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A B S T R A C T   

The soil freeze–thaw (FT) cycle is a critical component of the terrestrial cryosphere and plays a significant role in 
hydrological, ecological, climatic, and biogeochemical processes within permafrost landscapes. The FT states can 
be monitored with in-situ field measurements, but these procedures are costly and limited to single chosen sites. 
Remote sensing data provides the opportunity to collect information repeatedly across extensive geographical 
areas. To explore a more effective way to monitor the FT states in the terrestrial cryosphere, in this study, we 
used microwave and optical remote sensing data and introduced the Deep Learning approach to simulate the soil 
FT states in the western part of Nunavik, Canada. 

Two networks, Multilayer Perceptron (MLP) and Convolutional Neural Network (CNN), were trained and 
tested with over 35,000 and approximately 54,000 randomly selected data samples, respectively. The trained 
CNN networks outperformed the MLP networks, achieving the highest testing accuracy of 95.67% and the 
highest validation accuracy of 87.28% based on ground truth data from 32 measurement stations from all 
seasons across the year. This study proposed the reference periods concept for convenient labeling in data 
preparation and tested different combinations of influence variables to achieve better transferability of the 
method for future studies. Our findings offer a more effective way to monitor FT states in the terrestrial cryo
sphere, offering valuable insights into the consequences of climate change on permafrost landscapes. Moreover, 
the suggested deep learning approach can be easily expanded when additional input sources are accessible. This 
expansion has the potential to further improve the model’s performance for the FT retrieval.   

1. Introduction 

The freeze–thaw (FT) cycle of soil, a crucial component within the 
terrestrial cryosphere, significantly influences climatic, hydrological, 
ecological, and biogeochemical processes in permafrost landscapes. 

The FT states transitions can be accurately observed using traditional 
ground observation methods. The research community expended sig
nificant effort to establish observation stations for monitoring ground 
status. For example, the globally distributed stations of the Global 
Terrestrial Network for Permafrost, known as GTN-P, along with its 
circumpolar active layer monitoring (CALM) program, have been 
continually providing air and soil temperature data for decades (Burgess 

et al., 2000; Brown et al., 2000; Nelson et al., 2004). There are also a 
series of local-specific research programs. For example, on the Tibetan 
Plateau, long-year measurements of soil temperature, soil water content, 
heat flux etc., are continued by establishing automatic weather stations 
(Zhao et al., 2021). However, the information is low in density and only 
limited to the location of the stations, and the establishment and 
maintenance of stations are difficult and costly due to the infrastructural 
challenges in complex cryospheric landscapes. 

Besides the in-situ measurements, remote sensing can also support 
the monitoring, providing physical observations of various variables in 
ever-increasing spatiotemporal coverage. In particular, active and pas
sive microwave remote sensing has demonstrated significant potential in 
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effectively monitoring landscape FT dynamics. Microwave remote 
sensing is sensitive to changes in the dielectric constant on the surface, 
which are caused by changes in soil water content and phase. It offers 
several advantages, including weather and light independence, as well 
as the ability to penetrate snow, ice and low to medium vegetation 
coverage. Additionally, optical satellite sensor systems can offer sup
plementary information on terrain, snow area, and land cover, while 
thermal sensors can be utilized to capture the fluctuations in land sur
face temperature. 

Due to the specific characteristics and advantages, microwave 
remote sensing data have been used and evaluated for retrieving the FT 
states of soil. Very widely used are the L-band data, especially since 
missions such as the Soil Moisture and Ocean Salinity (SMOS) of ESA 
and the Soil Moisture Active Passive (SMAP) of NASA were successfully 
launched (Derksen et al., 2017; Rautiainen et al., 2018; Roy et al., 2015; 
Rautiainen et al., 2014; Rautiainen et al., 2016). The FT detection using 
different L-band data was assessed in a series of works globally (Kim 
et al., 2019) and regionally with special focuses. For example, extensive 
evaluations have been conducted in the northern terrestrial areas, such 
as Alaska, Finland, and large regions in Canada, specifically empha
sizing the boreal forest and tundra (Derksen et al., 2017; Roy et al., 
2015; Roy et al., 2017; Colliander et al., 2012; Davitt et al., 2019; Lyu 
et al., 2018). Generally, the L-band spaceborne missions can provide 
valuable information to support the FT states’ monitoring across 
expansive spatial scales, with frequent revisits typically occurring every 
2–3 days. 

The potential of C-band microwave data to deliver information on FT 
state in the topsoil was also recognized by the researchers. In 1994, 
Rignot and Way (1994) proposed monitoring the FT cycle in high- 
latitude terrestrial ecosystems using C-band synthetic aperture radar 
(SAR) data. Subsequently, in 2012, Naeimi et al. (2012) explored the use 
of C-band scatterometer data to extract FT conditions through an 
empirical threshold-analysis algorithm; while Zwieback et al. intro
duced a sensor fusion algorithm incorporating Ku- and C-band scatter
ometer data to determine the FT state. In the 2020 s, studies using the 
new open accessible Sentinel-1 (S1) SAR data appeared. This data set has 
offered continuous global coverage at a 10 m resolution since 2016. 
Bergstedt et al. (2020) and Cohen et al. (2021) tested the S1-based FT 
retrieval in Finnland; Chen et al. (2022) tested the S1 data for retrieving 
the surface FT state in the 0–10 cm depth over a large region in northern 
Quebec spanning all typical terrestrial permafrost zones; also on the 
Qinghai-Tibet Plateau, the data was tested by Zhou et al. in 2022. 

With the measurements obtained from satellite radiometers and 
scatterometers, numerous algorithms have been employed or specif
ically developed over the course of several decades to monitor the FT 
states and their periodic transitions, such as the double-index algorithm 
(Jin et al., 2015; Judge et al., 1997; Zhang and Armstrong, 2001; 
Zuerndorfer and England, 1992, Zuerndorfer et al., 1990), decision tree 
algorithm (Jin et al., 2009), and standard deviation algorithm (Han 
et al., 2015). Additionally, there are algorithms aimed at identifying 
patterns in seasonality by establishing freeze and thaw state references. 
These include the seasonal detection method (Derksen et al., 2017; 
Rautiainen et al., 2018; Kim et al., 2011) and the polarization ratio (PR)- 
based algorithm (Roy et al., 2015; Roy et al., 2017), and their variations, 
such as the discriminant function algorithms (Kou et al., 2018; Wang 
et al., 2018a; Zhao et al., 2011) and the modified seasonal threshold 
algorithm (MSTA) (Kim et al., 2017). These methods improved the 
monitoring and understanding of FT cycles based on microwave data but 
still have limitations. For example, it is difficult to take complex envi
ronmental information into account for the deterministic algorithm. 
Previous works found that the land cover types and the general het
erogeneity in the surrounding area influenced the estimation of the FT 
states. However, it was barely possible to find clear rules that could be 
directly built into the algorithm to optimize the processing (Chen et al., 
2022; Johnston et al., 2022). 

