3, 1.2] 

− 0.1 
[− 0.6, 0.1] 

0.1 
[− 0.3, 0.6] 

1.3 
[1.0, 2.7] 

− 0.7 
[− 1.1, − 0.4] 

Dnon− adapt
x − Dbase

x
Dbase

x 

− 3.2†
[− 3.9, − 1.8] 

− 0.8†
[− 1.5, − 0.4] 

− 0.2†
[− 1.0, − 0.1] 

− 0.8†
[− 1.1, − 0.5] 

− 1.7†
[− 2.0, − 1.1] 

− 3.3†
[− 4.9, − 1.8] 

− 0.1 
[− 0.2, 0.2] 

Dadapt
x − Dbase

x
Dbase

x  

− 1.1†
[− 1.6, − 0.6] 

0.3 
[0.0, 0.5] 

0.1 
[− 0.4, 0.2] 

− 1.0†
[− 1.5, − 0.8] 

− 1.7†
[− 2.1, − 0.8] 

− 1.3†
[− 2.1, − 0.6] 

− 0.8†
[− 0.8, − 0.6]  
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deformed to the dMRI using DIR, followed by manual corrections when 
necessary [7]. For time efficiency, contour corrections were focused on 
the region within 3 cm of the PTV, which was the area with the highest 
dose gradients. Online plan adaptation was performed for every fraction 
using the same objectives as for the baseline plan, and the beam was 
gated during dose delivery. 

For this study, we exported the pMRI, all dMRIs, the daily adapted 
dose distributions as well as the non-adapted dose distributions, ob
tained from recalculating the baseline treatment plan on the dMRIs, 
which were aligned to the pMRI via soft tissue matching in 3D. 

2.3. Dose accumulation and analysis 

For dose accumulation, the pipeline described by Rabe et al. [31] for 
central lung tumors was implemented and adapted for prostate cancer. 
In a research version of the TPS RayStation (RaySearch Laboratories, 
Stockholm, Sweden; research version 10B-R), the hybrid intensity and 
structure based ANAtomically CONstrained Deformation Algorithm 
(ANACONDA) [32] was utilized to deformably register the five dMRIs to 
the pMRI (DIR1). Additionally, a solely structure-based DIR approach 
without considering intensity information was pursued (DIR2). Both 
approaches were separately applied to generate two deformation vector 
fields (DVFs), and both were by default invertible [32]. For all DIRs, the 
bladder, rectum, and the intersection of urethra+2mm with the CTV were 
set as controlling regions of interest (ROIs). This allowed fast conver
gence during the deformation by penalizing surface distance between 
the controlling ROIs on pMRI and dMRI in the optimization, even if the 

differences between both contours were large. Moreover, the union of 
the bladder, rectum, and CTV, isotropically expanded by 4 cm on the 
pMRI was chosen as the focus ROI (focus region of the DIR) [33]. All 
results were visually evaluated using overlay plots. The DIR accuracy 
was evaluated by calculating the Dice Similarity Coefficient (DSC) and 
the 95th percentile Hausdorff Distance (HD95) between deformed and 
planning contours of the controlling ROIs and the CTV using Plastimatch 
(version 1.8.0) [34]. 

Subsequently, both non-adapted and adapted fraction doses were 
mapped to the pMRI using the corresponding DVFs and summed to 
derive the accumulated non-adapted dose (Dnon-adapt) and the accumu
lated adapted dose (Dadapt) per patient. The baseline plan dose was 
denoted by Dbase. To minimize the impact of the urethra sparing on 
target coverage analysis, additional target contours were generated on 
the pMRI: PTV* was defined as PTV excluding the urethra+2 mm and 
CTV* as CTV excluding the urethra. Thereafter, DVH parameters PTV* 
D95%, CTV* D98%, D50%, D2% and OARs (bladder, rectum, urethra+2mm) 
D0.2cc were automatically extracted using Python scripts in the RaySta
tion scripting environment. The relative differences between DVH pa
rameters of Dnon-adapt and Dadapt normalized to the baseline plan were 
computed as Δ Dx = 100% × (Dx