Overall, microwave remote sensing has been extensively researched 

for monitoring soil freeze–thaw dynamics, resulting in useful algorithms 
and products, such as the SMAP’s L3_FT_P with 36 km resolution 
(O’Neill et al., 2019). However, these products are limited to large-scale 
monitoring at levels ranging from a few kilometers to several tens of 
kilometers. Additionally, most methods focus solely on microwave sig
nals. Although it has been found that environmental factors like land 
cover type can significantly impact results, it is still hard to quantify 
their effects clearly for use in processing. To address these limitations, 
we propose using deep learning models on high-resolution radar data 
from the Sentinel 1 mission, which provides data at a resolution of 5 m. 
Our approach aims to provide stable and highly accurate results while 
considering environmental factors and spatial relations, bridging the 
gap between existing methods and the need for more fine-grained 
monitoring of soil freeze–thaw dynamics. 

By transitioning from a deterministic approach to machine learning 
and extensive training with a labeled, large dataset (approximately 
50–80 k data samples), the deep learning approach enables the model to 
discern superior mappings from various inputs to the output result, 
automatically assigning weights to each input variable based on its 
importance and contribution. This approach is expected to help us 
discover hidden relationships between features that may have been 
overlooked or could not be effectively summarized using existing 
methods. 

The primary objective of this work is to explore a more efficient and 
easy-to-use framework for monitoring FT states in the terrestrial cryo
sphere using the deep learning approach. The goal is to develop a well- 
performing framework that can be applied over large areas and is 
transferable to further research in related fields. With the ability to 
consider environmental factors and provide fine-grained monitoring, 
our proposed approach has the potential to advance our understanding 
of soil freeze–thaw dynamics and improve our ability to monitor this 
critical aspect of the terrestrial cryosphere. 

2. Study area and database 

2.1. Nunavik 

The western part of Nunavik, located in Quebec, Canada, was chosen 
as the study area (refer to Fig. 1). Nunavik is a vast region situated north 
of the 55th parallel and is home to the Inuit communities of Quebec, 
with 14 villages scattered along the coastal areas of Hudson Bay and 
Ungava Bay. This region exhibits high complexity and diversity and 
garnered significant attention in various research domains, including 
permafrost studies, coastal geology, and geomorphological character
ization (Beck et al., 2015, Wang et al., 2018b, Wang et al., 2020, Pel
letier et al., 2018, Ropars et al., 2015, Calmels et al., 2008, Allard and 
Seguin, 1987; Hachem et al., 2009). 

Nunavik experiences two main climate types: arctic in the north and 
subarctic in the south. These regions are characterized by prolonged, 
extremely cold winters and brief, cool summers with extended daylight 
hours. The area spans all four primary permafrost zones, namely 
continuous, discontinuous, sporadic, and isolated permafrost, extending 
from the northern to the southern regions. Notably, there are discernible 
spatial variations in vegetation cover, such as the presence of the 
northern treeline at the boundary between the Arctic and sub-Arctic 
regions and the transitional zone from discontinuous to continuous 
permafrost. 

In the context of global climate change, climate and permafrost 
conditions in Nunavik are undergoing significant transformations. As 
highlighted in the study by Allard et al. (2007), temperatures in the 
region have been consistently above the long-term average since 1995, 
with a continued rise observed since the early 2000s (KRG, 2011). This 
warming trend has also been observed as increasing ground tempera
tures since the early 1990s (Romanovsky et al., 2010), resulting in a 
warmer vertical temperature profile within the permafrost and a deeper 
extent of summer thaw (Allard et al., 2012). 
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The chosen study area (Fig. 1, shown with the land cover base map) 
crosses all relevant climate types, vegetation covers, and permafrost 
states introduced above, which makes it possible to test the approach 
under different environments. The western coastline (Eastern Hudson 
Bay) is home to seven Inuit villages, which are quite vulnerable to the 
changing permafrost conditions, making improved monitoring of the FT 
cycles especially important. Additionally, the selected study area en
compasses a significant portion of the operational research stations 
established within the Nunavik region, thereby offering the most ground 
truth data for implementing and validating the Deep Learning 
algorithm. 

2.2. Remote sensing data 

2.2.1. Sentinel-1 
The Sentinel-1 (S1) mission, initiated by the European Commission 

(EC) and the European Space Agency (ESA) as part of the Copernicus 
joint initiative, has been instrumental in providing consistent, all- 
weather, day-and-night imagery of the Earth’s surface. With the 
launch of Sentinel-1A (S1A) in April 2014, followed by Sentinel-1B in 
April 2016 (S1B), this mission employs a dual-polarization C-band 
synthetic aperture radar (SAR) instrument, offering high spatial reso
lution (10 m) and temporal resolution (6–12 days). Notably, the free and 
open-access availability of S1 data contributes to its widespread usage 
and stability. 

For this study, the satellite imagery utilized originated from the S1A 
and S1B (mission ended in August 2022) satellite constellations 
[Copernicus Sentinel data 2022, processed by ESA]. The data collection 
period encompassed observations acquired before January 2022. The 
images obtained were level-1 ground range detected (GRD) products. 
Only ascending mode data were utilized due to the limited availability in 
descending mode across the study area. The data collection involved the 
use of the interferometric wide swath mode (IW) and included both 
vertical–vertical (VV) and vertical-horizontal (VH) polarizations. 

2.2.2. WorldCover 
This work also included land cover information from a recent 

product provided by the WorldCover project, which was initiated by 
ESA (Zanaga et al., 2021). The ESA WorldCover map (EWC) was 
developed at a resolution of 10 m for 2020 and 2021. This product 
provides a full spatial coverage over the chosen study area and was 
generated within the temporal range of the S1 data set used for this 
study (2016–2022). Moreover, this product has good compatibility with 
the chosen S1 data, since it was developed based on data from Sentinel-1 
and Sentinel-2. 