adapt - Dx
non-adapt) / Dx

base. The differences 
between Dx

base and Dx
adapt, as well as between Dx

base and Dx
non-adapt were 

calculated in a similar manner, respectively. For the comparisons listed 
above, a two-tailed Wilcoxon signed-rank test was performed with Py
thon (version 3.8.3) using the package Scipy (scipy.stats.wilcoxon; 
version 1.5.0). Additionally, a Mann-Whitney-U test was conducted to 
compare Δ Dx of PTV, CTV, and OARs from cohort 1 with these from 

Fig. 2. Per patient results. Top row: Δ D95% for PTV* and Δ D98%, Δ D50%, Δ D2% for CTV*. Bottom row: Δ D0.2cc for bladder, rectum, and urethra+2mm. Cohort 1 
patients are labelled with C1, and cohort 2 patients with C2. Data points are connected for improved visibility. The vertical grey line separates the cohorts. 
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cohort 2. A statistically significant result was determined by a p-value <
0.05. 

3. Results 

3.1. DIR accuracy 

The median DSC (interquartile range, IQR, [25%, 75%]) for DIR1 and 
DIR2 for the CTV was 0.90 ([0.89, 0.92]) and 0.89 ([0.85, 0.91]), 
respectively. For the three controlling ROIs bladder, rectum, and ure
thra+2mm inside the CTV, the median DSC results were between 0.85 and 
0.97. For all four contours, the median HD95 was below 4 mm, close to 
the dose grid size of 3 mm (see Supplementary Materials Table S2). On 
average, both DIR approaches led to DVH parameters differing by less 
than 0.2% with respect to Dbase. In the following, only results from DIR1 
are presented. 

3.2. Accumulated doses 

Exemplary accumulated dose distributions and DVHs of Dbase, Dnon- 

adapt, and Dadapt for two patients are depicted in Fig. 1. In one case 
(patient 1), the patient underwent significant inter-fractional bladder 
volume changes (range of volumes: [118, 413] cm3) during the treat
ment, resulting in large differences among the three dose distributions. 
The target coverage was degraded in the soft tissue matching scenario 
and was clearly improved after the adaptation. Conversely, the other 
patient case (patient 11), exhibited similar DVHs for the three dose 
distributions. 

The median Δ Dx (IQR) over all patients, along with the average 
difference between Dx

base and Dx
adapt, and Dx

base and Dx
non-adapt are sum

marized in Table 1. Adaptation led to increased PTV* D95% by 2.7% 
([1.5, 4.3]%) and CTV* D98% by 1.2% ([0.1, 1.7]%) compared to no 
adaptation, both differences were statistically significant. For bladder 

and urethra+2mm, D0.2cc decreased by 0.4% ([− 1.2, 0.4]%) and 0.8% 
([− 1.6, 0.1]%), respectively, and the urethra+2mm D0.2cc difference was 
significant. For rectum, D0.2cc

adapt was significantly higher by 2.6% ([1.2, 
4.9]%) than D0.2cc

non-adapt, and both values were below D0.2cc
base for most pa

tients. Patient-per-patient Δ Dx for targets and OARs are shown in Fig. 2. 
Results of the Mann-Whitney-U test showed that none of the differences 
was significant. Patient 1 (see Fig. 1) had the two most elevated Δ Dx 
values as shown in upper panel of Fig. 2. Except from one patient of 
cohort 1 (patient 3), PTV* D95% increased through adaptation. For 
rectum Δ D0.2cc, values were positive for most patients (21/23), while 
these were negative for bladder and urethra+2mm for fourteen and 
seventeen patients from both cohorts, respectively. Compared to cohort 
2, cohort 1 exhibited a tendency towards higher rectum Δ D0.2cc and 
corresponding higher PTV* Δ D95%. In Fig. 3, the PTV* D95% for Dbase, 
Dnon-adapt, and Dadapt is shown to verify that coverage satisfied 95% of the 
prescribed dose. We also evaluated the CTV* D98% with the same con
dition. For all patients except from one of cohort 1 (patient 3), the 
adaptation yielded accumulated doses closer to PTV* D95%

base. No signifi
cant difference between the CTV* D98%

adapt and D98%
base was observed 

(see Table 1). Among the 23 patients, seven patients did not meet the 
PTV* D95%

adapt planning objective, but only two of them had an inadequate 
CTV* D98%

adapt. In case of no adaptation, 20 out of 23 patients had insuf
ficient PTV* D95%

non-adapt and six of them had inadequate CTV* D98%
non-adapt. 

Fig. 4 shows the D0.2cc for OARs and their respective dose constraints. 
Except for the bladder D0.2cc

adapt of patient 2 from cohort 1, D0.2cc
adapt for all 

other patients were within the constraints. Although Fig. 2 indicates an 
increase in rectum near-maximum doses, these remained below the 
constraint. D0.2cc for the urethra+2mm in the Dnon-adapt was exceeding or 
at the limit for five patients, while through the adaptation, this was 
avoided. 

Fig. 3. Patient-specific DVH parameters compared with 95% of the prescription (blue horizontal line). Top row: PTV* D95% derived from Dbase (red), Dnon-adapt (blue), 
and Dadapt (green). Bottom row: CTV* D98% for the same three doses. C1 stands for cohort 1, C2 stands for cohort 2. Y-axis is cropped for better visibility. The vertical 
grey line separates the cohorts. 
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4. Discussion 

To assess the impact of daily online plan adaptation in ultra- 
hypofractionated MRgRT for prostate cancer patients, we compared 
accumulated adapted doses to simulated non-adapted doses on pMRI for 
23 patients from two institutes in terms of target coverage and sparing of 
OARs. For both cohorts, the PTV* D95% and CTV* D98% increased 
significantly by 2.7% ([1.5, 4.3]%) and 1.2% ([0.1, 1.7]%), by daily 
adaptation. Without adaptation, the PTV* D95% would have been 
significantly lower than planned by 3.7% ([− 5.3, − 2.4]%). Through 
adaptation, no significant differences of CTV* D98% and D50% to the 

baseline plan were observed anymore. Adaptation thus ensured that the 
planned target coverage was more closely recovered in presence of inter- 
fractional changes. For the OARs, online adaptation led to a reduction of 
D0.2cc in bladder (not significant) and urethra+2mm (significant), while 
rectum D0.2cc increased significantly. Following adaptation, except for a 
single case, all the OARs D0.2cc met the protocol-defined dose con
straints. Especially, the violation of urethra+2mm D0.2cc constraint was 
avoided in five patients through online adaptation. While the ure
thra+2mm D0.2cc

adapt was significantly lower than D0.2cc
base , the D0.2cc

non-adapt was 
not. It is likely that the rectum D0.2cc increase within the constraint was 
necessary to ensure target coverage. These results highlight the potential 