The accuracy and reliability of the EWC were ensured through near- 
real-time validation processes, the version 2020 reached an overall ac
curacy of 74.4%. The map includes 11 land cover types, detailed in the 
legend in Fig. 1. The typical land cover type in the cold region “moss and 
lichen” was included. As shown in Fig. 1, the transition of vegetation 
types across the northern treeline has been well interpreted on the map. 
The product version for 2020 was utilized for this study. 

2.3. Ground truth from in-situ measurements 

Besides the remote sensing data, soil temperature data measured at 
32 meteorological stations (see Fig. 1) was collected to provide ground 
truth information for the validation process. The stations are distributed 
across the study area, covering multiple diverse environments. Some of 
them were established by ourselves (Bernier et al., 2019). They provide 
data that overlap with the service period of the S1 mission. Considering 
the penetration depth of S1 data, only the temperature data, aggregated 
to daily values, in the top soil layer (0–10 cm) were used. All data were 
provided by the Nordicana D – Mission, published by the Centre for 
Northern Studies (CEN) since 1964; unfortunately, all the used stations 
stopped updating between 2020 and 2022. On the Nordicana D website, 
one can access already published data and raw data, including unpub
lished data and their updates. Complete metadata and all useful infor
mation about the data from different measurement stations can be found 
on the site https://nordicana.cen.ulaval.ca. 

Fig. 1. Study area (Western Nunavik) with metrological stations (white). The map was created on Google Earth Engine, land cover type from WordCover 10 2020. A 
total of 32 measurement stations are depicted on the map, and there may be some overlapping symbols due to scaling issues. For detailed information on each 
measurement station, please refer to the appendix. 
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Regarding the temporal availability and penetration depth of the S1 
data, this study utilizes soil temperature data measured from the topsoil 
layer up to a depth of 10 cm between 2014 and 2019. Detailed infor
mation of measurement stations including soil layer depth are attached 
in the appendix. 

3. Methods 

In this work, we intended to accurately retrieve the soil FT states in 
the permafrost landscape from the remote sensing data by developing a 
deep learning model. The model is designed to answer whether the 
observed soil is frozen or thawed at the acquisition time, which involves 
a binary classification scheme. We trained the model on a dataset of SAR 
signals and land cover information to learn how to map input variables 
to specific output class labels. The two output classes are “frozen” and 
“thawed”. Detailed information on how the data was prepared for the 
model is provided in Chapter 3.2. Two distinct neural network archi
tectures, Multilayer Perceptron (MLP) and Convolutional Neural 
Network (CNN), were employed and evaluated for the modeling process. 

3.1. Deep learning algorithms 

In this chapter, we present a comprehensive description of the deep 
learning algorithms employed in the study for classifying frozen/thawed 
soil states. Specifically, we tested and compared the performance of two 
well-established approaches: MLP and CNN, to develop an efficient 
procedure for our task. 

MLP and CNN have been widely used in previous studies for various 
classification tasks (LeCun et al., 1989; Krizhevsky et al., 2017). MLP, a 
conventional neural network architecture, comprises interconnected 
nodes organized into multiple layers, while CNN is purpose-built for 
analyzing data with a grid-like topology, such as images. Both ap
proaches are effective at learning complex relationships between input 
and output variables. The subsequent sub-chapters provide in-depth 
explanations of the specific application designs utilized in this study. 

3.1.1. Multilayer Perceptron 
Multilayer Perceptron (MLP) is a type of classical neural network 

that is very flexible and can be used to learn a mapping from inputs to 
outputs. MLP is often used as a starting point to determine whether a 
task can be accomplished with neural networks. The results can then be 
used as a baseline for a comparison to determine whether other models 
perform better and add value to the analysis. 

In this work, a MLP model structure was used with two hidden layers 
to provide levels of abstraction (Fig. 2). Predictions were made on the 
output layer using a widely adopted loss function called Binary Cross 
Entropy. This loss function is commonly utilized for binary classification 
tasks. The activation function used was Rectifier Linear Unit (ReLU) 
(Agarap et al., 2018), and regularization techniques Batch Normaliza
tion (BatchNorm) and Dropout were also included in the network 
(Kukačka et al., 2017). 

As a basic network, MLP has a necessary structure that is not overly 
complex to run. The usage of MLP allows for quick testing to determine 
whether using the DL algorithm to model the FT states is feasible and 
whether more complex networks are needed. With MLP, all the data was 
processed pixel-wise, meaning the FT states were classified for every 
pixel based on the input information only from the pixel itself. This 
pixel-wise processing allows for flexible use of data; for example, the 
data can be excluded according to land cover types, regardless of where 
it is located on the image. 

To consider the environmental factors, variables, such as land cover 
types, can be added as input. However, it is important to note that in this 
approach, each pixel is processed independently without considering its 
spatial relations with neighboring pixels. 

3.1.2. Convolutional neural networks 
Convolutional Neural Network (CNN) is a commonly applied neural 

network for image processing. Compared to MLP, which processes each 
pixel independently, CNN utilizes convolution filters to detect patterns 
across adjacent pixels, thereby enabling a better understanding of the 
spatial relationships between pixels. This makes them particularly well- 
suited to tasks where understanding the relationships between pixels is 
essential, such as image segmentation. In light of the fact that the clas
sification of the FT states is known to be influenced by surrounding 
environmental factors, such as land cover types and spatial heteroge
neity, the utilization of CNN could be instrumental. In addition to its 

Fig. 2. Model construct MLP.  
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ability to capture spatial relationships, CNN also has the potential to 
prevent overfitting by using techniques such as pooling and Dropout. By 
introducing the CNN approach to this study, our goal is to leverage these 
advantages to improve the accuracy of our classification results. 
(Bishop, 1995, Bishop and Nasrabadi, 2006; Goodfellow et al., 2016; 
Botalb et al., 2018). 