Fig. 4. Patient-specific D0.2cc of the OARs. Top row: bladder. Middle row: rectum. Lower row: urethra+2mm. These were compared with their respective constraints 
(blue horizontal line). Dbase (red), Dnon-adapt (blue), and Dadapt (green) are shown next to each other. C1 stands for cohort 1, C2 stands for cohort 2. Y-axis is cropped 
for better visibility. The vertical grey line separates the cohorts. 
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benefits of online adaptation in improving target coverage at the level of 
the accumulated dose. Particularly in presence of strong inter-fractional 
anatomical changes, adaptation was found to play a crucial role in 
achieving adequate target coverage, while the OAR sparing was still 
maintained (see patient 1 in Fig. 1 for example). On the level of indi
vidual fractions, Nierer et al. concurringly reported that in single frac
tions, adaptation was crucial to ensure target coverage. It was, however, 
also pointed out that there was on average no significant change of OAR 
exposure resulting from online adaptation [22]. The phase three ran
domized clinical trial conducted by Kishan et al. demonstrated the su
periority of MRgRT compared to CT-guided radiotherapy for prostate 
cancer in effectively reducing both moderate acute physician-scored 
toxic effects and decrements in patient-reported quality of life [35]. In 
fact, online adaptation could result in more pronounced benefits in OAR 
sparing for certain indications, such as lung, liver, and adrenal metas
tases [36–40]. 

For dose accumulation, DIR accuracy is critical. We investigated two 
different approaches, both of which achieved average DSCs above 0.80 
for all structures of interest, as recommended by American Association 
of Physicists in Medicine (AAPM) TG 132 [41]. Ultimately, both DIRs 
produced similar accumulated DVH parameters (mean deviation of 
0.2%), confirming the robustness of the used DIR settings and accu
mulated dose distributions. 

The degree of improvement in target coverage and OARs protection 
varied depending on the cohort. Due to physician choices, cohort 1 had 
in contrast to cohort 2 partially higher rectum doses after adaptation, 
while the magnitude of PTV* D95% improvement was also larger. 
However, these differences were not significant. Several factors 
contribute to the differences in rectum Δ D0.2cc and PTV* Δ D95% 
observed between both cohorts. Firstly, variations in plan robustness, 
influenced by differing conformity of the high dose region and the use of 
different cost functions during dose optimization, were observed. Sec
ondly, differences in patient preparation, notably in drinking protocols 
(cohort 1 was advised to drink 750 mL of water, cohort 2 only 250 mL), 
could contribute to different organ dynamics during the treatment 
course. In general, it is expected that interfractional anatomic changes 
can potentially blur the steep falloffs of doses across the fractions during 
accumulation, which could also lead to reduced near maximum DVH 
parameter, like D0.2cc. 

Owing to the small number of treatment fraction in the ultra- 
hypofractionated treatment scheme, the impact of adaptation at each 
fraction could be stronger compared to normo- or hypo-fractionated 
treatments, increasing the importance of verifying the accumulated 
dose. In particular, dose accumulation allows monitoring the delivered 
dose and comparing it to the initially planned dose. 

Generally, the dose to the urethra+2mm needs to be considered with 
care. Despite the higher soft tissue contrast of MRI, the exact delineation 
of the urethra was challenging. Moreover, the small volume of the 
urethra+2mm made it more susceptible to the statistical uncertainties of 
Monte Carlo dose calculations and DIR errors. To mitigate this, the 
urethra+2mm intersection with the CTV was used as a controlling ROI 
during the DIR. This aimed to minimize the impact of dose interpolation 
and uncertainties in dose accumulation in this region. 

The pipeline implemented for dose accumulation in prostate cancer 
MRgRT might in the future also support the analysis of correlations 
between total accumulated dose and the acute as well as late toxicities in 
different OARs [42]. With the introduction of deep learning-based auto 
segmentation of OARs into clinics, additional contouring of neuro
vascular structures such as the penile bulb and internal pudendal ar
teries becomes notably more time efficient [43–47]. To assess the 
clinically relevant impact of daily plan adaptation on these additional 
structures, especially in treatment schemes focusing on neurovascular 
sparing, similar methodology as used for this study can be leveraged. 

Moreover, the outcomes of this study offer valuable insights appli
cable to other online adaptive image-guided radiation therapy tech
niques, such as CBCT-guided radiation therapy [48]. 

In conclusion, online adaptation in MRgRT was found to be advan
tageous in improving target coverage and OARs sparing, especially for 
patients experiencing strong anatomical changes. However, the average 
improvement was limited for most patients. 
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