The CNN structure used in this study was built, as shown in Fig. 3. 
Two convolutional layers were built, and the activation function was 
again ReLU. Several regularization techniques were used and tested, 
including BatchNorm, Dropout layers, stepwise decreasing learning rate 
(Bengio, 2012), and weight decay in the Adam optimizer (Bengio, 2012, 
Zhang et al., 2018, Loshchilov and Hutter, 2017). The regularization 
techniques were used in deep learning training to prevent overfitting by 
adding constraints to the model during training, which limited its 
complexity and prevented it from memorizing the training data. It also 
helped to improve the overall model performance, such as weight decay, 
by reducing the complexity of the model and encouraging it to focus on 
the most important features. These techniques are important because 
they can help to improve the generalization performance of the model, 
allowing it to perform better on unseen data. The contribution of the 
different regularization techniques to the networks is presented in 
Chapter 4.3. 

3.2. Model configuration and data preparation 

3.2.1. Input and output 
The input variables for the modeling process include backscatter 

signal VV (BScVV), backscatter signal VH (BScVH), Incidence Angle 
(Angle), and land cover types (Lc). These four variables were used in 
different combinations during the training process to test their contri
bution to the task. The best-performing combination was chosen and 
presented in Chapter 4.1. The output variables are two classes: “frozen” 
and “thawed”. Through the modeling process, a probability of the soil 
state being “frozen” was predicted. 

BScVV, BScVH and Angle are extracted from S1 data, and Lc is 
extracted from EWC data. These four input variables were further rep
arameterized to 14 channels: the Lc with 11 types was converted to 
individual one-hot encodings that only contained integers as 0 or 1, 
while the other three channels, BScVV, BScVH, and Angle, contained 
continuous values and were generalized to a similar range (BScVV*0.1, 
BScVH*0.1, Angle*0.05). Every data sample consisted of 14 channels of 

input variables and one label in the form of integers representing frozen 
(1) or thawed (0) soil states. 

The data preparation then differed between the two networks, with 
MLP using pixel-based data and CNN using patch-based data. Spatially, 
the data samples were randomly selected within the study area (Fig. 1). 
For CNN, a patch of 51x51 pixels was created around each sampling 
point, with each pixel containing individual values of input variables 
and the output label. This allows the model to consider the spatial pat
terns within the surrounding environment. However, a limitation of this 
approach is that it is impossible to exclude specific pixels from the 
patches, meaning that all land cover types were included in the pro
cessing, regardless of whether there was soil. To explore whether 
excluding non-soil areas is necessary during such training, we trained 
the MLP on datasets with and without soil-free land cover types (such as 
water bodies, infrastructures, etc.) since pixel-based processing can 
provide more flexibility in terms of data manipulation. The results of this 
analysis are presented in Chapter 4.1. 

3.2.2. Reference periods 
To determine the output label of each data sample, a concept of 

reference period was introduced. This involved defining two reference 
seasons for the frozen and thawed states, representing the entire frozen 
or thawed time in a year. The reference seasons were chosen following 
long-term meteorological measurements and empirical knowledge from 
the study area, during which the soil should definitely be frozen or 
thawed. This concept helps to cross the limited in-situ measurement data 
barrier and makes it possible to prepare accurate data over a large area. 
All the input data were collected only from these two periods every year, 
then labeled as “frozen” or “thawed” according to the time when they 
were acquired. 

The samples were prepared based on a basic data set of S1 data, 
which was spatially delimited with the designated study area (see 
Fig. 1), and temporally delimited with the reference periods. All the S1 
images acquired in the reference periods were first masked to the 
boundary of the study area, then combined with the EWC map and given 
a label. The data samples were then randomly selected in every pre
processed image and further configured as data pixels for MLP and data 
patches around chosen samples. On each image, 150 samples were 
taken. This is an amount we tested that can reach a good distribution 
over the imaged area without too much sample overlapping. 

The study area exhibits a strong seasonality in the FT state changes, 

Fig. 3. Model construct CNN.  
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as demonstrated by the examples in Fig. 4. During the cold season, the 
soil remains frozen for an extended period, while the summer thawing 
season is relatively short. However, the duration and starting time of the 
FT seasons vary between stations and even between years at the same 
station. In some cases, there are quick and distinct transitions between 
the freeze and thaw states, such as in the spring of 2017 and fall of 2018 
at station 9. In other cases, like in the spring of 2017 at station 37, soil 
temperature fluctuations around 0 ◦C for almost a month were exhibi
ted. Sometimes multiple rounds of changes between freeze and thaw 
states can be observed by one transit before stabilizing. To ensure the 
accuracy of the labeling, the study only considered the central months of 
the empirical FT seasons. August (213th-243th day in a year, “Aug”) was 
chosen as the thawed reference since the summer thawed season in 
Nunavik is typically short, with a high degree of interannual variability 
in its starting and end times. Correspondingly, February (31st-60th day 
in a year, “Feb”) was chosen as the frozen reference with the same length 
as the thawed reference to ensure the data balance. Considering the 
overall long winter frozen season in the study area, an additional frozen 
reference was selected, spanning from mid-January to mid-March (20th- 
75th day in a year, “JFebM”). This interval also provided a safe window 
to capture the frozen signals. The results obtained using the references 
Feb and JFebM were compared to support the proofing of whether a 
short reference from the middle of the season suffices to represent the 
entire season for modeling purposes. 

3.3. Evaluation 

Three types of datasets were used in the workflow: the training set, 
the testing set and the validation set. Using the training set, multiple 
networks were trained by optimizing overall accuracy and minimizing 
loss. Subsequently, the performance of these networks was assessed 
using an independent testing set that was distinct from the data used for 
training. To avoid potential overfitting and confirm the transferability to 
practices, the performance was further measured on a third independent 
dataset called the validation set (details see Chapter 3.4). 

The training and testing data sets were split from a basic data set 
built according to the reference periods concept described in Chapter 
3.2.2. The splitting process was done randomly with regard to the bal
ance between frozen and thawed proportions. 

The validation sets were built based on ground truth data collected 
from in-situ measurements. The selection of validation data was not 
limited to the reference periods, but used every available measurement 
over the entire year. The total amount of data for each dataset and the 
respective amounts of data for each of the two classes (frozen and 
thawed) are listed in Table 1. 

To visualize the misclassification error, the confusion matrix was 
used to break down the results into four categories: true positives (TP), 
false negatives (FN), false positives (FP), and true negatives (TN) 
(Fawcett, 2006). The terms “positive/negative” refer to instances in the 
predicted class “1/0,” while “true/false” indicates whether the predicted 
result matches the actual class. To present more clearly, the terms 
“positive/negative” were written directly as “Frozen(Fr)/Thawed(Th)” 
in the Result chapter (Table 4). The metric, Precision, which measures 
the proportion of items correctly classified as positives (TP) out of all 
items classified as positives, and Recall, which indicates the proportion 
of true positives out of all items that are indeed positives, were calcu
lated. Additionally, the f1-score was calculated based on precision and 
recall to check for any significant imbalances in the classification results. 
In case of a strong imbalance, the classification results may be biased 
towards the majority class, leading to poor performance in identifying 
the minority class, which can affect the reliability of the model’s 
performance. 

3.4. Validation design 

For validation, we abandoned the widely used approach, where the 

validation data is separated from the same dataset as the training and 
testing data before the training process. We introduced fully indepen
dent ground truth data from the in-situ measurement stations. The data 
is not only independent because it is not used during the training pro
cess, but it also shows temporal independence by including data from 
the time intervals in the year which are not contained in the reference 
periods. This concept was designed to help us confirm whether the 
model results are robust and to test whether the model can only work 
with the given references or all around the year. 

Two validation sets were built, the Ground Truth set (GrTr), and the 
Ground Truth Extended set (GrTrEx), and are described in the following 
sub-chapters. 

3.4.1. Ground truth set 
The ground truth dataset (GrTr) was built on in-situ measurements 

from 32 chosen stations scattered over the entire study area. The frozen 
and thawed days were carefully defined individually on each station for 
every year, according to the measured soil temperature (Fig. 5). 
Considering the penetration depth of S1 data, only the soil temperature 
within 10 cm was used. 0◦C was used as a threshold between frozen and 
thawed state; the dates were not immediately taken as samples, but 
firstly when the temperature stabilized above or below 0 ◦C for several 
consecutive days. After defining the frozen and thawed dates of each 
station, the data available within that range was collected from each 
relating station and configured to the same form as the training and 
testing data. 

The ground truth dataset contained 1667 data samples, 948 labeled 
as frozen and 719 labeled as thawed (Table 1). The data scattered 
spatially over 32 locations and temporally differently over a maximum 
of three years (late 2016 to summer 2019); the data collection was done 
across the entire year, not limited to the reference periods used for 
training. This data set provided very exact and reliable ground truth 
information over different environments, but with a limited amount 
because of the short overlap of the in-situ measurements (ends in sum
mer 2019) with remote sensing data (stable S1 data availability since 
late 2016). To overcome this limitation, an additional dataset was built 
to further explore ways to expand the validation set (see Chapter 3.4.2). 

3.4.2. Ground truth extended set 
The ground truth extended set (GrTrEx) was built with the goal of 

finding a useful way to create a larger database for validation. As in 
building the GrTr set, the soil temperature data measured in the top 10 
cm were used to distinguish the state between frozen and thawed. 
Spatially, the data were collected at the location of the 32 stations. The 
freeze/thaw days defined for each site were no longer directly used as a 
temporal range of data collection, but two freeze/thaw reference periods 
were selected for each site individually through comparative observa
tions over all available years. The references were then repeatedly used 
for each station separately for every year. 

To ensure reliability, the reference periods were selected very care
fully and kept relatively short, which means fewer dates per year are 
used compared to the GrTr set. This method does not require complete 
temporal overlapping between remote sensing data and measured data 
so that longer time series of soil temperature statistics can be considered, 
and the entire service span of S1 data that is still growing can be 
included for data collection. As shown in Table 1, the amount of vali
dation data samples increases from 1667 to 4390. 

In the later validation process, both the GrTr set and GrTrEx set were 
used. The results from GrTr set were used to determine the model per
formance, and the results of the GrTrEx set were compared to test 
whether the concept of the GrTrEx set was adding reliable value. 
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4. Results 

4.1. Data combinations 

The results of various Deep Learning training experiments using 
different combinations of input variables are presented in Table 2. The 
top row represents the results obtained with the set of backscatter sig
nals, Incidence Angle and land cover types, while each subsequent row 
reduces by one variable. The difference between polarizations is repre
sented in columns. From left to right, the columns represent the overall 
accuracy of four types of training respectively: training with CNN using 
both VV and VH polarizations, with MLP using both VV and VH, with 
MLP using only VV, and with MLP using only VH. For the same method 
(CNN/MLP), the trainings were conducted based on the same settings. 

The best result was obtained using all four input variables, as shown 
in the first row and first column. A clear trend can be observed in the 
table, where the further down and to the right the experiments are, the 
lower the accuracy achieved. In general, using only the backscatter data 
can already achieve decent accuracies; MLP achieved close to 70 %, 
while CNN achieved over 85 % accuracy. 

The variables Lc and Angle each contribute additional benefits to 

enhance the model. The inclusion of Lc results in an over 8 % perfor
mance improvement when using CNN and up to 5 % when using MLP, 
whereas the addition of Angle leads to a slight 1.3–2.5 % enhancement. 
The highest accuracy is attained when all variables are utilized together. 
Among the polarizations, VV performed slightly better than VH, while 
the combined use of both polarizations resulted in significantly higher 
accuracy. Therefore, the most suitable combination for this training is all 
four input variables backscatter signal VV, backscatter signal VH, inci
dence angle and land cover types. In subsequent model optimization and 
evaluation, this input combination is applied. 

We further conducted comparative experiments using MLP to 
investigate the effect of in- and excluding the soil-free data on the 
training results, as shown in Table 3. Four experiments were performed 
with the same model settings, including (a) using land cover as an input 
variable and excluding the soil-free data, (b) using land cover as an input 
variable and including soil-free data, (c) not using land cover informa
tion and including the soil-free data, and (d) not using land cover in
formation and excluding the soil-free data. The concern behind this is, 
that the soil-free area is not necessary for a survey of the soil state, and 
might bring interference items to the classification. However, the patch- 
based CNN, which can achieve better results than MLP, does not allow 

Fig. 4. Representation of frozen and thawed days at example measurement stations from example years. (The x-axis denotes the day number within a year, while the 
y-axis labels indicate the measurement station ID and the corresponding measurement year. For instance, “5_2017″ represents data measured at the 5th station in the 
year 2017.). 

Table 1 
Listing of counts of data samples employed for various methods (MLP/CNN) across reference time periods and sets (Training, Testing and two Validation sets) for each 
class (Frozen, Thawed).  

Method Reference Dataset Frozen Thawed Sum 

MLP (Pixel) Feb. / Aug. Training 13,688 12,708 26,396 
Testing 4561 4276 8837 

CNN (Patch) Feb. / Aug. Training 20,777 19,692 40,469 
Testing 6916 6534 13,450 

m.Jan.-m.Mar. / Aug. Training 38,580 19,692 58,272 
Testing 12,771 6534 19,305 

Validation Ground Truth 948 719 1667 
Ground Truth extended 2848 1542 4390  
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for the exclusion of specific areas from the patches arbitrarily. Moreover, 
we know from previous studies that the radar signals might exhibit 
distinct behavior under different land cover types, for example, in forest 
versus on bare ground; and that the FT dynamic may be influenced by 
the surrounding environment, such as if a test site is located near a 
waterbody or a sealed road. We anticipated CNN to help to learn from 
these spatial patterns and therefore aimed to verify through this analysis 
the contribution of land cover information to the training and the 

acceptability of retaining soil-free data in the training. 
The results show no significant difference between the results of 

trainings excluding and including soil-free data, with the results of ex
periments (a) and (b), (c) and (d) being very close. Adding land cover 
information significantly improved the results, demonstrating its 
contribution to the modeling, which is consistent with the findings 
shown in Table 2. 

These findings support that the additional step of removing soil-free 
data can be omitted. This conclusion reduces doubts about the use of 
other methods, such as CNN, that require input in the form of patches. 

4.2. Model evaluation and optimization 

According to the results presented in the previous chapter, it is 
apparent that the training using CNN can achieve significantly better 
results than using MLP (Table 1) with 15–20 % higher accuracies. 
Therefore, the CNN was chosen for further optimization and evaluation. 
This evaluation of model performance is mainly based on the validation 
results using the both validation sets. The f1-score was used as a com
plementary metric, the training and testing accuracies were further 
calculated, but only as a supplement not used for any decision. 

To improve the model performance, a series of regulations were 
tested, including BatchNorm, Dropout, learning rate and weight decay 
in Adam. In general, adding the Dropout layers is very recommended, 
while BatchNorm is less functional. We compared adding BatchNorm in 
convolutional Layers, adding BatchNorm in convolutional and fully 
connected Layers, and adding BatchNorm in combination with Dropout. 
In the training process, all the networks with BatchNorm reached 
significantly better accuracy than those without. Adding BatchNorm 
only in convolutional layers helped the model to reach the highest 
training accuracy. By evaluation with the test set, the networks with 
joint use of BatchNorm and Dropout achieved the best performance. 
However, the performance could generally not be confirmed by the 

Fig. 5. Data Selection Overview: This figure illustrates the categorization of months as freeze (underlined in blue) and thaw (underlined in orange). January and 
August are chosen as reference months for freeze and thaw, respectively. Note that “Ground Truth” and “Ground Truth Extended” involve slight variations in the 
selection of months; additional details are provided in the accompanying text. (For interpretation of the references to colour in this figure legend, the reader is 
referred to the web version of this article.) 

Table 2 
Training Accuracy (%) across various methods (MLP, CNN) with different input 
data combinations (Backscatter Signal = BSc; Incidence Angle = A; Land Cover 
= Lc); the used backscatter polarizations (VV, VH, VV + VH) showed in columns.  

Model CNN MLP 

Polarization VV + VH VV VH 
BSc + A + Lc 94.17 75.97 72.59 70.74 

BSc + Lc 93.40 74.68 71.14 69.26 
BSc + A 86.37 72.44 68.95 68.99 

BSc 85.08 69.97 67.64 67.24  

Table 3 
Accuracy for both the training and testing datasets under varied conditions (All 
LC: data with soil-free samples, SF: data without soil-free samples) with two 
combinations of input variables (VHAL: VV + VH + Incidence Angle + Land 
Cover Types, VHA: VV + VH + Incidence Angle).  

Features Accuracy % limit of Samples 

Train Test 

VHAL 74.67 75.32 NoWBI 
74.47 75.35 AllLc 

VHA 71.88 72.60 
71.87 72.49 NoWBI  
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validation set, where all the networks with BatchNorm resulted in a 
5–10 % lower validation accuracy than the others. This showed that the 
thereby resulted enhancement was not robust. 

A stepwise learning rate can also be employed to optimize the model 
performance. This technique adjusts the learning rate, a hyperparameter 
that controls the magnitude of adjustments made with respect to the 
gradient of the loss function. Specifically, the learning rate can be 
reduced during the latter part of the training when the model ap
proaches the minimum of the loss function. This approach prevents 
overshooting or deviating from the optimal solution, which can occur if 
the learning rate is too high in the final stages of training. Changing the 
steps and dropping factors lead to improvements, which were, however, 
not significant in this case; therefore, a deeper adjustment of the step
wise learning rate is useful but not urgently necessary. The use of weight 
decay in the Adam optimizer results in a reduced accuracy with respect 
to the training and testing set (only below 90 %). However, the per
formance tested with the validation sets is still close to the best results. 
In general, the contribution of weight decay is noticeable but can also be 
covered by other regulations. 

Overall, the most suitable combination of setting for network regu
lations that can help to reach the highest accuracy both regarding the 
training and testing sets (unseen for the model) and at the validation sets 
are: Dropout in convolutional and fully connected layers, stepwise 
learning rate, no BatchNorm and no weight decay in Adam.1 

In addition to the test and validation accuracy, the confusion matrix 
was also computed to check whether the classification results are 
balanced, mainly whether a large number of errors are concentrated in a 
specific class. Multiple networks with various performances were tested 
using a confusion matrix, covering networks with high validation ac
curacy and high testing accuracy, and also networks that performed well 
in the testing process but worse in validation. In total, no significant bias 
was found. The precision, recall and f1-score are always at a very high 
level. In Table 4, the confusion matrix of one network was shown as an 
example: the distribution of misclassification errors is slightly different 
regarding testing and validation sets, while the GrTr and GrTrEx results 
tended to classify more actual thawed cases as frozen, and the testing 
results classified more actual frozen cases as thawed. But in general, all 
three sets showed very high accuracy, and misclassification errors are 
not overly skewed. 

As indicated in Table 5, the results from the model using data 
collected from two different reference periods (Feb&Aug vs. 
JFebM&Aug) are close to each other with no substantial differences 
found. The testing results indicate that the performance of the data with 
a frozen reference period from mid-January to mid-March 
(JFebM&Aug) was slightly better than from February (Feb&Aug), 
while the Feb&Aug set achieved even a higher accuracy and f1-score 
regarding validation results. These results, with high modeling accu
racy, confirm that the concept of reference periods is an efficient solu
tion for data preparation in areas with limited measurements and works 
well for FT state classification. A short interval from the center of a 
season is sufficient as a reference. The validation results with samples 
from the whole year confirm that the network’s learning works for the 
entire targeted time span, not only for specific seen periods. For future 
studies in the same area, the combination of Feb&Aug can be a good 
choice as the reference periods. Generally, the tolerance for the length of 
the choosen reference period is high. If there is sufficient data available, 
longer time periods can be used as references for FT states classification, 
which is, however, not indispensable for achieving good performance. 

4.3. Validation with ground truth data 

Overall, the well-performing networks were confirmed by the vali
dation sets. The best-performing network reached a validation accuracy 
of 87.28 % with the GrTr set and over 90 % with the GrTrEx set. During 
the experiments, the validation sets showed their necessity and impor
tance. Especially during the model optimization process, the validation 
helped to eliminate the networks with false high accuracy. Fig. 6 shows 
the overall training, testing, and validation accuracy from 12 example 
networks. The networks 4, 5 and 6, for example, achieved very high 
accuracies during training and testing processes, with network 4 even 
achieved a training accuracy higher than 99 %. However, these were 
further overturned by validation results from both sets. Also, in the 
positive validated models, the validation results conveyed novel infor
mation than in the testing results alone. 

The comparison between the testing and validation sets revealed that 
the GrTr and GrTrEx sets showed similar results, with the GrTrEx set 
showing larger fluctuations than the GrTr set. As shown in Fig. 6, while 
the training and testing accuracies achieved by the same network are 
mostly close to each other, the results from the validation with GrTr and 
GrTrEx also show a similar trend. The GrTr accuracies of networks 1, 4, 
5, 6, and 11 showed relatively large differences comparing to their 
training and testing accuracies, with the GrTrEx accuracies dropping to a 
low level. On the other hand, networks 2, 3, 7, 8, 9, and 10 had GrTr 
accuracies closer to their training and testing accuracies, and the GrTrEx 
accuracies rise correspondingly as GrTr accuracies rise. Overall, the 
validation results of GrTrEx corresponded well with the results with 
GrTr and showed more sensitivity by making larger steps of changes. 

These findings suggest that extending ground truth data to build a 
validation data set can be useful and feasible as a supplement for situ
ations where there is not enough overlapping remote sensing and 
measured data to support the creation of a sufficient pure ground truth 
data set. This approach can provide a good supplement to build long 
time series of validation data or when many data gaps exist in the 
measurements, which is a common occurrence in the northern 
cryosphere. 

5. Discussion 

In total, the proposed method with the deep learning approach using 
remote sensing data performs well for the soil FT states classification 
task. The high overall accuracy achieved through training is stable 
throughout the study area and across the entire year, encompassing all 
seasons. The performance of the networks is confirmed through testing 
with an independent data set and validation with ground truth data 
collected from in-situ measurements. Our approach achieves better and 
more stable results compared to other existing methods. For instance, in 
the study by Shao and Zhang in 2020, the four most widely used near- 
surface soil FT detection algorithms were evaluated and showed a 
broad spectrum performance with the overall accuracy varying between 
73.8 % and 86.2 %. Our networks outperform this range with testing 
accuracies of around 95 % and validation accuracies of up to 87.28 %. 
The study by Cohen et al. in 2021 reached the highest similarity of S1 
retrieval to the air temperature by 94–99 % in boreal forest environ
ments using a threshold-based algorithm, however, in one of their three 
study areas, the similarity was only 64 %. Also in our previous study 
(Chen et al., 2022), the accuracies of different test sites varied from 
around 70 % to over 90 %, and requested individual threshold 
optimization. 

Furthermore, this high accuracy is achieved with high spatial reso
lution. Compared to the existing products, such as SMAP FT with the 
highest spatial resolution at the kilometer scale, our classification is 
processed on a meter scale and directly based on originally captured 
signals, not derived from coarser resolution data. However, the S1 data 
used for this study have lower temporal resolution comparing to some 
other widely used data, such as SMAP, especially in the high latitude 

1 : All settings of the deep learning method were implemented using PyTorch 
and executed on a PC equipped with a single GPU, specifically the RTX 2070, 
for both training and testing. 
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region. This can result in limitations on the accurate identification of 
transitions between frozen and thawed seasons. In-situ measurements 
show that the transition usually takes a few days, and the soil temper
ature is close to 0 ◦C. However, there are cases where the transition 
process occurs quickly, with a large gradient of soil temperature change. 
Additionally, the soil temperature may repeatedly rise and drop below 
zero, leading to multiple changes between frozen and thawed states 
before reaching a stable period. In order to observe these phenomena 
accurately, a dense time series of data is needed. Although the S1 data 
has a large advantage in terms of spatial resolution, its 12-day repeat 
cycle per satellite (ascending or descending) can make it difficult to 
observe the exact temperature transition process. The unfortunate end of 
the Sentinel-1B satellite mission has further increased this difficulty. It 
would be ideal for establishing a database combining high spatial and 

temporal resolution to enhance the monitoring of FT cycles in the 
northern permafrost landscape. In future research, it would be beneficial 
to explore the integration of high spatial resolution radar data with high 
temporal resolution microwave data, such as fusing S1 data with SMAP 
data. This integration would enable more accurate monitoring to sup
port a more comprehensive understanding of FT dynamics. 

Moreover, this deep learning approach in this study allows for the 
convenient addition of various variables to the model. This character
istic helps combine different potential influence factors to increase the 
quality of retrievement. Especially with CNN, spatial patterns can be 
considered instead of learning from each pixel individually. The com
parison between the pixel-based processing with MLP and patch-based 
processing with CNN shows that the latter adds significant value to 
solving the task. As an extension, this insight suggests that it could be 
interesting to further investigate the relationship between soil FT dy
namic and land cover type on a patch basis, meaning to analyze the 
spatial patterns of land cover types over an area, rather than focusing 
solely on isolated points with individual land cover types. In this study, 
we used only land cover types to represent environmental factors and 
achieved high accuracies. This provides an effective working frame and 
a line of thought to improve the estimation of FT states. Future studies 
can use this method to test more possible variables, such as climate, the 
thickness of ground ice, and their effects on FT classification. 

Within the proposed framework, we have overcome several diffi
culties to make the procedure more convenient and repeatable. In the 
case of supervised model training, which is the focus of this study, it is 
crucial to have an adequate amount of data with accurate labeling. 

Table 4 
Confusion matrix of an example network for the testing set, GrTr set and GrTrEx set Confusion Matrix for an example network applied to the Testing and both validation 
sets, which are Ground Truth (GrTr), and Ground Truth Extended (GrTrEx) sets. The metrics in the upper left part (Target) are shared among the remaining three 
subtables, where NPV represents negative predicted value, FPR represents false positive rate and ovrlAcc represents overall accuracy.   

Target  Testing 
1 0  F T % 

Prediction 

1 True Frozen False Fr Precision 

Prediction 

F 6417 237 96.44 
0 False Th True Thawed  NPV T 499 6297  92.66  

Recall 1-FPR  ovrlAcc % 92.78 96.37  94.53     
F-score     94.58  

Ground Truth  Ground Truth extend 
F T  % F T % 

Prediction 
F 905 184  83.10 

Prediction 
F 1500 130  92.02 

T 43 535  92.56 T 42 1176  96.55 
% 95.46 74.41  86.38 % 97.28 90.05  93.96  

Table 5 
Accuracy of classification using various reference FT (frozen/thawed) time pe
riods for different sets (Test, Ground Truth - validation set, Ground Truth 
Extended - extended validation set), where “Feb&Aug” corresponds to February 
and August, and “JFebM” denotes mid-January to mid-March.  

Dataset Test Ground Truth Ground Truth 
extend 

Ref. FT Accuracy F1- 
score 

Accuracy F1- 
score 

Accuracy F1- 
score 

FebAug 94.88 94.96 86.20 88.68 90.73 92.05 
JFebMAug 95.67 96.77 84.10 87.23 89.82 91.34  

Fig. 6. Comparison of the validation accuracy of the GrTr and GrTrEx set by various condition (12 example networks with same input variables, differentiated by 
hyperparameter tuning). 

Y. Chen et al.                                                                                                                                                                                                                                    



International Journal of Applied Earth Observation and Geoinformation 126 (2024) 103616

11

Unfortunately, fulfilling this requirement is often challenging in cryo
spheric studies due to the difficulties involved in data collection. The 
concept of reference periods proposed in this study provides a much 
more convenient and feasible way to label the data. This approach en
ables the utilization of remote sensing data to build a training dataset by 
simply requiring knowledge of the seasonality in the area of interest, 
without the need for direct measurements for every sample. Conse
quently, this allows further data preparation that is not dependent on the 
amount and locations of measurement stations. The size of data is 
therefore not limited to the used amount in this study, users can freely 
create larger or smaller data sets after defining their needs. Moreover, 
the idea of extending the ground truth dataset helps create a larger 
validation data set based on the available in-situ measurements when it 
is challenging to obtain sufficient in-situ measurements. This strategy 
enables researchers to evaluate the accuracy of the model over a broader 
range of conditions, improving the reliability of the results. Overall, 
these advancements make the approach proposed in this study appli
cable and transferable for future studies over large regions by over
coming the challenges associated with limited in-situ measurements. 

As a whole, this study found an effective way to classify soil FT states 
using the DL method and remote sensing data. From this study, we 
successfully tested that DL is suitable for this task and achieved high 
accuracy with high spatial resolution compared to existing methods. 
However, it is important to acknowledge that DL is a result-oriented 
black box method, which cannot directly provide specific feedback on 
soil temperature regimes and the mechanisms of FT processes. Studying 
these mechanisms is meaningful and indispensable for better under
standing the dynamics of the permafrost landscape. Thus, we should 
consider DL as an efficient tool and make rational use of its strengths, but 
not unthinkingly rely on it and ignore the exploration of physical 
mechanisms. A successful retrieval achieved through the DL method 
could build a good foundation for further investigation of soil FT dy
namic and its relation with the found influence factors, such as the land 
cover types. 

6. Conclusion 

The deep learning approach can be effectively used for FT estimation 
with remote sensing data. Both the pixel-wise training with MLP and the 
patch-wise training with CNN can simulate the FT states over the entire 
study area, while CNN showed significantly better performance with a 
test accuracy close to 95 % and a validations accuracy of over 88 %. 
Combined use of backscatter signals from both VV and VH polarizations 
is recommended; the incidence angle and land cover information can 
also contribute well to the modeling. Elimination of land cover types, 
that are not covered by soil, such as infrastructure and waterbodies, is 
not necessary for the processing. The concept of using seasonal refer
ences is a good solution for labeling training data. Defining references 
should be done carefully based on an investigation of local meteoro
logical conditions. The reference period does not necessarily have to be 
long, but it should be robust and representative. The validation process 
with ground truth data is very important to help distinguish true and 
false well-performing networks. An empirical extension of Ground Truth 
data can be used carefully if necessary. For future work, we would like to 
explore methods for integrating microwave data with advantages in 
temporal resolution for instance L-band SMAP data set and data with 
high spatial resolution such as S1 to construct a better database for 
further improving the monitoring and understanding of the landscape 
FT cycles. 
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permafrost degradation in subarctic Québec (Tasiapik Valley, Nunavik, Canada). 
Arct. Sci. 5, 1–26. https://doi.org/10.1139/as-2016-0049. 

Rautiainen, K., Lemmetyinen, J., Schwank, M., Kontu, A., Ménard, C.B., Mätzler, C., 
Drusch, M., Wiesmann, A., Ikonen, J., Pulliainen, J., 2014. Detection of soil freezing 
from L-band passive microwave observations. Remote Sens. Environ. 147, 206–218. 
https://doi.org/10.1016/j.rse.2014.03.007. 

Rautiainen, K., Parkkinen, T., Lemmetyinen, J., Schwank, M., Wiesmann, A., Ikonen, J., 
Derksen, C., Davydov, S., Davydova, A., Boike, J., 2016. SMOS prototype algorithm 
for detecting autumn soil freezing. Remote Sens. Environ. 180, 346–360. https://doi. 
org/10.1016/j.rse.2016.01.012. 

Rautiainen, K., Lemmetyinen, J., Aalto, T., Tsuruta, A., Kangasaho, V., Ikonen, J., 
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